Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Bearing flexibility“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bearing flexibility" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Bearing flexibility"
OHTA, Hiroyuki, und Shoji YASUMOTO. „Ball Bearing Stiffness Incorporating Bearing Ring Flexibility.“ Transactions of the Japan Society of Mechanical Engineers Series C 67, Nr. 660 (2001): 2643–50. http://dx.doi.org/10.1299/kikaic.67.2643.
Der volle Inhalt der QuelleJakobs, T., G. Jacobs, J. Euler, A. Rolink und J. Röder. „Impact of 3D segment profiling on friction losses of plain bearings in wind turbines main bearings“. Journal of Physics: Conference Series 2767, Nr. 5 (01.06.2024): 052021. http://dx.doi.org/10.1088/1742-6596/2767/5/052021.
Der volle Inhalt der QuelleThomsen, Kim, und Peder Klit. „Improvement of journal bearing operation at heavy misalignment using bearing flexibility and compliant liners“. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 226, Nr. 8 (01.03.2012): 651–60. http://dx.doi.org/10.1177/1350650112439372.
Der volle Inhalt der QuelleLiu, Xiangyang, Rongjun Niu, Bin Wang, Shuai Zhang, Yongcun Cui und Zhanli Zhang. „Crowning Method on Bearing Supporting Large Wind Turbine Spindle Considering the Flexibility of Structure of Shaft System“. Machines 11, Nr. 1 (26.12.2022): 28. http://dx.doi.org/10.3390/machines11010028.
Der volle Inhalt der QuelleZhang, Jun Yan, Su Fen Zhang und You Wei Zhang. „The Analysis of the Deformation and Contact Lubrication Problem of HPD Diesel Engine Connecting Rod Bearings Based on the FFT Method and Flexibility Matrix Method“. Advanced Materials Research 602-604 (Dezember 2012): 2170–73. http://dx.doi.org/10.4028/www.scientific.net/amr.602-604.2170.
Der volle Inhalt der QuelleZhang, Jun Yan, Shu Kui Han, Su Fen Zhang und You Wei Zhang. „A Comparative Study of the Methods for Calculation of Journal Bearing Elastohydrodynamic Lubrication“. Advanced Materials Research 594-597 (November 2012): 2727–30. http://dx.doi.org/10.4028/www.scientific.net/amr.594-597.2727.
Der volle Inhalt der QuelleМединський, Валерій Володимирович, und Дмитро Миколайович Зінченко. „Influence of the aircraft bearing surface flexibility on its bearing properties“. Information systems, mechanics and control, Nr. 20 (30.06.2019): 29–40. http://dx.doi.org/10.20535/2219-3804202019194412.
Der volle Inhalt der QuelleEarles, L. L., A. B. Palazzolo und R. W. Armentrout. „A Finite Element Approach to Pad Flexibility Effects in Tilt Pad Journal Bearings: Part II—Assembled Bearing and System Analysis“. Journal of Tribology 112, Nr. 2 (01.04.1990): 178–82. http://dx.doi.org/10.1115/1.2920239.
Der volle Inhalt der QuelleSmolnicki, Tadeusz, und Eugeniusz Rusiński. „Superelement-Based Modeling of Load Distribution in Large-Size Slewing Bearings“. Journal of Mechanical Design 129, Nr. 4 (29.03.2006): 459–63. http://dx.doi.org/10.1115/1.2437784.
Der volle Inhalt der QuelleKumar, D. Satish, C. Sujatha und N. Ganesan. „Disc flexibility effects in rotor bearing systems“. Computers & Structures 62, Nr. 4 (Februar 1997): 715–19. http://dx.doi.org/10.1016/s0045-7949(96)00214-3.
Der volle Inhalt der QuelleDissertationen zum Thema "Bearing flexibility"
Zutavern, Zachary Scott. „Fiber optic strain gauge calibration and dynamic flexibility transfer function identification in magnetic bearings“. Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/152.
