Zeitschriftenartikel zum Thema „Bi₂O₂CO₃ nanosheets“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Bi₂O₂CO₃ nanosheets.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-42 Zeitschriftenartikel für die Forschung zum Thema "Bi₂O₂CO₃ nanosheets" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Peng, Yin, Qian Zhang und Peng-Fei Kan. „Synthesis of a novel one-dimensional Bi2O2CO3–BiOCl heterostructure and its enhanced photocatalytic activity“. CrystEngComm 22, Nr. 41 (2020): 6822–30. http://dx.doi.org/10.1039/d0ce01181a.

Der volle Inhalt der Quelle
Annotation:
A novel one-dimensional Bi2O2CO3–BiOCl heterostructure was synthesized. BiOCl nanosheets uniformly and vertically grew onto the Bi2O2CO3 porous rods via crystallographic oriented epitaxial nucleation and growth. Bi2O2CO3–BiOCl displayed excellent photocatalytic activity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wang, Fang, Ziyan Zhao, Kunhao Zhang, Fan Dong und Ying Zhou. „Topochemical transformation of low-energy crystal facets to high-energy facets: a case from Bi2O2CO3 {001} facets to β-Bi2O3 {001} facets with improved photocatalytic oxidation of NO“. CrystEngComm 17, Nr. 32 (2015): 6098–102. http://dx.doi.org/10.1039/c5ce01035g.

Der volle Inhalt der Quelle
Annotation:
Photocatalytically active β-Bi2O3 nanosheets exposed with active {001} facets were facilely prepared through annealing Bi2O2CO3 with thermal stable {001} facets.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Qin, Hangdao, Yingchang Yang, Wei Shi und Yuanbin She. „Few-layer Bi2O2CO3 nanosheets derived from electrochemically exfoliated bismuthene for the enhanced photocatalytic degradation of ciprofloxacin antibiotic“. RSC Advances 11, Nr. 23 (2021): 13731–38. http://dx.doi.org/10.1039/d1ra00528f.

Der volle Inhalt der Quelle
Annotation:
Few-layer 2D Bi2O2CO3 nanosheets derived from electrochemically cathodic exfoliated bismuthene exhibit enhanced photocatalytic degradation of the ciprofloxacin antibiotic.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

An, Xiaowei, Shasha Li, Xiaoqiong Hao, Xiao Du, Tao Yu, Zhongde Wang, Xiaogang Hao, Abuliti Abudula und Guoqing Guan. „The in situ morphology transformation of bismuth-based catalysts for the effective electroreduction of carbon dioxide“. Sustainable Energy & Fuels 4, Nr. 6 (2020): 2831–40. http://dx.doi.org/10.1039/d0se00228c.

Der volle Inhalt der Quelle
Annotation:
An in situ morphological transformation phenomenon accompanied by petal-shaped Bi2O2CO3 nanosheets formation has been observed to help improving electrocatalytic performance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Luo, Haidong, Binxia Zhao, Mengran Zhang, Yuling Liu, Ruixuan Han und Linxue Liu. „Novel Co-doped Fe3O4/Bi2WO6 core–shell magnetic photocatalysts with enhanced photocatalytic degradation of contaminants“. New Journal of Chemistry 43, Nr. 38 (2019): 15335–41. http://dx.doi.org/10.1039/c9nj03918j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yang, Li-Min, Guo-Ying Zhang, Hai-Rong Wang, Xue Bai, Xing-Qi Shen, Jing-Wang Liu und Dong-Zhao Gao. „Mild synthesis of {001} facet predominated Bi2O2CO3 clusters with outstanding simulated sunlight photocatalytic activities“. CrystEngComm 18, Nr. 20 (2016): 3683–95. http://dx.doi.org/10.1039/c6ce00435k.

Der volle Inhalt der Quelle
Annotation:
Bi2O2CO3 clusters built up of ultrathin nanosheets with predominated {001} facets were facilely synthesized via a template-free hydrothermal strategy at a mild temperature of 60 °C and exhibit excellent photocatalytic activity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Selvamani, Thangavel, Balasubramaniam Gnana Sundara Raj, Sambandam Anandan, Jerry J. Wu und Muthupandian Ashokkumar. „Synthesis of morphology-controlled bismutite for selective applications“. Physical Chemistry Chemical Physics 18, Nr. 11 (2016): 7768–79. http://dx.doi.org/10.1039/c5cp07523h.

