Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Bayesian estimate“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bayesian estimate" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Bayesian estimate"
Rahman, Mohammad Lutfor, Steven G. Gilmour, Peter J. Zemroch und Pauline R. Ziman. „Bayesian analysis of fuel economy experiments“. Journal of Statistical Research 54, Nr. 1 (25.08.2020): 43–63. http://dx.doi.org/10.47302/jsr.2020540103.
Der volle Inhalt der QuelleSanger, Terence D. „Bayesian Filtering of Myoelectric Signals“. Journal of Neurophysiology 97, Nr. 2 (Februar 2007): 1839–45. http://dx.doi.org/10.1152/jn.00936.2006.
Der volle Inhalt der QuelleFässler, Sascha M. M., Andrew S. Brierley und Paul G. Fernandes. „A Bayesian approach to estimating target strength“. ICES Journal of Marine Science 66, Nr. 6 (12.02.2009): 1197–204. http://dx.doi.org/10.1093/icesjms/fsp008.
Der volle Inhalt der QuelleChrist, Theodore J., und Christopher David Desjardins. „Curriculum-Based Measurement of Reading: An Evaluation of Frequentist and Bayesian Methods to Model Progress Monitoring Data“. Journal of Psychoeducational Assessment 36, Nr. 1 (15.06.2017): 55–73. http://dx.doi.org/10.1177/0734282917712174.
Der volle Inhalt der QuelleAl-Hossain, Abdullah Y. „Burr-X Model Estimate using Bayesian and non-Bayesian Approaches“. Journal of Mathematics and Statistics 12, Nr. 2 (01.02.2016): 77–85. http://dx.doi.org/10.3844/jmssp.2016.77.85.
Der volle Inhalt der QuelleAmbrose, Paul G., Jeffrey P. Hammel, Sujata M. Bhavnani, Christopher M. Rubino, Evelyn J. Ellis-Grosse und George L. Drusano. „Frequentist and Bayesian Pharmacometric-Based Approaches To Facilitate Critically Needed New Antibiotic Development: Overcoming Lies, Damn Lies, and Statistics“. Antimicrobial Agents and Chemotherapy 56, Nr. 3 (12.12.2011): 1466–70. http://dx.doi.org/10.1128/aac.01743-10.
Der volle Inhalt der QuelleEmelyanov, V. E., und S. P. Matyuk. „BAYESIAN ESTIMATE OF TELECOMMUNICATION SYSTEMS PREPAREDNESS“. Civil Aviation High Technologies 24, Nr. 1 (22.02.2021): 16–22. http://dx.doi.org/10.26467/2079-0619-2021-24-1-16-22.
Der volle Inhalt der QuelleAGBAJE, Olorunsola F., Stephen D. LUZIO, Ahmed I. S. ALBARRAK, David J. LUNN, David R. OWENS und Roman HOVORKA. „Bayesian hierarchical approach to estimate insulin sensitivity by minimal model“. Clinical Science 105, Nr. 5 (01.11.2003): 551–60. http://dx.doi.org/10.1042/cs20030117.
Der volle Inhalt der QuelleRichard, Michael D., und Richard P. Lippmann. „Neural Network Classifiers Estimate Bayesian a posteriori Probabilities“. Neural Computation 3, Nr. 4 (Dezember 1991): 461–83. http://dx.doi.org/10.1162/neco.1991.3.4.461.
Der volle Inhalt der QuelleBen Zaabza, Hafedh, Abderrahmen Ben Gara, Hedi Hammami, Mohamed Amine Ferchichi und Boulbaba Rekik. „Estimation of variance components of milk, fat, and protein yields of Tunisian Holstein dairy cattle using Bayesian and REML methods“. Archives Animal Breeding 59, Nr. 2 (01.06.2016): 243–48. http://dx.doi.org/10.5194/aab-59-243-2016.
Der volle Inhalt der QuelleDissertationen zum Thema "Bayesian estimate"
OLIVEIRA, ANA CRISTINA BERNARDO DE. „BAYESIAN MODEL TO ESTIMATE ADVERTISING RECALL IN MARKETING“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1997. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=7528@1.
Der volle Inhalt der QuelleA importância de sistemas que monitorem continuamente as resposta dos consumidores à propaganda é notadamente reconhecida pela comunidade de pesquisa de mercado. A coleta sistemática deste tipo de informação é importante porque através desta, pode-se revisar campanhas anteriores, corrigir tendências detectadas em pré-testes e melhor orientar as tomadas de decisão nos setores de propaganda. O presente trabalho contém um modelo para tentar medir esta resposta baseada em Modelos Lineares Dinâmicos Generalizados.
