Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Beyond-ΛCDM“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Beyond-ΛCDM" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Beyond-ΛCDM"
Bhattacharya, Suman, Katrin Heitmann, Martin White, Zarija Lukić, Christian Wagner und Salman Habib. „MASS FUNCTION PREDICTIONS BEYOND ΛCDM“. Astrophysical Journal 732, Nr. 2 (26.04.2011): 122. http://dx.doi.org/10.1088/0004-637x/732/2/122.
Der volle Inhalt der QuelleDas, Sudeep, Roland de Putter, Eric V. Linder und Reiko Nakajima. „Weak lensing cosmology beyond ΛCDM“. Journal of Cosmology and Astroparticle Physics 2012, Nr. 11 (06.11.2012): 011. http://dx.doi.org/10.1088/1475-7516/2012/11/011.
Der volle Inhalt der QuelleRizzo, Luca A., Francisco Villaescusa-Navarro, Pierluigi Monaco, Emiliano Munari, Stefano Borgani, Emanuele Castorina und Emiliano Sefusatti. „Simulating cosmologies beyond ΛCDM with PINOCCHIO“. Journal of Cosmology and Astroparticle Physics 2017, Nr. 01 (04.01.2017): 008. http://dx.doi.org/10.1088/1475-7516/2017/01/008.
Der volle Inhalt der QuelleTröster, Tilman, Marika Asgari, Chris Blake, Matteo Cataneo, Catherine Heymans, Hendrik Hildebrandt, Benjamin Joachimi et al. „KiDS-1000 Cosmology: Constraints beyond flat ΛCDM“. Astronomy & Astrophysics 649 (Mai 2021): A88. http://dx.doi.org/10.1051/0004-6361/202039805.
Der volle Inhalt der QuelleGiblin, Benjamin, Matteo Cataneo, Ben Moews und Catherine Heymans. „On the road to per cent accuracy – II. Calibration of the non-linear matter power spectrum for arbitrary cosmologies“. Monthly Notices of the Royal Astronomical Society 490, Nr. 4 (21.09.2019): 4826–40. http://dx.doi.org/10.1093/mnras/stz2659.
Der volle Inhalt der QuelleSakr, Z. „A trium test on beyond ΛCDM triggering parameters“. Journal of Cosmology and Astroparticle Physics 2023, Nr. 08 (01.08.2023): 080. http://dx.doi.org/10.1088/1475-7516/2023/08/080.
Der volle Inhalt der QuelleLi, En-Kun, Hongchao Zhang, Minghui Du, Zhi-Huan Zhou und Lixin Xu. „Probing the Neutrino Mass Hierarchy beyond ΛCDM Model“. Journal of Cosmology and Astroparticle Physics 2018, Nr. 08 (28.08.2018): 042. http://dx.doi.org/10.1088/1475-7516/2018/08/042.
Der volle Inhalt der QuelleBull, Philip, Yashar Akrami, Julian Adamek, Tessa Baker, Emilio Bellini, Jose Beltrán Jiménez, Eloisa Bentivegna et al. „Beyond ΛCDM: Problems, solutions, and the road ahead“. Physics of the Dark Universe 12 (Juni 2016): 56–99. http://dx.doi.org/10.1016/j.dark.2016.02.001.
Der volle Inhalt der QuelleVilla, Eleonora, Enea Di Dio und Francesca Lepori. „Lensing convergence in galaxy clustering in ΛCDM and beyond“. Journal of Cosmology and Astroparticle Physics 2018, Nr. 04 (09.04.2018): 033. http://dx.doi.org/10.1088/1475-7516/2018/04/033.
Der volle Inhalt der QuelleL’Huillier, Benjamin, Arman Shafieloo, Eric V. Linder und Alex G. Kim. „Model independent expansion history from supernovae: Cosmology versus systematics“. Monthly Notices of the Royal Astronomical Society 485, Nr. 2 (02.03.2019): 2783–90. http://dx.doi.org/10.1093/mnras/stz589.
Der volle Inhalt der QuelleDissertationen zum Thema "Beyond-ΛCDM"
Bose, Sownak. „Beyond ΛCDM : exploring alternatives to the standard cosmological paradigm“. Thesis, Durham University, 2017. http://etheses.dur.ac.uk/12207/.
Der volle Inhalt der QuelleSakr, Ziad. „Cosmology beyond ΛCDM model in the light of cluster abundance tension“. Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30346.