Der volle Inhalt der Quelle
Annotation:
Bismutite (Bi2O2CO3) possessing diverse morphologies, namely, nanosheets, nanodiscs and nanoplatelets, was synthesized by a simple controllable method shows excellent materials as adsorbents and photocatalysts for wastewater treatment with supercapacitor activities for energy applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

SUN, PENG, YUJIAN JIN, YUNXUAN ZHAO, JUAN XU, MINDONG CHEN, WENQING YAO, YONGFA ZHU und FEI TENG. „NOVEL HIERARCHICAL NANORODS OF SILICON-DOPED Bi2O2CO3 AND ITS PHOTOCATALYTIC ACTIVITY“. Nano 09, Nr. 08 (Dezember 2014): 1450094. http://dx.doi.org/10.1142/s1793292014500945.

Der volle Inhalt der Quelle
Annotation:
The silicon-doped Bi 2 O 2 CO 3 nanorods with the interesting hierarchical structure are synthesized by a simple hydrothermal method. The samples are characterized by XRD, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM), Ultraviolet-visible diffuse reflectance spectra (UV-DRS) and nitrogen sorption isotherms. It is found that with the increase of silicon content, the XRD peak of the sample significantly shifts toward a low diffraction angle and the particle morphologies change from nanosheets, nanoflowers to hierarchical nanorods. Moreover, the silicon-doped Bi 2 O 2 CO 3 hierarchical nanorods exhibit improved photocatalytic degradation activities for different types of dyes under simulated solar light irradiation. The improved activity has been mainly attributed to the unique hierarchical nanorods structure and the formation of Si – O – Bi bonds.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Zhang, Lili, Zhiqiang Wang, Tong Li, Chun Hu und Min Yang. „Ultrathin Bi4O5Br2 nanosheets with surface oxygen vacancies and strong interaction with Bi2O2CO3 for highly efficient removal of water contaminants“. Environmental Science: Nano 9, Nr. 4 (2022): 1341–52. http://dx.doi.org/10.1039/d1en01024g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wang, Bo, Jingyi Wang, Yan Zhang, Yi Mei und Peichao Lian. „Electrochemical performance of Bi 2 O 2 CO 3 nanosheets as negative electrode material for supercapacitors“. Ceramics International 43, Nr. 12 (August 2017): 9310–16. http://dx.doi.org/10.1016/j.ceramint.2017.04.092.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Li, Xiao, Xingqiao Wu, Junjie Li, Jingbo Huang, Liang Ji, Zihan Leng, Ningkang Qian, Deren Yang und Hui Zhang. „Sn-Doped Bi2O3 nanosheets for highly efficient electrochemical CO2 reduction toward formate production“. Nanoscale 13, Nr. 46 (2021): 19610–16. http://dx.doi.org/10.1039/d1nr06038d.