Analysis of consumer markets define and attempt to measure many variables in studies of the effectiveness of adversitising. The awareness in a consumer population of a particular advertising is one such quantity, the subject of the above-referenced studies. We define and give the implementation of model based in dynamic Generalised Linear Models which is used to measure this quantity.
James, Peter Welbury. „Design and analysis of studies to estimate cerebral blood flow“. Thesis, University of Newcastle Upon Tyne, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251020.
Der volle Inhalt der QuelleRodewald, Oliver Russell. „Use of Bayesian inference to estimate diversion likelihood in a PUREX facility“. Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/76951.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 66-67).
Nuclear Fuel reprocessing is done today with the PUREX process, which has been demonstrated to work at industrial scales at several facilities around the world. Use of the PUREX process results in the creation of a stream of pure plutonium, which allows the process to be potentially used by a proliferator. Safeguards have been put in place by the IAEA and other agencies to guard against the possibility of diversion and misuse, but the cost of these safeguards and the intrusion into a facility they represent could cause a fuel reprocessing facility operator to consider foregoing standard safeguards in favor of diversion detection that is less intrusive. Use of subjective expertise in a Bayesian network offers a unique opportunity to monitor a fuel reprocessing facility while collecting limited information compared to traditional safeguards. This work focuses on the preliminary creation of a proof of concept Bayesian network and its application to a model nuclear fuel reprocessing facility.
by Oliver Russell Rodewald.
S.M.and S.B.
SOUZA, MARCUS VINICIUS PEREIRA DE. „A BAYESIAN APPROACH TO ESTIMATE THE EFFICIENT OPERATIONAL COSTS OF ELECTRICAL ENERGY UTILITIES“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2008. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=12361@1.
Der volle Inhalt der QuelleEsta tese apresenta os principais resultados de medidas de eficiência dos custos operacionais de 60 distribuidoras brasileiras de energia elétrica. Baseado no esquema yardstick competition, foi utilizado uma Rede Neural d e Kohonen (KNN) para identificar grupos de empresas similares. Os resultados obtidos pela KNN não são determinísticos, visto que os pesos sinápticos da rede são inicializados aleatoriamente. Então, é realizada uma simulação de Monte Carlo para encontrar os clusters mais frequentes. As medidas foram obtidas por modelos DEA (input oriented, com e sem restrições aos pesos) e modelos Bayesianos e frequencistas de fronteira estocástica (utilizando as funções Cobb-Douglas e Translog). Em todos os modelos, DEA e SFA, a única variável input refere-se ao custo operacional (OPEX). Os índices de eficiência destes modelos representam a potencial redução destes custos de acordo com cada concessionária avaliada. Os outputs são os cost drivers da variável OPEX: número de unidades consumidoras (uma proxy da quantidade de serviço), montante de energia distribuída (uma proxy do produto total) e a extensão da rede de distribuição (uma proxy da dispersão dos consumidores na área de concessão). Finalmente, vale registrar que estas técnicas podem mitigar a assimetria de informação e aprimorar a habilidade do agente regulador em comparar os desempenhos das distribuidoras em ambientes de regulação incentivada.
This thesis presents the main results of the cost efficiency scores of 60 Brazilian electricity distribution utilities. Based on yardstick competition scheme, it was applied a Kohonen Neural Networks (KNN) to identify and to group the similar utilities. The KNN results are not deterministic, since the estimated weights are randomly initialized. Thus, a Monte Carlo simulation was used in order to find the most frequent clusters. Therefore was examined the use of the DEA methodology (input oriented, with and without weight constraints) and Bayesian and non- Bayesian Stochastic Frontier Analysis (centered on a Cobb- Douglas and Translog cost functions) to evaluate the cost efficiency scores of electricity distribution utilities. In both models the only input variable is operational cost (OPEX). The efficiency measures from these models reflect the potential of the reduction of operational costs of each utility. The outputs are the cost-drivers of the OPEX: the number of customers (a proxy for the amount of service), the total electric power supplied (a proxy for the amount of product delivered) and the distribution network size (a proxy of the customers scattering in the operating territory of each distribution utility). Finally, it is important to mention that these techniques can reduce the information assimetry to improve the regulator´s skill to compare the performance of the utilities in incentive regulation environments.
