Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Big text data“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Big text data" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Big text data"
N.J., Anjala. „Algorithmic Assessment of Text based Data Classification in Big Data Sets“. Journal of Advanced Research in Dynamical and Control Systems 12, SP4 (31.03.2020): 1231–34. http://dx.doi.org/10.5373/jardcs/v12sp4/20201598.
Der volle Inhalt der QuelleHassani, Hossein, Christina Beneki, Stephan Unger, Maedeh Taj Mazinani und Mohammad Reza Yeganegi. „Text Mining in Big Data Analytics“. Big Data and Cognitive Computing 4, Nr. 1 (16.01.2020): 1. http://dx.doi.org/10.3390/bdcc4010001.
Der volle Inhalt der QuelleKodabagi, M. M., Deepa Sarashetti und Vilas Naik. „A Text Information Retrieval Technique for Big Data Using Map Reduce“. Bonfring International Journal of Software Engineering and Soft Computing 6, Special Issue (31.10.2016): 22–26. http://dx.doi.org/10.9756/bijsesc.8236.
Der volle Inhalt der QuelleCourtney, Kyle, Rachael Samberg und Timothy Vollmer. „Big data gets big help: Law and policy literacies for text data mining“. College & Research Libraries News 81, Nr. 4 (09.04.2020): 193. http://dx.doi.org/10.5860/crln.81.4.193.
Der volle Inhalt der QuelleRajagopal, D., und K. Thilakavalli. „Efficient Text Mining Prototype for Big Data“. International Journal of Data Mining And Emerging Technologies 5, Nr. 1 (2015): 38. http://dx.doi.org/10.5958/2249-3220.2015.00007.5.
Der volle Inhalt der QuelleIqbal, Waheed, Waqas Ilyas Malik, Faisal Bukhari, Khaled Mohamad Almustafa und Zubiar Nawaz. „Big Data Full-Text Search Index Minimization Using Text Summarization“. Information Technology and Control 50, Nr. 2 (17.06.2021): 375–89. http://dx.doi.org/10.5755/j01.itc.50.2.25470.
Der volle Inhalt der QuelleToon, Elizabeth, Carsten Timmermann und Michael Worboys. „Text-Mining and the History of Medicine: Big Data, Big Questions?“ Medical History 60, Nr. 2 (14.03.2016): 294–96. http://dx.doi.org/10.1017/mdh.2016.18.
Der volle Inhalt der QuelleLepper, Marcel. „Big Data, Global Villages“. Philological Encounters 1, Nr. 1-4 (26.01.2016): 131–62. http://dx.doi.org/10.1163/24519197-00000006.
Der volle Inhalt der QuelleKhan, Zaheer, und Tim Vorley. „Big data text analytics: an enabler of knowledge management“. Journal of Knowledge Management 21, Nr. 1 (13.02.2017): 18–34. http://dx.doi.org/10.1108/jkm-06-2015-0238.
Der volle Inhalt der QuelleKagan, Pavel. „Big data sets in construction“. E3S Web of Conferences 110 (2019): 02007. http://dx.doi.org/10.1051/e3sconf/201911002007.
Der volle Inhalt der QuelleDissertationen zum Thema "Big text data"
Šoltýs, Matej. „Big Data v technológiách IBM“. Master's thesis, Vysoká škola ekonomická v Praze, 2014. http://www.nusl.cz/ntk/nusl-193914.
Der volle Inhalt der QuelleLeis, Machín Angela 1974. „Studying depression through big data analytics on Twitter“. Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2021. http://hdl.handle.net/10803/671365.
Der volle Inhalt der QuelleNhlabano, Valentine Velaphi. „Fast Data Analysis Methods For Social Media Data“. Diss., University of Pretoria, 2018. http://hdl.handle.net/2263/72546.
Der volle Inhalt der QuelleDissertation (MSc)--University of Pretoria, 2019.
National Research Foundation (NRF) - Scarce skills
Computer Science
MSc
Unrestricted
Bischof, Jonathan Michael. „Interpretable and Scalable Bayesian Models for Advertising and Text“. Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11400.