Der volle Inhalt der QuelleKintingu, Simion Hosea. „Design of interlocking bricks for enhanced wall construction, flexibility, alignment accuracy and load bearing“. Thesis, University of Warwick, 2009. http://wrap.warwick.ac.uk/2768/.
Der volle Inhalt der QuelleBedford, Adam. „Strength in flexibility : research into innovative flexible bearing designs for wave convertor permanent magnet generators“. Thesis, Lancaster University, 2011. http://clok.uclan.ac.uk/4192/.
Der volle Inhalt der QuelleSow, Souleymane. „Simulateur vibratoire de machines tournantes à base de machine-learning“. Electronic Thesis or Diss., Reims, 2024. http://www.theses.fr/2024REIMS038.
Der volle Inhalt der QuelleFramed within maintenance 4.0, this thesis aims to develop a vibratory simulator for a deep-groove ball bearing test bench to improve the accuracy of diagnostics based on machine learning algorithms. The work initially focuses on integrating the flexibility of the bearing supports into an existing numerical model, thereby creating a digital twin that more accurately reflects real operating conditions. The methodology is centred around the design of a hybrid numerical model, combining a meso-model (discrete elements) and a macro-model (finite elements). These two sub-models interact to describe the system's dynamics and simulate different operating modes. The data generated by the simulator is then used to update the model and train classification algorithms (MSVM, KNN, decision trees), achieving a classification accuracy of 94%. This result demonstrates a 10% improvement compared to previous methods, confirming the approach’s effectiveness. To assess the qualitative and quantitative contributions of the data in a classification-based diagnostic, the data from the updated numerical model is used in various data hybridization strategies with those measured from the physical system
Silva, Felipe José Passos. „Influência da deformação do encosto e do alojamento no campo de tensões em bronzinas /“. Guaratinguetá : [s.n.], 2005. http://hdl.handle.net/11449/97078.
Der volle Inhalt der QuelleBanca: Victor Orlando Gamarra Rosado
Banca: Gustavo Aristides Santana Martínez
Resumo: Bronzinas são componentes essenciais em motores automotivos, pois são muito importantes sempre que houver peças em movimento relativo, já que sua utilização visa minimizar os danos das peças móveis mais caras e de difícil substituição. Um dos mais comuns tipos de falhas evidenciados em bronzinas é a fadiga superficial, que geralmente aparece na forma de trincas superficiais. Tensões reversas na camada do mancal podem causar fadiga superficial. Estas falhas por fadiga podem ser induzidas na superfície do mancal devido às tensões flutuantes diretas, ou na superfície de união devido às tensões flutuantes de cisalhamento. Muitas são as fontes de tensões em mancais, tais como: gradiente de pressão, flexibilidade de materiais de encosto e alojamento, presença de ranhuras de óleo, não uniformidade do apoio do alojamento, rugosidade superficial, espessura das camadas de encosto e de revestimento, problemas de montagem, entre outros. Este projeto visa determinar o campo de tensões a partir das deformações de encosto e alojamento, utilizando o método dos elementos finitos, e relacionar este campo de tensões com falhas por fadiga. Para isto, é utilizado o software comercial ANSYS® versão 7.0 no qual a bronzina é modelada.
Abstract: Journal bearings are essentials components in automotive engines, because they are very important when exist parts in relative movement, since its use aims at to minimize the damages of the more expensive and difficult substitution mobile parts. One of the most common types of evidenced failures is the surface fatigue, which it appears in the form of surface cracks. Reverse stresses in the bearing layer can cause surface fatigue. These failures can be induced in the surface due to the direct floating stresses or in the bond surface due to the shear floating stresses. There are many stress sources in bearings, such as, pressure gradient, flexibilities of backing and housing materials, presence of oil grooves, non-uniform housing supports, surface roughness, backing and covering layer thickness, assembly problems, among others. This work aims at to determine the stresses field from the backing and housing strain, using the finite elements method, and to relate this stresses field fatigue failures. For this, it is used the commercial software ANSYS® version 7.0 in which the bearing is modeled.