Xiao, Yuqing. „Estimate the True Pass Probability for Near-Real-Time Monitor Challenge Data Using Bayesian Analysis“. Digital Archive @ GSU, 2006. http://digitalarchive.gsu.edu/math_theses/20.
Der volle Inhalt der QuelleHUAMANI, LUIS ALBERTO NAVARRO. „A BAYESIAN PROCEDUCE TO ESTIMATE THE INDIVIDUAL CONTRIBUTION OF INDIVIDUAL END USES IN RESIDENCIAL ELECTRICAL ENERGY CONSUMPTION“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1997. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8691@1.
Der volle Inhalt der QuelleEsta dissertação investiga a utilização do Modelo de Regressão Multivariada Seemingly Unrelated sob uma perspectiva Bayesiana, na estimação das curvas de carga dos principais eletrodomésticos. Será utilizada uma estrutura de Demanda Condicional (CDA), consideradas de especial interesse no setor comercial e residencial para o gerenciamento pelo lado da demanda (Demand Side Management) dos hábitos dos consumidores residenciais. O trabalho envolve três partes principais: uma apresentação das metodologias estatísticas clássicas usadas para estimar as curvas de cargas; um estudo sobre Modelos de Regressão Multivariada Seemingly Unrelated usando uma aproximação Bayesiana. E por último o desenvolvimento do modelo num estudo de caso. Na apresentação das metodologias clássicas fez-se um levantamento preliminar da estrutura CDA para casos univariados usando Regressão Múltipla, e multivariada usando Regressão Multivariada Seemingly Unrelated, onde o desempenho desta estrutura depende da estrutura de correlação entre os erros de consumo horário durante um dia específico; assim como as metodologias usadas para estimar as curvas de cargas. No estudo sobre Modelos de Regressão Multivariada Seemingly Unrelated a partir da abordagem Bayesiana considerou-se um fator importante no desempenho da metodologia de estimação, a saber: informação a priori. No desenvolvimento do modelo, foram estimadas as curvas de cargas dos principais eletrodomésticos numa abordagem Bayesiana mostrando o desempenho da metodologia na captura de ambos tipos de informação: estimativas de engenharia e estimativas CDA. Os resultados obtidos avaliados pelo método acima comprovaram superioridade na explicação de dados em relação aos modelos clássicos.
The present dissertation investigates the use of multivariate regression models from a Bayesian point of view. These models were used to estimate the electric load behavior of household end uses. A conditional demand structure was used considering its application to the demand management of the residential and commercial consumers. This work is divided in three main parts: a description of the classical statistical methodologies used for the electric load prediction, a study of the multivariate regression models using a Bayesian approach and a further development of the model applied to a case study. A preliminary revision of the CDA structure was done for univariate cases using multiple regression. A similar revision was done for other cases using multivariate regression (Seemingly Unrelated). In those cases, the behavior of the structure depends on the correlation between a minimization of the daily demand errors and the methodologies used for the electric load prediction. The study on multivariate regression models (Seemingly Unrelated) was done from a Bayesian point of view. This kind of study is very important for the prediction methodology. When developing the model, the electric load curves of the main household appliances were predicted using a Bayesian approach. This fact showed the performance of the metodology on the capture of two types of information: Engineering prediction and CDA prediction. The results obtained using the above method, for describing the data, were better than the classical models.
Bergström, David. „Bayesian optimization for selecting training and validation data for supervised machine learning : using Gaussian processes both to learn the relationship between sets of training data and model performance, and to estimate model performance over the entire problem domain“. Thesis, Linköpings universitet, Artificiell intelligens och integrerade datorsystem, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157327.
Der volle Inhalt der QuelleLi, Qing. „Recurrent-Event Models for Change-Points Detection“. Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/78207.
Der volle Inhalt der QuellePh. D.
Benko, Matej. „Hledaní modelů pohybu a jejich parametrů pro identifikaci trajektorie cílů“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445467.
Der volle Inhalt der QuelleNickless, Alecia. „Regional CO₂ flux estimates for South Africa through inverse modelling“. Doctoral thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29703.
Der volle Inhalt der QuelleBücher zum Thema "Bayesian estimate"
Houston, Walter M. Empirical Bayes estimates of parameters from the logistic regression model. Iowa City, Iowa: ACT, Inc., 1997.
Den vollen Inhalt der Quelle findenHouston, Walter M. Empirical Bayes estimates of parameters from the logistic regression model. Iowa City, Iowa: ACT, Inc., 1997.