Der volle Inhalt der QuelleStatistics
Abrantes, Filipe André Catarino. „Processos e ferramentas de análise de Big Data : a análise de sentimento no twitter“. Master's thesis, Instituto Superior de Economia e Gestão, 2017. http://hdl.handle.net/10400.5/15802.
Der volle Inhalt der QuelleCom o aumento exponencial na produção de dados a nível mundial, torna-se crucial encontrar processos e ferramentas que permitam analisar este grande volume de dados (comumente denominado de Big Data), principalmente os não estruturados como é o caso dos dados produzidos em formato de texto. As empresas, hoje, tentam extrair valor destes dados, muitos deles gerados por clientes ou potenciais clientes, que lhes podem conferir vantagem competitiva. A dificuldade subsiste na forma como se analisa dados não estruturados, nomeadamente, os dados produzidos através das redes digitais, que são uma das grandes fontes de informação das organizações. Neste trabalho será enquadrada a problemática da estruturação e análise de Big Data, são apresentadas as diferentes abordagens para a resolução deste problema e testada uma das abordagens num bloco de dados selecionado. Optou-se pela abordagem de análise de sentimento, através de técnica de text mining, utilizando a linguagem R e texto partilhado na rede Twitter, relativo a quatro gigantes tecnológicas: Amazon, Apple, Google e Microsoft. Conclui-se, após o desenvolvimento e experimento do protótipo realizado neste projeto, que é possível efetuar análise de sentimento de tweets utilizando a ferramenta R, permitindo extrair informação de valor a partir de grandes blocos de dados.
Due to the exponential increase of global data, it becomes crucial to find processes and tools that make it possible to analyse this large volume (usually known as Big Data) of unstructured data, especially, the text format data. Nowadays, companies are trying to extract value from these data, mostly generated by customers or potential customers, which can assure a competitive leverage. The main difficulty is how to analyse unstructured data, in particular, data generated through digital networks, which are one of the biggest sources of information for organizations. During this project, the problem of Big Data structuring and analysis will be framed, will be presented the different approaches to solve this issue and one of the approaches will be tested in a selected data block. It was selected the sentiment analysis approach, using text mining technique, R language and text shared in Twitter, related to four technology giants: Amazon, Apple, Google and Microsoft. In conclusion, after the development and experimentation of the prototype carried out in this project, that it is possible to perform tweets sentiment analysis using the tool R, allowing to extract valuable information from large blocks of data.
info:eu-repo/semantics/publishedVersion
Hill, Geoffrey. „Sensemaking in Big Data: Conceptual and Empirical Approaches to Actionable Knowledge Generation from Unstructured Text Streams“. Kent State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=kent1433597354.
Der volle Inhalt der QuelleChennen, Kirsley. „Maladies rares et "Big Data" : solutions bioinformatiques vers une analyse guidée par les connaissances : applications aux ciliopathies“. Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAJ076/document.
Der volle Inhalt der QuelleOver the last decade, biomedical research and medical practice have been revolutionized by the post-genomic era and the emergence of Big Data in biology. The field of rare diseases, are characterized by scarcity from the patient to the domain knowledge. Nevertheless, rare diseases represent a real interest as the fundamental knowledge accumulated as well as the developed therapeutic solutions can also benefit to common underlying disorders. This thesis focuses on the development of new bioinformatics solutions, integrating Big Data and Big Data associated approaches to improve the study of rare diseases. In particular, my work resulted in (i) the creation of PubAthena, a tool for the recommendation of relevant literature updates, (ii) the development of a tool for the analysis of exome datasets, VarScrut, which combines multi-level knowledge to improve the resolution rate
Soen, Kelvin, und Bo Yin. „Customer Behaviour Analysis of E-commerce : What information can we get from customers' reviews through big data analysis“. Thesis, KTH, Entreprenörskap och Innovation, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254194.