Der volle Inhalt der Quelle
Annotation:
Sn-Doped Bi2O3 nanosheets showed enhanced catalytic selectivity and activity for CO2RR relative to undoped ones with 2.5% Sn-doped Bi2O3 NSs showing a highest FE of over 93% and a largest current density of nearly 50 mA cm−2 for formate in H-cell.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Li, Liexiao, Xiaofeng Sun, Tao Xian, Huajing Gao, Shifa Wang, Zao Yi, Xianwen Wu und Hua Yang. „Template-free synthesis of Bi2O2CO3 hierarchical nanotubes self-assembled from ordered nanoplates for promising photocatalytic applications“. Physical Chemistry Chemical Physics 24, Nr. 14 (2022): 8279–95. http://dx.doi.org/10.1039/d1cp05952a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Zhang, Qitao, Bin Xu, Saisai Yuan, Ming Zhang und Teruhisa Ohno. „Improving g-C 3 N 4 photocatalytic performance by hybridizing with Bi 2 O 2 CO 3 nanosheets“. Catalysis Today 284 (April 2017): 27–36. http://dx.doi.org/10.1016/j.cattod.2016.10.027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Zu, Xiaolong, Yuan Zhao, Xiaodong Li, Runhua Chen, Weiwei Shao, Zhiqiang Wang, Jun Hu et al. „Ultrastable and Efficient Visible‐light‐driven CO 2 Reduction Triggered by Regenerative Oxygen‐Vacancies in Bi 2 O 2 CO 3 Nanosheets“. Angewandte Chemie International Edition 60, Nr. 25 (10.05.2021): 13840–46. http://dx.doi.org/10.1002/anie.202101894.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Zu, Xiaolong, Yuan Zhao, Xiaodong Li, Runhua Chen, Weiwei Shao, Zhiqiang Wang, Jun Hu et al. „Ultrastable and Efficient Visible‐light‐driven CO 2 Reduction Triggered by Regenerative Oxygen‐Vacancies in Bi 2 O 2 CO 3 Nanosheets“. Angewandte Chemie 133, Nr. 25 (10.05.2021): 13959–65. http://dx.doi.org/10.1002/ange.202101894.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Liu, Subiao, Xue Feng Lu, Jing Xiao, Xin Wang und Xiong Wen (David) Lou. „Bi 2 O 3 Nanosheets Grown on Multi‐Channel Carbon Matrix to Catalyze Efficient CO 2 Electroreduction to HCOOH“. Angewandte Chemie International Edition 58, Nr. 39 (23.09.2019): 13828–33. http://dx.doi.org/10.1002/anie.201907674.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Liu, Subiao, Xue Feng Lu, Jing Xiao, Xin Wang und Xiong Wen (David) Lou. „Bi 2 O 3 Nanosheets Grown on Multi‐Channel Carbon Matrix to Catalyze Efficient CO 2 Electroreduction to HCOOH“. Angewandte Chemie 131, Nr. 39 (16.08.2019): 13966–71. http://dx.doi.org/10.1002/ange.201907674.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Hu, Dandan, Kaiyou Zhang, Qi Yang, Mingjun Wang, Yi Xi und Chenguo Hu. „Super-high photocatalytic activity of Fe 2 O 3 nanoparticles anchored on Bi 2 O 2 CO 3 nanosheets with exposed {0 0 1} active facets“. Applied Surface Science 316 (Oktober 2014): 93–101. http://dx.doi.org/10.1016/j.apsusc.2014.07.185.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Liu, Shao-Qing, Ehsan Shahini, Min-Rui Gao, Lu Gong, Peng-Fei Sui, Tian Tang, Hongbo Zeng und Jing-Li Luo. „Bi2O3 Nanosheets Grown on Carbon Nanofiber with Inherent Hydrophobicity for High-Performance CO2 Electroreduction in a Wide Potential Window“. ACS Nano 15, Nr. 11 (21.10.2021): 17757–68. http://dx.doi.org/10.1021/acsnano.1c05737.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Li, Jinbo, Zhaohui Wu, Shumin Zhang, Kaiqiang Xu, Nan Ma, Wenhui Feng, Min Wu, Difa Xu, Shiying Zhang und Jie Shen. „Hydroxyl-assisted iodine ions intercalating Bi2O2CO3 nanosheets to construct an interlayered bridge for enhanced photocatalytic degradation of phenols“. CrystEngComm 24, Nr. 7 (2022): 1377–86. http://dx.doi.org/10.1039/d1ce01190a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Gupta, Tushar, Nicole Rosza, Markus Sauer, Alexander Goetz, Maximilian Winzely, Jakob Rath, Shaghayegh Naghdi et al. „Sonochemical Synthesis of Large Two‐Dimensional Bi 2 O 2 CO 3 Nanosheets for Hydrogen Evolution in Photocatalytic Water Splitting (Adv. Sustainable Syst. 11/2022)“. Advanced Sustainable Systems 6, Nr. 11 (November 2022): 2270026. http://dx.doi.org/10.1002/adsu.202270026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Liu, Yumin, Peng Zhang, Hua Lv, Jing Guang, Shuang Li und Juhui Jiang. „A nanosheet-like BiPO4/Bi2O2CO3 heterostructured photocatalyst with enhanced photocatalytic activity“. RSC Advances 5, Nr. 102 (2015): 83764–72. http://dx.doi.org/10.1039/c5ra16146k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Wang, Ke, Zipeng Xing, Meng Du, Shiyu Zhang, Zhenzi Li, Kai Pan und Wei Zhou. „Plasmon Ag and CdS quantum dot co-decorated 3D hierarchical ball-flower-like Bi5O7I nanosheets as tandem heterojunctions for enhanced photothermal–photocatalytic performance“. Catalysis Science & Technology 9, Nr. 23 (2019): 6714–22. http://dx.doi.org/10.1039/c9cy01945f.