Mestre
Silva, Felipe José Passos [UNESP]. „Influência da deformação do encosto e do alojamento no campo de tensões em bronzinas“. Universidade Estadual Paulista (UNESP), 2005. http://hdl.handle.net/11449/97078.
Der volle Inhalt der QuelleConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Universidade Estadual Paulista (UNESP)
Bronzinas são componentes essenciais em motores automotivos, pois são muito importantes sempre que houver peças em movimento relativo, já que sua utilização visa minimizar os danos das peças móveis mais caras e de difícil substituição. Um dos mais comuns tipos de falhas evidenciados em bronzinas é a fadiga superficial, que geralmente aparece na forma de trincas superficiais. Tensões reversas na camada do mancal podem causar fadiga superficial. Estas falhas por fadiga podem ser induzidas na superfície do mancal devido às tensões flutuantes diretas, ou na superfície de união devido às tensões flutuantes de cisalhamento. Muitas são as fontes de tensões em mancais, tais como: gradiente de pressão, flexibilidade de materiais de encosto e alojamento, presença de ranhuras de óleo, não uniformidade do apoio do alojamento, rugosidade superficial, espessura das camadas de encosto e de revestimento, problemas de montagem, entre outros. Este projeto visa determinar o campo de tensões a partir das deformações de encosto e alojamento, utilizando o método dos elementos finitos, e relacionar este campo de tensões com falhas por fadiga. Para isto, é utilizado o software comercial ANSYS® versão 7.0 no qual a bronzina é modelada.
Journal bearings are essentials components in automotive engines, because they are very important when exist parts in relative movement, since its use aims at to minimize the damages of the more expensive and difficult substitution mobile parts. One of the most common types of evidenced failures is the surface fatigue, which it appears in the form of surface cracks. Reverse stresses in the bearing layer can cause surface fatigue. These failures can be induced in the surface due to the direct floating stresses or in the bond surface due to the shear floating stresses. There are many stress sources in bearings, such as, pressure gradient, flexibilities of backing and housing materials, presence of oil grooves, non-uniform housing supports, surface roughness, backing and covering layer thickness, assembly problems, among others. This work aims at to determine the stresses field from the backing and housing strain, using the finite elements method, and to relate this stresses field fatigue failures. For this, it is used the commercial software ANSYS® version 7.0 in which the bearing is modeled.
Moreira, Bruno. „Modélisation et contrôle vibratoire d'une pompe turbomoléculaire sur Paliers Magnétiques Actifs : interactions entre un contrôleur modal et la flexibilité de l'arbre et des aubages“. Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEC042.
Der volle Inhalt der QuelleAbstractThe subject of this work is mechanical modeling and vibration control of a turbomolecular pump on active magnetic bearings. Such pumps are composed of a multistage bladed disk attached to a flexible shaft. Magnetic bearings are naturally unstable and need a controller for proper operation. In the literature, magnetic suspended rotating systems simulations are performed taking into account a rigid or flexible rotor model, mostly based on the axisymmetric assumption of the rotating part, neglecting blades flexibility and all related phenomena. This avoids periodic terms in closed loop motion equations. Nevertheless, tests on an operating pump highlight a strong coupling between blades motion and controller dynamics.The objective of this work is to evaluate the dynamics of the complete mechanical model on active magnetic bearings, emphasising the effects of shaft and blades flexibility as well as its interaction with the controller. On that purpose, an analytical model was obtained using Rayleigh-Ritz method. This model takes into account gyroscopic effects, spin softening, centrifugal stiffening and blades mistuning. A modal control law taking into account the rigid modes has been implemented, associated with second order filters to dampen shaft flexural mode. Finally, a gyroscopic compensator limits eigenvalues dependence on spin speed.Simulations and analysis were tackled in three steps. The first one was to study the open-loop behavior of the pump. In this phase, bearings were considered as linear springs, focusing the analysis on the effects of blades mistuning and coupling of shaft and blades flexural motion in rotation. Numerical results correlate well with results from a pump in operation. Second step consisted on evaluating the proposed control law performance and closed loop stability on an axisymmetric model. Finally the two initial approaches were combined to simulate the complete mechanical system including magnetic bearings and control law. Results suggest that the loss of symmetry associated with blades motion may cause instabilities which are not foreseen by an axisymmetric model. The developed model highlights the importance of taking into account the dynamics of the blades on the synthesis and analysis of magnetic bearing controllers
Wang, Fu Zhou, und 王富洲. „Rigid model-based feedback linearization and fuzzy composite control for magnetic bearings including rotor eccentricity and flexibility“. Thesis, 1996. http://ndltd.ncl.edu.tw/handle/70882258254447473557.