Der volle Inhalt der QuelleEntrepreneurship & Innovation Management
Lindén, Johannes. „Huvudtitel: Understand and Utilise Unformatted Text Documents by Natural Language Processing algorithms“. Thesis, Mittuniversitetet, Avdelningen för informationssystem och -teknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-31043.
Der volle Inhalt der QuelleSavalli, Antonino. „Tecniche analitiche per “Open Data”“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17476/.
Der volle Inhalt der QuelleBücher zum Thema "Big text data"
Jo, Taeho. Text Mining: Concepts, Implementation, and Big Data Challenge (Studies in Big Data). Springer, 2018.
Den vollen Inhalt der Quelle findenJo, Taeho. Text Mining: Concepts, Implementation, and Big Data Challenge. Springer, 2019.
Den vollen Inhalt der Quelle findenStruhl, Steven. Practical Text Analytics: Interpreting Text and Unstructured Data for Business Intelligence. Kogan Page, 2016.
Den vollen Inhalt der Quelle findenPractical Text Analytics: Interpreting Text and Unstructured Data for Business Intelligence. Kogan Page, 2015.
Den vollen Inhalt der Quelle findenZaydman, Mikhail. Tweeting About Mental Health: Big Data Text Analysis of Twitter for Public Policy. RAND Corporation, 2017. http://dx.doi.org/10.7249/rgsd391.
Der volle Inhalt der QuelleDeep Text: Using Text Analytics to Conquer Information Overload, Get Real Value from Social Media, and Add Bigger Text to Big Data. Information Today Inc, 2016.
Den vollen Inhalt der Quelle findenBrayne, Sarah. Predict and Surveil. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190684099.001.0001.
Der volle Inhalt der QuelleJockers, Matthew L. Theme. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252037528.003.0008.
Der volle Inhalt der QuelleMorin, Jean-Frédéric, Christian Olsson und Ece Özlem Atikcan, Hrsg. Research Methods in the Social Sciences: An A-Z of key concepts. Oxford University Press, 2021. http://dx.doi.org/10.1093/hepl/9780198850298.001.0001.
Der volle Inhalt der QuelleJockers, Matthew L. Revolution. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252037528.003.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Big text data"
Ye, Zhonglin, Haixing Zhao, Ke Zhang, Yu Zhu und Yuzhi Xiao. „Text-Associated Max-Margin DeepWalk“. In Big Data, 301–21. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2922-7_21.
Der volle Inhalt der QuelleJo, Taeho. „Text Summarization“. In Studies in Big Data, 271–94. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_13.
Der volle Inhalt der QuelleJo, Taeho. „Text Segmentation“. In Studies in Big Data, 295–317. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_14.
Der volle Inhalt der QuelleJo, Taeho. „Text Indexing“. In Studies in Big Data, 19–40. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_2.
Der volle Inhalt der QuelleJo, Taeho. „Text Encoding“. In Studies in Big Data, 41–58. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_3.
Der volle Inhalt der QuelleJo, Taeho. „Text Association“. In Studies in Big Data, 59–75. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_4.
Der volle Inhalt der QuelleAswin, T. S., Rahul Ignatius und Mathangi Ramachandran. „Integration of Text Classification Model with Speech to Text System“. In Big Data Analytics, 103–12. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-72413-3_7.
Der volle Inhalt der QuelleJo, Taeho. „Text Clustering: Approaches“. In Studies in Big Data, 203–24. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_10.
Der volle Inhalt der QuelleJo, Taeho. „Text Clustering: Implementation“. In Studies in Big Data, 225–47. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_11.
Der volle Inhalt der QuelleJo, Taeho. „Text Clustering: Evaluation“. In Studies in Big Data, 249–68. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Big text data"
Lee, Song-Eun, Kang-Min Kim, Woo-Jong Ryu, Jemin Park und SangKeun Lee. „From Text Classification to Keyphrase Extraction for Short Text“. In 2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019. http://dx.doi.org/10.1109/bigdata47090.2019.9006409.
Der volle Inhalt der QuelleBuchler, Marco, Greta Franzini, Emily Franzini und Maria Moritz. „Scaling historical text re-use“. In 2014 IEEE International Conference on Big Data (Big Data). IEEE, 2014. http://dx.doi.org/10.1109/bigdata.2014.7004449.