Den vollen Inhalt der Quelle findenDoppelhofer, Gernot. Determinants of long-term growth: A Bayesian averaging of classical estimates (BACE) approach. Cambridge, MA: National Bureau of Economic Research, 2000.
Den vollen Inhalt der Quelle findenTanabe, Kunio. BNDE, FORTRAN subroutines for computing Bayesian nonparametric univariate and bivariate density estimator. Tokyo: Institute of Statistical Mathematics, 1988.
Den vollen Inhalt der Quelle findenWalsh, Bruce, und Michael Lynch. Analysis of Short-term Selection Experiments: 2. Mixed-model and Bayesian Approaches. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198830870.003.0019.
Der volle Inhalt der QuelleQuintana, José Mario, Carlos Carvalho, James Scott und Thomas Costigliola. Extracting S&P500 and NASDAQ Volatility: The Credit Crisis of 2007–2008. Herausgegeben von Anthony O'Hagan und Mike West. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198703174.013.13.
Der volle Inhalt der QuelleHigdon, Dave, Katrin Heitmann, Charles Nakhleh und Salman Habib. Combining simulations and physical observations to estimate cosmological parameters. Herausgegeben von Anthony O'Hagan und Mike West. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198703174.013.26.
Der volle Inhalt der QuelleChappell, Michael, Bradley MacIntosh und Thomas Okell. Kinetic Modeling. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198793816.003.0004.
Der volle Inhalt der QuelleGelfand, Alan, und Sujit K. Sahu. Models for demography of plant populations. Herausgegeben von Anthony O'Hagan und Mike West. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198703174.013.17.
Der volle Inhalt der QuelleSize matters: measuring the effects of inequality and growth shocks. UNU-WIDER, 2020. http://dx.doi.org/10.35188/unu-wider/2020/934-1.
Der volle Inhalt der QuelleBuchteile zum Thema "Bayesian estimate"
Ghosh, J. K. „The Horvitz-Thompson Estimate and Basu’s Circus Revisited“. In Bayesian Analysis in Statistics and Econometrics, 225–28. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2944-5_14.
Der volle Inhalt der QuelleO’Hagan, Anthony, und Frank S. Wells. „Use of Prior Information to Estimate Costs in a Sewerage Operation“. In Case Studies in Bayesian Statistics, 118–62. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-2714-4_3.
Der volle Inhalt der QuellePeña, José M., Víctor Robles, Óscar Marbán und María S. Pérez. „Bayesian Methods to Estimate Future Load in Web Farms“. In Advances in Web Intelligence, 217–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24681-7_24.
Der volle Inhalt der QuelleJoanes, Derrick N., Christine A. Gill und Andrew J. Baczkowski. „Simulation of a Bayesian Interval Estimate for a Heterogeneity Measure“. In Compstat, 187–92. Heidelberg: Physica-Verlag HD, 1994. http://dx.doi.org/10.1007/978-3-642-52463-9_20.
Der volle Inhalt der QuelleMira, Antonietta, und Paolo Tenconi. „Bayesian Estimate of Default Probabilities via MCMC with Delayed Rejection“. In Seminar on Stochastic Analysis, Random Fields and Applications IV, 275–89. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7943-9_17.
Der volle Inhalt der QuelleNaumov, Oleksandr, Mariia Voronenko, Olga Naumova, Nataliia Savina, Svitlana Vyshemyrska, Vitaliy Korniychuk und Volodymyr Lytvynenko. „Using Bayesian Networks to Estimate the Effectiveness of Innovative Projects“. In Lecture Notes in Computational Intelligence and Decision Making, 729–43. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82014-5_50.
Der volle Inhalt der QuelleDammalapati, Sai Krishna, Vishal Murmu und Gnanasekaran Nagarajan. „Bayesian Inference Approach to Estimate Robin Coefficient Using Metropolis Hastings Algorithm“. In Recent Advances in Chemical Engineering, 293–302. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1633-2_32.
Der volle Inhalt der QuelleJiang, Liangxiao, Dianhong Wang und Zhihua Cai. „Scaling Up the Accuracy of Bayesian Network Classifiers by M-Estimate“. In Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, 475–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74205-0_52.
Der volle Inhalt der Quelledel Río, Sergio, und Edwin Villanueva. „A Novel Method to Estimate Parents and Children for Local Bayesian Network Learning“. In Lecture Notes in Networks and Systems, 468–85. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82196-8_35.