Der volle Inhalt der Quelle
Annotation:
Bi5O7I/Ag/CdS tandem heterojunction photocatalysts show excellent photothermal and photocatalytic performance, which is attributed to the formation of tandem heterojunctions, surface plasmon resonance, and 3D hierarchical structure.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Chen, Liqun, Zhuo Mao, Yang Wang, Yong Kang, Ying Wang, Lin Mei und Xiaoyuan Ji. „Edge modification facilitated heterogenization and exfoliation of two-dimensional nanomaterials for cancer catalytic therapy“. Science Advances 8, Nr. 39 (30.09.2022). http://dx.doi.org/10.1126/sciadv.abo7372.

Der volle Inhalt der Quelle
Annotation:
The rapid recombination of electron-hole pairs and limited substrates are the most critical factors astricting the effect of catalytic therapy. Thus, two-dimensional interplanar heterojunction (BiOCl/Bi 2 O 3 ) that prolongs the lifetime of excited electrons and holes and extends the selectivity of substrates under ultrasound irradiation is prepared to facilitate high-performance cancer therapy. An edge modification displacing marginal BiOCl to Bi 2 O 3 is proposed to construct the interplanar heterojunction, promoting ultrathin nanosheets exfoliation due to the enhanced edge affinity with H 2 O. The spontaneously aligning Fermi levels mediate a built-in electric field–guided Z-scheme interplanar heterojunction, retard electron-hole pairs recombination, and improve redox potentials. Hence, these high-powered electrons and holes are capable of catalyzing diverse and stable substrates, such as the reduction reactions, O 2 → ·O 2 − and CO 2 → CO, and oxidation reactions, GSH → GSSG and H 2 O → ·OH. The Z-scheme interplanar heterojunction with the extending substrates selectivity completely breaks the tumor microenvironment limitation, exhibiting high anticancer activity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Guan, Meili, Ni Lu, Xuan Zhang, Qiuwan Wang, Jian Bao, Guiye Chen, Hao Yu, Huaming Li, Jiexiang Xia und Xuezhong Gong. „Engineering of oxygen vacancy and bismuth cluster assisted ultrathin Bi12O17Cl2 nanosheets with efficient and selective photoreduction of CO2 to CO“. Carbon Energy, 15.09.2023. http://dx.doi.org/10.1002/cey2.420.

Der volle Inhalt der Quelle
Annotation:
AbstractThe photocatalytic conversion of CO2 into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming. This work demonstrated the selective photoreduction of CO2 to CO using ultrathin Bi12O17Cl2 nanosheets decorated with hydrothermally synthesized bismuth clusters and oxygen vacancies (OVs). The characterizations revealed that the coexistences of OVs and Bi clusters generated in situ contributed to the high efficiency of CO2–CO conversion (64.3 μmol g−1 h−1) and perfect selectivity. The OVs on the facet (001) of the ultrathin Bi12O17Cl2 nanosheets serve as sites for CO2 adsorption and activation sites, capturing photoexcited electrons and prolonging light absorption due to defect states. In addition, the Bi‐cluster generated in situ offers the ability to trap holes and the surface plasmonic resonance effect. This study offers great potential for the construction of semiconductor hybrids as multiphotocatalysts, capable of being used for the elimination and conversion of CO2 in terms of energy and environment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Yang, Bixia, Weilong Dong, Chongbing Zhu, Xinlian Huang, Yunhui Han, Yanting Zheng, Jiawei Yan, Zanyong Zhuang und Yan Yu. „Reinforcing 2D Single‐Crystal Bi2O2CO3 with Additional Interlayer Carbonates by CO2‐Assisted Solid‐to‐Solid Phase Transition“. Small, 25.04.2024. http://dx.doi.org/10.1002/smll.202401559.