Der volle Inhalt der QuelleBlanke, Tobias, und Jon Wilson. „Identifying epochs in text archives“. In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017. http://dx.doi.org/10.1109/bigdata.2017.8258172.
Der volle Inhalt der QuelleRichardet, Renaud, Jean-Cedric Chappelier, Shreejoy Tripathy und Sean Hill. „Agile text mining with Sherlok“. In 2015 IEEE International Conference on Big Data (Big Data). IEEE, 2015. http://dx.doi.org/10.1109/bigdata.2015.7363910.
Der volle Inhalt der QuelleVandierendonck, Hans, Karen Murphy, Mahwish Arif und Dimitrios S. Nikolopoulos. „HPTA: High-performance text analytics“. In 2016 IEEE International Conference on Big Data (Big Data). IEEE, 2016. http://dx.doi.org/10.1109/bigdata.2016.7840632.
Der volle Inhalt der QuelleGe, Lihao, und Teng-Sheng Moh. „Improving text classification with word embedding“. In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017. http://dx.doi.org/10.1109/bigdata.2017.8258123.
Der volle Inhalt der QuelleLulli, Alessandro, Thibault Debatty, Matteo Dell'Amico, Pietro Michiardi und Laura Ricci. „Scalable k-NN based text clustering“. In 2015 IEEE International Conference on Big Data (Big Data). IEEE, 2015. http://dx.doi.org/10.1109/bigdata.2015.7363845.
Der volle Inhalt der QuelleSong, Xiaoli, XiaoTong Wang und Xiaohua Hu. „Semantic pattern mining for text mining“. In 2016 IEEE International Conference on Big Data (Big Data). IEEE, 2016. http://dx.doi.org/10.1109/bigdata.2016.7840600.
Der volle Inhalt der QuelleBingmann, Timo, Simon Gog und Florian Kurpicz. „Scalable Construction of Text Indexes with Thrill“. In 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018. http://dx.doi.org/10.1109/bigdata.2018.8622171.
Der volle Inhalt der QuelleAlzhrani, Khudran, Ethan M. Rudd, C. Edward Chow und Terrance E. Boult. „Automated big security text pruning and classification“. In 2016 IEEE International Conference on Big Data (Big Data). IEEE, 2016. http://dx.doi.org/10.1109/bigdata.2016.7841028.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Big text data"
Currie, Janet, Henrik Kleven und Esmée Zwiers. Technology and Big Data Are Changing Economics: Mining Text to Track Methods. Cambridge, MA: National Bureau of Economic Research, Januar 2020. http://dx.doi.org/10.3386/w26715.
Der volle Inhalt der QuelleDoucet, Rachel A., Deyan M. Dontchev, Javon S. Burden und Thomas L. Skoff. Big Data Analytics Test Bed. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada589903.
Der volle Inhalt der QuelleCerdeira, Pablo, Marcus Mentzingen de Mendonça und Urszula Gabriela Lagowska. Políticas públicas orientadas por dados: Os caminhos possíveis para governos locais. Herausgegeben von Mauricio Bouskela, Marcelo Facchina und Hallel Elnir. Inter-American Development Bank, Oktober 2020. http://dx.doi.org/10.18235/0002727.
Der volle Inhalt der Quellede Caritat, Patrice, Brent McInnes und Stephen Rowins. Towards a heavy mineral map of the Australian continent: a feasibility study. Geoscience Australia, 2020. http://dx.doi.org/10.11636/record.2020.031.
Der volle Inhalt der QuelleHolland, Darren, und Nazmina Mahmoudzadeh. Foodborne Disease Estimates for the United Kingdom in 2018. Food Standards Agency, Januar 2020. http://dx.doi.org/10.46756/sci.fsa.squ824.
Der volle Inhalt der QuelleTransfer of Air Force technical procurement bid set data to small businesses, using CALS and EDI: Test report. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/46712.
Der volle Inhalt der Quelle