Der volle Inhalt der QuelleDuan, Jing, Zhengkui Lin, Weiguo Yi und Mingyu Lu. „Scaling Up the Accuracy of Bayesian Classifier Based on Frequent Itemsets by M-estimate“. In Artificial Intelligence and Computational Intelligence, 357–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16530-6_42.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Bayesian estimate"
de Melo, Brian A. R., Raony C. C. Cesar und Carlos A. B. Pereira. „Sample sizes to estimate proportions and correlation“. In XI BRAZILIAN MEETING ON BAYESIAN STATISTICS: EBEB 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4759606.
Der volle Inhalt der QuelleGu, L., G. Li, J. Abramczyk und J. Prybylski. „A Bayesian Estimate of Vehicle Safety Performance“. In SAE 2005 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-0822.
Der volle Inhalt der QuelleIseki, Toshio. „An Improved Stochastic Modeling for Bayesian Wave Estimation“. In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83740.
Der volle Inhalt der QuelleTorres-Avilés, F., C. Molina und M. J. Muñoz. „Bayesian approaches for Poisson models to estimate bivariate relative risks“. In XI BRAZILIAN MEETING ON BAYESIAN STATISTICS: EBEB 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4759618.
Der volle Inhalt der QuelleDan, Zhiping, Xi Chen, Haitao Gan und Changxin Gao. „Locally Adaptive Shearlet Denoising Based on Bayesian MAP Estimate“. In Graphics (ICIG). IEEE, 2011. http://dx.doi.org/10.1109/icig.2011.134.
Der volle Inhalt der QuelleNagel, Joseph B., und Bruno Sudret. „A Bayesian Multilevel Approach to Optimally Estimate Material Properties“. In Second International Conference on Vulnerability and Risk Analysis and Management (ICVRAM) and the Sixth International Symposium on Uncertainty, Modeling, and Analysis (ISUMA). Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413609.151.
Der volle Inhalt der QuelleFeng Hu, Wei Li, Jorma Lilleberg und Matti Latva-aho. „On the approximate noise modeling for the Estimate-and-Forward relay with the Bayesian estimator“. In 2013 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2013. http://dx.doi.org/10.1109/wcnc.2013.6555206.
Der volle Inhalt der QuelleBin Kamarul Hatta, Khairul Anwar, Kuokkwee Wee, Wooi Ping Cheah und Yit Yin Wee. „A True Bayesian Estimate concept in LTE downlink scheduling algorithm“. In 2015 International Telecommunication Networks and Applications Conference (ITNAC). IEEE, 2015. http://dx.doi.org/10.1109/atnac.2015.7366791.
Der volle Inhalt der QuelleSuvorova, Alena V. „Models for respondents' behavior rate estimate: Bayesian Network structure synthesis“. In 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM). IEEE, 2017. http://dx.doi.org/10.1109/scm.2017.7970503.
Der volle Inhalt der QuelleHendri, Eko Primadi, Aji Hamim Wigena und Anik Djuraidah. „BAYESIAN QUANTILE REGRESSION MODELING TO ESTIMATE EXTREME RAINFALL IN INDRAMAYU“. In Proceedings of the 1st International Conference on Statistics and Analytics, ICSA 2019, 2-3 August 2019, Bogor, Indonesia. EAI, 2020. http://dx.doi.org/10.4108/eai.2-8-2019.2290491.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Bayesian estimate"
Mulcahy, Garrett, Dusty Brooks und Brian Ehrhart. Using Bayesian Methodology to Estimate Liquefied Natural Gas Leak Frequencies. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1782412.
Der volle Inhalt der QuelleCheng, Benny N., und Lap S. Tam. Bayesian Missile System Reliability from Point Estimates. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2014. http://dx.doi.org/10.21236/ada611099.
Der volle Inhalt der QuelleWilliams, Brian. Bayesian Optimal Sensor Augmentation Via Estimated Mutual Information. Office of Scientific and Technical Information (OSTI), Oktober 2020. http://dx.doi.org/10.2172/1669078.
Der volle Inhalt der QuelleDoppelhofer, Gernot, Ronald Miller und Xavier Sala-i-Martin. Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach. Cambridge, MA: National Bureau of Economic Research, Juni 2000. http://dx.doi.org/10.3386/w7750.
Der volle Inhalt der QuelleMelo-Velandia, Luis Fernando, Rubén Albeiro Loaiza-Maya und Mauricio Villamizar-Villegas. Bayesian combination for inflation forecasts : the effects of a prior based on central banks' estimates. Bogotá, Colombia: Banco de la República, November 2014. http://dx.doi.org/10.32468/be.853.
Der volle Inhalt der Quelle