Der volle Inhalt der QuelleBücher zum Thema "Bearing flexibility"
Modeling of rolling element bearing mechanics--computer program updates. MSFC, Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1997.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Bearing flexibility"
Krishan, A. L., V. I. Rimshin, I. L. Shubin, M. A. Astafeva und A. A. Stupak. „Compressed Reinforced Concrete Elements Bearing Capacity of Various Flexibility“. In Lecture Notes in Civil Engineering, 283–91. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85236-8_26.
Der volle Inhalt der QuellePhadatare, Hanmant P., Sankalp Singh und Barun Pratiher. „Effect of Unbalance with Bearing Flexibility on Vibration Phenomenon of Geometrically Nonlinear Rotating Shaft with Ball Bearing“. In Lecture Notes in Mechanical Engineering, 1261–76. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0550-5_120.
Der volle Inhalt der QuelleHeras, Iker, Josu Aguirrebeitia, Mikel Abasolo und Ibai Coria. „Load Distribution in Four-Point Contact Slewing Bearings Considering Manufacturing Errors and Ring Flexibility“. In EuCoMeS 2018, 267–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98020-1_31.
Der volle Inhalt der QuelleMoreira, Alysson B. Barbosa, und Fabrice Thouverez. „Dynamic Modelling and Vibration Control of a Turbomolecular Pump with Magnetic Bearings in the Presence of Blade Flexibility“. In Rotating Machinery, Vibro-Acoustics & Laser Vibrometry, Volume 7, 101–10. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74693-7_10.
Der volle Inhalt der QuelleShi, Zhifeng, Lan Luo, Gang Zhang, Changfeng Yan und Jing Liu. „Effects of Cage Flexibility and Crack Propagation on Roller-Cage Pocket Interaction Forces and Dynamics in Cylindrical Roller Bearings“. In Mechanisms and Machine Science, 34–47. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-69483-7_4.
Der volle Inhalt der QuelleChung, Heejung. „The flexibility paradox: why more freedom at work leads to more work“. In The Flexibility Paradox, 69–84. Policy Press, 2022. http://dx.doi.org/10.1332/policypress/9781447354772.003.0005.
Der volle Inhalt der QuelleHayes, Christine. „The Flexibility of Torah“. In What's Divine about Divine Law? Princeton University Press, 2015. http://dx.doi.org/10.23943/princeton/9780691165196.003.0011.
Der volle Inhalt der QuelleBarry, M. K., I. L. Al-Qadi, H. Ozer und F. Safi. „An implementation of the Illinois flexibility index testing protocol for balanced asphalt mix designs“. In Bearing Capacity of Roads, Railways and Airfields, 217–21. CRC Press, 2017. http://dx.doi.org/10.1201/9781315100333-28.
Der volle Inhalt der QuelleChesnais, Jean-Claude. „Introduction: The ‘Theory’ of Demographic Transition: Its Conciseness, Diversity, and Flexibility“. In The Demographic Transition, 1–9. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780198286592.003.0001.