Der volle Inhalt der Quelle
Annotation:
AbstractA facile gaseous CO2 mediated solid‐to‐solid transformation principle is adopted to insert additional CO32− anions into the thin single‐crystal nanosheets of Bi2O2CO3, which is built of periodic arrays of intrinsic CO32− anions and (Bi2O2)2+ layers. The additional CO32− anions create abundant defects. The Bi2O2CO3 nanosheets with rich interlayer CO32− exhibit superior electronic properties and charge transfer kinetics than the pristine single‐crystal 2D Bi2O2CO3 and display enhanced catalytic activity in photocatalytic CO2 reduction reaction and the photocatalytic oxidative degradation of organic pollutants. This work thus illustrates interlayer engineering as a flexible means to build layered 2D materials with excellent properties.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Li, Xiao, Ningkang Qian, Liang Ji, Xingqiao Wu, Junjie Li, Jingbo Huang, Yucong Yan, Deren Yang und Hui Zhang. „Enhanced electrocatalytic reduction of CO2 to formate via doping Ce in Bi2O3 nanosheets“. Nanoscale Advances, 2022. http://dx.doi.org/10.1039/d2na00141a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Ávila-Bolívar, Beatriz, Mauricio Lopez Luna, Fengli Yang, Aram Yoon, Vicente Montiel, José Solla-Gullón, See Wee Chee und Beatriz Roldan Cuenya. „Revealing the Intrinsic Restructuring of Bi2O3 Nanoparticles into Bi Nanosheets during Electrochemical CO2 Reduction“. ACS Applied Materials & Interfaces, 26.02.2024. http://dx.doi.org/10.1021/acsami.3c18285.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Ji, Mengxia, Jie Feng, Junze Zhao, Yi Zhang, Bin Wang, Jun Di, Xinyuan Xu, Ziran Chen, Jiexiang Xia und Huaming Li. „Defect-Engineered Bi24O31Cl10 Nanosheets for Photocatalytic CO2 Reduction to CO“. ACS Applied Nano Materials, 15.11.2022. http://dx.doi.org/10.1021/acsanm.2c04232.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Huang, Qun, Xuelan Sha, Rui Yang, Haibo Li und Juan Peng. „Electrochemical Conversion of CO2 into Formate Boosted by In Situ Reconstruction of Bi-MOF to Bi2O2CO3 Ultrathin Nanosheets“. ACS Applied Materials & Interfaces, 08.03.2024. http://dx.doi.org/10.1021/acsami.4c01120.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Jing, Lingyan, Qiang Tian, Wenyi Wang, Xuan Li, Qi Hu, Hengpan Yang und Chuanxin He. „Unveiling Favorable Microenvironment on Porous Doped Carbon Nanosheets for Superior H2O2 Electrosynthesis in Neutral Media“. Advanced Energy Materials, 21.02.2024. http://dx.doi.org/10.1002/aenm.202304418.