Der volle Inhalt der QuelleThe ΛCDM model has proved successful in describing to a high precision most of nowadays cosmological observations. However, one of its parameters, σ 8, measuring the present matter amplitude fluctuations, constrained from CMB angular power spectrum, the Cls, was found by the Planck mission, in significant tension with value constrained by SZ galaxy cluster counts in the near universe. In the present work we investigate extensions to ΛCDM model as possible origins behind this discrepancy. To test these extensions, we performed a Monte Carlo analysis to compare constraints on σ 8 in ΛCDM with constraints under these extensions, using mainly CMB Cls combined with cluster counts sample. The later were based on different mass observables relations and covered different redshift ranges: X-ray cluster in the local universe, SZ Planck mission clusters from the near universe or photometric richness estimated detected clusters from future high redshift upcoming Euclid alike mission. Because an improper determination of the calibration of cluster mass function could also be behind this discrepancy, our approach was, when combined with CMB, to leave the calibration factor free to vary and be constrained by data. Introducing three degenerate massive neutrinos, we found that they have no significant effect on fixing the discrepancy between CMB and Xray or SZ cluster counts. We then allowed the growth index ƴ to vary. We find a correlation in the confidence space between ƴ and the X-ray mass observable factor not affected by the presence of massive neutrinos, indicating that a modifying gravity is favored over massive neutrinos as a way to alleviate the tension. However, when a SZ cluster sample covering a larger redshift range was used, we found that the correlation between ƴ and the calibration factor, is constrained by the evolution of the growth through redshift and limited to a region where it cannot fix the discrepancy. [...]
Goh, Lisa. „Dark Energy Tomography with the Euclid survey“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP091.
Der volle Inhalt der QuelleThe current LCDM concordance model has been widely successful in describing our Universe. However, crucial questions remain unanswered and are becoming increasingly critical with the continuous release of high-precision cosmological data. This has led to the exploration of modified LCDM models, one of them being the Coupled Dark Energy (CDE) model, whereby dark matter particles feel a force stronger than gravity, due to the fifth force mediated by a scalar field which plays the role of dark energy. In my thesis, I introduce a new parametrisation of the CDE model where the coupling strength between the dark matter particles and the scalar field is allowed to evolve with redshift. To probe such a tomographic CDE model, I employ high redshift Cosmic Microwave Background (CMB) data from Planck, ACT and SPT, and a range of low redshift probes including, for the first time, Large Scale Structure (LSS) data from weak lensing, galaxy clustering, and their cross-correlation galaxy-galaxy lensing. I find that LSS data allows us to recover tight constraints on coupling at low redshifts, comparable to that obtained with highly precise CMB data, making it a promising probe to test CDE models at low redshifts. I go on to develop other applications of the tomographic CDE model, such as investigations on an early coupled quintessence model whereby coupling is only activated during the radiation-dominated era, and constrain such a phenomenological model with observational data for the first time. I also explore whether deep learning techniques such as neural networks can differentiate between LSS data generated from a LCDM model and a tomographic CDE model. Finally, I turn my attention to current stage IV galaxy surveys such as Euclid, which will map the LSS of the Universe and provide weak lensing and galaxy clustering data of unprecedented accuracy and precision. Within the consortium, I contribute to developing the official Euclid likelihood code, with the ultimate aim of obtaining constraints on extended LCDM models with Euclid data. I have also worked on developing the cosmic shear inference pipeline for UNIONS, a ground-based photometric galaxy survey in the northern hemisphere that will also complement Euclid observations. These LSS surveys thus usher in an exciting era of precision cosmology, allowing us to increase our understanding of the Universe and potentially uncover hints of new physics
Bücher zum Thema "Beyond-ΛCDM"
Bose, Sownak. Beyond ΛCDM. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96761-5.
Der volle Inhalt der QuelleBose, Sownak. Beyond ΛCDM: Exploring Alternatives to the Standard Cosmological Paradigm. Springer, 2018.
Den vollen Inhalt der Quelle findenBose, Sownak. Beyond ΛCDM: Exploring Alternatives to the Standard Cosmological Paradigm. Springer, 2019.
Den vollen Inhalt der Quelle findenKonferenzberichte zum Thema "Beyond-ΛCDM"
Abdelwahab, M., Á de la Cruz-Dombriz und P. K. S. Dunsby. „Cosmological tensor perturbations in theories beyond ΛCDM“. In MULTIVERSE AND FUNDAMENTAL COSMOLOGY: Multicosmofun '12. AIP, 2013. http://dx.doi.org/10.1063/1.4791747.
Der volle Inhalt der QuelleBerti, M. „Constraining beyond ΛCDM models with 21cm intensity mapping forecast observations combined with latest CMB data“. In Proceedings of the MG16 Meeting on General Relativity. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811269776_0219.
Der volle Inhalt der Quelle