Der volle Inhalt der QuelleKamali, Mohammad Hashim. „Conclusion and Recommendations“. In Crime and Punishment in Islamic Law, 334–46. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190910648.003.0034.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Bearing flexibility"
Schank, Troy, und Kynn Schulte. „A Smart Position Sensor for Articulated Rotors“. In Vertical Flight Society 71st Annual Forum & Technology Display, 1–10. The Vertical Flight Society, 2015. http://dx.doi.org/10.4050/f-0071-2015-10190.
Der volle Inhalt der QuelleGaines, Jennifer E., und Dara W. Childs. „The Impact of Pad Flexibility on the Rotordynamic Coefficients of Tilting-Pad Journal Bearings“. In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42289.
Der volle Inhalt der QuelleJiale, Tian, Yu Lie und Zhou Jian. „Frequency Effects on Dynamic Characteristics of Tilting-Pad Journal Bearings due to Pivot Flexibility“. In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70681.
Der volle Inhalt der QuelleGu¨rkan, N. Ersan, und H. Nevzat O¨zgu¨ven. „Interactions Between Backlash and Bearing Clearance Nonlinearity in Geared Flexible Rotors“. In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34101.
Der volle Inhalt der QuelleYu, Bo, Endian Xu, Kai Wang, Xinyuan Wang und Lihua Yang. „Performance Analysis of Tilting Pad Journal Bearing Considering Base Flexibility“. In 2022 Global Reliability and Prognostics and Health Management (PHM-Yantai). IEEE, 2022. http://dx.doi.org/10.1109/phm-yantai55411.2022.9942146.
Der volle Inhalt der QuelleSan Andrés, Luis, und Yingkun Li. „Effect of Pad Flexibility on the Performance of Tilting Pad Journal Bearings: Benchmarking a Predictive Model“. In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42776.
Der volle Inhalt der QuelleAndreau, C., F. Ferdi, R. Ville und M. Fillon. „A Method for Determination of Elastohydrodynamic Behavior of Line Shafting Bearings in Their Environment“. In ASME/STLE 2007 International Joint Tribology Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ijtc2007-44056.
Der volle Inhalt der QuelleBahan, Doğancan, und Ender Ciğeroğlu. „Nonlinear Dynamic Analysis of an Asymmetric Ball Bearing Rotor System“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-12218.
Der volle Inhalt der QuelleDmochowski, Waldemar. „Dynamic Properties of Tilting-Pad Journal Bearings: Experimental and Theoretical Investigation of Frequency Effects Due to Pivot Flexibility“. In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90280.
Der volle Inhalt der QuelleNeisi, Neda, Eerik Sikanen, Janne E. Heikkinen und Jussi Sopanen. „Stress Analysis of a Touchdown Bearing Having an Artificial Crack“. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67750.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Bearing flexibility"
Kinser, Ryan, Mark Barkey, Timothy Rushing, Abby Cisko, Lyan Garcia, Paul Allison und J. Jordon. Computationally efficient modeling of lightweight expeditionary airfield surfacing systems at large length scales. Engineer Research and Development Center (U.S.), Februar 2024. http://dx.doi.org/10.21079/11681/48266.
Der volle Inhalt der QuelleDelmer, Deborah, Nicholas Carpita und Abraham Marcus. Induced Plant Cell Wall Modifications: Use of Plant Cells with Altered Walls to Study Wall Structure, Growth and Potential for Genetic Modification. United States Department of Agriculture, Mai 1995. http://dx.doi.org/10.32747/1995.7613021.bard.
Der volle Inhalt der QuelleMoghimi, Gholamreza, und Nicos Makris. Response Modification of Structures with Supplemental Rotational Inertia. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, Januar 2024. http://dx.doi.org/10.55461/tihv1701.
Der volle Inhalt der Quelle