Der volle Inhalt der Quelle
Annotation:
AbstractDesigning effective electrocatalysts tailored for targeted reactions requires fundamental insights into the structure dependence of the reaction microenvironment. Herein, inspired by finite element simulations, N,O co‐doped carbon nanosheets featuring a hierarchical micro/mesoporous structure to form an oxygen‐rich and local alkaline‐like microenvironment for the two‐electron oxygen reduction reaction (2e− ORR) in a neutral medium are designed. The in situ and ex situ test results confirmed that the micro/mesoporous carbon architecture can elevate the local pH and accelerate the generation of intermediates (*O2, *OOH), leading to high‐efficiency H2O2 production. Utilizing this favorable microenvironment, N,O‐CNS0.5 demonstrated exceptional H2O2 electrosynthesis performance in neutral media, achieving a superior H2O2 yield rate (6705 mmol gcatalyst−1 h−1 in a flow cell). Additionally, comparative experiments and density‐functional theory calculations provided confirmation of the bi‐doping of N and O as the active origin responsible for the electrochemical 2e− ORR. This study synergistically manipulates the reaction microenvironment and active sites, providing an opportunity for efficient H2O2 electro‐production in a neutral medium.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Gupta, Tushar, Nicole Rosza, Markus Sauer, Alexander Goetz, Maximilian Winzely, Jakob Rath, Shaghayegh Naghdi et al. „Sonochemical Synthesis of Large Two‐Dimensional Bi 2 O 2 CO 3 Nanosheets for Hydrogen Evolution in Photocatalytic Water Splitting“. Advanced Sustainable Systems, 28.08.2022, 2100326. http://dx.doi.org/10.1002/adsu.202100326.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Tan, Zhonghao, Jianling Zhang, Yisen Yang, Jiajun Zhong, Yingzhe Zhao, Jingyang Hu, Yanyue Wang und Zhuizhui Su. „Continuous Production of Formic Acid Solution from Electrocatalytic CO 2 Reduction Using Mesoporous Bi 2 O 3 Nanosheets as Catalyst“. CCS Chemistry, 27.10.2023, 1–10. http://dx.doi.org/10.31635/ccschem.023.202303298.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Wang, Kai, Yue Du, Yuan Li, Xiaoyong Wu, Haiyan Hu, Guohong Wang, Yao Xiao, Shulei Chou und Gaoke Zhang. „Atomic‐level insight of sulfidation‐engineered Aurivillius‐related Bi 2 O 2 SiO 3 nanosheets enabling visible light low‐concentration CO 2 conversion“. Carbon Energy, 26.09.2022. http://dx.doi.org/10.1002/cey2.264.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Li, Yan-Yang, Yue-Yue Li, Xu Liang, Pan Yuan, Cheng-Cai Zhu, Xiaobiao Liu, Hong-Chang Yao und Zhong-Jun Li. „Atomically Thin Bi2O2(OH)1+x(NO3)1–x Nanosheets with Regulated Surface Composition for Enhanced Photocatalytic CO2 Reduction“. ACS Applied Nano Materials, 15.05.2022. http://dx.doi.org/10.1021/acsanm.2c00962.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Wang, Yuxuan, Chenhui Qiu, Yujing Xie, Lei Wang, Jing Ding, Jinfeng Zhang, Hui Wan und Guofeng Guan. „Intentionally Introducing Oxygen Vacancies and Ti3+ Defects on the Surface of Bi4Ti3O12 Nanosheets for Promoting the Photoreduction of CO2 to CH3OH“. ACS Applied Nano Materials, 29.01.2024. http://dx.doi.org/10.1021/acsanm.3c05346.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Wang, Jianting, Yunyun Gong, Meichao Gao, Yanping Zheng, Yuanyuan Feng, Meiyu Xu, Qian Chu und Junfeng Yan. „Bi2O2CO3 Nanosheet Composites with Bi-Based Metal–Organic Frameworks for Photocatalytic H2O2 Production“. ACS Applied Nano Materials, 27.12.2023. http://dx.doi.org/10.1021/acsanm.3c05030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Cao, Xueying, Yadong Tian, Jizhen Ma, Weijian Guo, Wenwen Cai und Jintao Zhang. „Strong P‐D Orbital Hybridization on Bismuth Nanosheets for High Performing CO2 Electroreduction“. Advanced Materials, 27.11.2023. http://dx.doi.org/10.1002/adma.202309648.

Der volle Inhalt der Quelle
Annotation:
AbstractSingle‐atom alloys (SAAs) show great potential for a variety of electrocatalytic reactions. However, the atomic orbital hybridization effect of SAAs on the electrochemical reactions is unclear yet. Herein, we show the in situ confinement of vanadium/molybdenum atoms on bismuth nanosheet to create SAAs with rich grain boundaries. With the detailed analysis of microstructure and composition, the strong p‐d orbital hybridization between bismuth and vanadium enables the exceptional electrocatalytic performance for carbon dioxide (CO2) reduction with the Faradaic efficiency nearly 100% for C1 products in a wide potential range from −0.6 to −1.4 V, and a long‐term electrolysis stability for 90 h. In‐depth in situ investigations with theoretical computations reveal that the electron delocalization towards vanadium atoms via the p‐d orbital hybridization evokes the bismuth active centers for efficient CO2 activation via the σ‐donation of O‐to‐Bi, thus reduces protonation energy barriers for formate production. With such fundamental understanding, SAA electrocatalyst was employed to fabricated the solar‐driven electrolytic cell of CO2 reduction and 5‐hydroxymethylfurfural oxidation, achieving an outstanding 2,5‐furandicarboxylic acid yield of 90.5%. This study demonstrates a feasible strategy to rationally design advanced SAA electrocatalysts via the basic principles of p‐d orbital hybridization.This article is protected by copyright. All rights reserved
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Chen, Zhanpeng, Jiabi Jiang, Mingjun Jing, Yansong Bai, Xiaoyan Zhang, Wenhui Deng, Yufeng Wu et al. „Covalent organic framework‐derived Fe, Co‐nitrogen codoped carbon as a bifunctional electrocatalyst for rechargeable efficient Zn–air batteries“. Carbon Neutralization, 27.05.2024. http://dx.doi.org/10.1002/cnl2.145.

Der volle Inhalt der Quelle
Annotation:
AbstractThe development of cathode materials with controllable physicochemical structures and explicit catalytic sites is important in rechargeable Zn–air batteries (ZABs). Covalent organic frameworks (COFs) have garnered increasing attention owing to their facile synthesis methods, ordered pore structure, and selectivity of functional groups. However, the sluggish kinetics of oxygen evolution reaction (OER) or oxygen reduction reaction (ORR) inhibit their practical applications in ZABs. Herein, nucleophilic substitution is adopted to synthesize pyridine bi‐triazine covalent organic framework (denoted as O‐COF), and meanwhile, ionothermal conversion synthesis is employed to load MOx (M=Fe, Co) onto carbon nanosheet (named as FeCo@NC) to modulate the electronic structure. The Fe, Co‐N codoped carbon material possesses a large portion of pyridinic N and M‐N, high graphitization, and a larger BET surface area. An outstanding bifunctional activity has been exhibited in FeCo@NC, which provides a small voltage at 10 mA cm−2 for OER (E10 = 1.67 V) and a remarkable half‐wave voltage for ORR (E1/2 = 0.86 V). More impressively, when assembling ZABs, it displays notable rate performance, significant specific capacity (783.9 mAh gZn−1), and satisfactory long‐term endurance. This method of regulating covalent organic framework and ionothermal synthesis can be extended to design diverse catalysts.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Zhang, Yangyang, Yanxu Chen, Rong Liu, Xiaowen Wang, Huanhuan Liu, Yin Zhu, Qizhu Qian, Yafei Feng, Mingyu Cheng und Genqiang Zhang. „Oxygen vacancy stabilized Bi 2 O 2 CO 3 nanosheet for CO 2 electroreduction at low overpotential enables energy efficient CO‐production of formate“. InfoMat, 02.11.2022. http://dx.doi.org/10.1002/inf2.12375.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Xu, You, Yiyi Guo, Youwei Sheng, Hongjie Yu, Kai Deng, Ziqiang Wang, Xiaonian Li, Hongjing Wang und Liang Wang. „Selective CO 2 Electroreduction to Formate on Polypyrrole‐Modified Oxygen Vacancy‐Rich Bi 2 O 3 Nanosheet Precatalysts by Local Microenvironment Modulation“. Small, 14.04.2023. http://dx.doi.org/10.1002/smll.202300001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Li, Junke, Mei Li, li youji und Zhiliang Jin. „Lotus-Leaf-Like Bi <sub>2</sub>O <sub>2</sub>CO <sub>3</sub> Nanosheet Combined with Mo <sub>2</sub>S <sub>3</sub> for Higher Photocatalytic Hydrogen Evolution“. SSRN Electronic Journal, 2021. http://dx.doi.org/10.2139/ssrn.3982921.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie