Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Bayes predictor“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bayes predictor" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Bayes predictor"
Liang, Guohua, Xingquan Zhu und Chengqi Zhang. „An Empirical Study of Bagging Predictors for Different Learning Algorithms“. Proceedings of the AAAI Conference on Artificial Intelligence 25, Nr. 1 (04.08.2011): 1802–3. http://dx.doi.org/10.1609/aaai.v25i1.8026.
Der volle Inhalt der QuelleZhang, Shenghan, Yufeng Gu, Yinshan Gao, Xinxing Wang, Daoyong Zhang und Liming Zhou. „Petrophysical Regression regarding Porosity, Permeability, and Water Saturation Driven by Logging-Based Ensemble and Transfer Learnings: A Case Study of Sandy-Mud Reservoirs“. Geofluids 2022 (05.10.2022): 1–31. http://dx.doi.org/10.1155/2022/9443955.
Der volle Inhalt der QuelleIrmayani, Irmayani, und Budyanita Asrun. „Klasifikasi Sosial Ekonomi Menggunakan Naïve Bayes Classifier“. Dewantara Journal of Technology 2, Nr. 2 (17.11.2021): 70–74. http://dx.doi.org/10.59563/djtech.v2i2.138.
Der volle Inhalt der QuelleLiu, Laura, Hyungsik Roger Moon und Frank Schorfheide. „Forecasting With Dynamic Panel Data Models“. Econometrica 88, Nr. 1 (2020): 171–201. http://dx.doi.org/10.3982/ecta14952.
Der volle Inhalt der QuelleRobertson, David E., und Q. J. Wang. „A Bayesian Approach to Predictor Selection for Seasonal Streamflow Forecasting“. Journal of Hydrometeorology 13, Nr. 1 (01.02.2012): 155–71. http://dx.doi.org/10.1175/jhm-d-10-05009.1.
Der volle Inhalt der QuelleWu, Yaning, Song Huang, Haijin Ji, Changyou Zheng und Chengzu Bai. „A novel Bayes defect predictor based on information diffusion function“. Knowledge-Based Systems 144 (März 2018): 1–8. http://dx.doi.org/10.1016/j.knosys.2017.12.015.
Der volle Inhalt der QuelleHashem, Atef F., und Alaa H. Abdel-Hamid. „Statistical Prediction Based on Ordered Ranked Set Sampling Using Type-II Censored Data from the Rayleigh Distribution under Progressive-Stress Accelerated Life Tests“. Journal of Mathematics 2023 (30.03.2023): 1–19. http://dx.doi.org/10.1155/2023/5211682.
Der volle Inhalt der QuelleAlvarez, R. Michael, Delia Bailey und Jonathan N. Katz. „An Empirical Bayes Approach to Estimating Ordinal Treatment Effects“. Political Analysis 19, Nr. 1 (2011): 20–31. http://dx.doi.org/10.1093/pan/mpq033.
Der volle Inhalt der QuelleArumi, Endah Ratna, Sumarno Adi Subrata und Anisa Rahmawati. „Implementation of Naïve bayes Method for Predictor Prevalence Level for Malnutrition Toddlers in Magelang City“. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 7, Nr. 2 (03.03.2023): 201–7. http://dx.doi.org/10.29207/resti.v7i2.4438.
Der volle Inhalt der QuelleBurghardt, Thomas P., und Katalin Ajtai. „Neural/Bayes network predictor for inheritable cardiac disease pathogenicity and phenotype“. Journal of Molecular and Cellular Cardiology 119 (Juni 2018): 19–27. http://dx.doi.org/10.1016/j.yjmcc.2018.04.006.
Der volle Inhalt der QuelleDissertationen zum Thema "Bayes predictor"
Zerbeto, Ana Paula. „Melhor preditor empírico aplicado aos modelos beta mistos“. Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-09042014-132109/.
Der volle Inhalt der QuelleThe mixed beta regression models are extensively used to analyse data with hierarquical structure and that take values in a restricted and known interval. In order to propose a prediction method for their random components, the results previously obtained in the literature for the empirical Bayes predictor were extended to beta regression models with random intercept normally distributed. The proposed predictor, called empirical best predictor (EBP), can be applied in two situations: when the interest is predict individuals effects for new elements of groups that were already analysed by the fitted model and, also, for elements of new groups. Simulation studies were designed and their results indicated that the performance of EBP was efficient and satisfatory in most of scenarios. Using the propose to analyse two health databases, the same results of simulations were observed in both two cases of application, and good performances were observed. So, the proposed method is promissing for the use in predictions for mixed beta regression models.
Ayme, Alexis. „Supervised learning with missing data : a non-asymptotic point of view“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS252.
Der volle Inhalt der QuelleMissing values are common in most real-world data sets due to the combination of multiple sources andinherently missing information, such as sensor failures or unanswered survey questions. The presenceof missing values often prevents the application of standard learning algorithms. This thesis examinesmissing values in a prediction context, aiming to achieve accurate predictions despite the occurrence ofmissing data in both training and test datasets. The focus of this thesis is to theoretically analyze specific algorithms to obtain finite-sample guarantees. We derive minimax lower bounds on the excess risk of linear predictions in presence of missing values.Such lower bounds depend on the distribution of the missing pattern, and can grow exponentially withthe dimension. We propose a very simple method consisting in applying Least-Square procedure onthe most frequent missing patterns only. Such a simple method turns out to be near minimax-optimalprocedure, which departs from the Least-Square algorithm applied to all missing patterns. Followingthis, we explore the impute-then-regress method, where imputation is performed using the naive zeroimputation, and the regression step is carried out via linear models, whose parameters are learned viastochastic gradient descent. We demonstrate that this very simple method offers strong finite-sampleguarantees in high-dimensional settings. Specifically, we show that the bias of this method is lowerthan the bias of ridge regression. As ridge regression is often used in high dimensions, this proves thatthe bias of missing data (via zero imputation) is negligible in some high-dimensional settings. Thesefindings are illustrated using random features models, which help us to precisely understand the role ofdimensionality. Finally, we study different algorithm to handle linear classification in presence of missingdata (logistic regression, perceptron, LDA). We prove that LDA is the only model that can be valid forboth complete and missing data for some generic settings
Laws, David Joseph. „A Bayes decision theoretic approach to the optimal design of screens“. Thesis, University of Newcastle Upon Tyne, 1997. http://hdl.handle.net/10443/648.
Der volle Inhalt der QuelleWong, Hubert. „Small sample improvement over Bayes prediction under model uncertainty“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ56646.pdf.
Der volle Inhalt der QuelleDahlgren, Lindström Adam. „Structured Prediction using Voted Conditional Random FieldsLink Prediction in Knowledge Bases“. Thesis, Umeå universitet, Institutionen för datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-140692.
Der volle Inhalt der QuelleLiu, Benmei. „Hierarchical Bayes estimation and empirical best prediction of small-area proportions“. College Park, Md.: University of Maryland, 2009. http://hdl.handle.net/1903/9149.
Der volle Inhalt der QuelleThesis research directed by: Joint Program in Survey Methodology. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Bakal, Mehmet. „Relation Prediction over Biomedical Knowledge Bases for Drug Repositioning“. UKnowledge, 2019. https://uknowledge.uky.edu/cs_etds/90.
Der volle Inhalt der QuelleKhan, Imran Qayyum. „Simultaneous prediction of symptom severity and cause in data from a test battery for Parkinson patients, using machine learning methods“. Thesis, Högskolan Dalarna, Datateknik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:du-4586.
Der volle Inhalt der QuelleWang, Kai. „Novel computational methods for accurate quantitative and qualitative protein function prediction /“. Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/11488.
Der volle Inhalt der QuelleFredette, Marc. „Prediction of recurrent events“. Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/1142.
Der volle Inhalt der QuelleBücher zum Thema "Bayes predictor"
S, Jacobson Nathan, Ritzert Frank J und NASA Glenn Research Center, Hrsg. Computational thermodynamic study to predict complex phase equilibria in the nickel-base superalloy René N6. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Den vollen Inhalt der Quelle findenKenkyūjo, Bōsai Kagaku Gijutsu. Jishindō yosoku chizu no kōgaku riyō: Jishin hazādo no kyōtsū jōhō kiban o mezashite : Jishindō Yosoku Chizu Kōgaku Riyō Kentō Iinkai hōkokusho = Engineering application of the national seismic hazard program : seismic hazard information sharing bases. Tsukuba-shi: Bōsai Kagaku Gijutsu Kenkyūjo, 2004.
Den vollen Inhalt der Quelle findenA, Boxwell D., Spencer R. H, Ames Research Center und United States. Army Aviation Research and Technology Activity., Hrsg. Review and analysis of the DNW/model 360 rotor acoustic data base. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1989.
Den vollen Inhalt der Quelle findenEbeling, Charles E. The determination of operational and support requirements and costs during the conceptual design of space systems: Final report : under grant no. NAG-1-1327. Dayton, Ohio: University of Dayton, Engineering Management and Systems Dept., 1992.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. The determination of operational and support requirements and costs during the conceptual design of space systems: Interim report. Dayton, Ohio: University of Dayton, Engineering Management and Systems Dept., 1991.
Den vollen Inhalt der Quelle findenD, Perrin D. pKa Prediction for Organic Acids and Bases. Springer, 2012.
Den vollen Inhalt der Quelle findenPerrin, D. PKa Prediction for Organic Acids and Bases. Springer London, Limited, 2013.
Den vollen Inhalt der Quelle findenLargescale Inference Empirical Bayes Methods For Estimation Testing And Prediction. Cambridge University Press, 2013.
Den vollen Inhalt der Quelle findenGlymour, Clark. Mind's Arrows: Bayes Nets and Graphical Causal Models in Psychology. MIT Press, 2001.
Den vollen Inhalt der Quelle findenEfron, Bradley. Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction. Cambridge University Press, 2013.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Bayes predictor"
Montesinos López, Osval Antonio, Abelardo Montesinos López und Jose Crossa. „Bayesian Genomic Linear Regression“. In Multivariate Statistical Machine Learning Methods for Genomic Prediction, 171–208. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89010-0_6.
Der volle Inhalt der QuelleJohnson, Alicia A., Miles Q. Ott und Mine Dogucu. „(Normal) Hierarchical Models with Predictors“. In Bayes Rules!, 421–62. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429288340-17.
Der volle Inhalt der QuelleJohnson, Alicia A., Miles Q. Ott und Mine Dogucu. „(Normal) Hierarchical Models without Predictors“. In Bayes Rules!, 387–420. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429288340-16.
Der volle Inhalt der QuelleJohnson, Alicia A., Miles Q. Ott und Mine Dogucu. „Posterior Inference & Prediction“. In Bayes Rules!, 183–208. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429288340-8.
Der volle Inhalt der QuelleBolfarine, Heleno, und Shelemyahu Zacks. „Bayes and Minimax Predictors“. In Prediction Theory for Finite Populations, 66–98. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2904-9_4.
Der volle Inhalt der QuelleTandel, Swapnali, und Pragya Vaishnav. „Disease Prediction Using Bayes' Theorem“. In Software Engineering Approaches to Enable Digital Transformation Technologies, 74–81. New York: Routledge, 2023. http://dx.doi.org/10.1201/9781003441601-6.
Der volle Inhalt der QuelleMukhopadhyay, Parimal. „Bayes and Empirical Bayes Prediction of a Finite Population Total“. In Lecture Notes in Statistics, 43–92. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4612-2088-6_3.
Der volle Inhalt der QuelleSteele, Brian, John Chandler und Swarna Reddy. „The Multinomial Naïve Bayes Prediction Function“. In Algorithms for Data Science, 313–42. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45797-0_10.
Der volle Inhalt der QuelleHenry, Bill, Avshalom Caspi, Terrie Moffitt und Phil Silva. „Temperamental and Familial Predictors of Criminal Conviction“. In Biosocial Bases of Violence, 305–7. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-4648-8_19.
Der volle Inhalt der QuelleBerger, James O., und Luis R. Pericchi. „On The Justification of Default and Intrinsic Bayes Factors“. In Modelling and Prediction Honoring Seymour Geisser, 276–93. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-2414-3_17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Bayes predictor"
Xu, Zhipeng, Yabing Yao und Ning Ma. „Mutual information higher-order link prediction based on Naive Bayes“. In 2024 6th International Conference on Internet of Things, Automation and Artificial Intelligence (IoTAAI), 117–20. IEEE, 2024. http://dx.doi.org/10.1109/iotaai62601.2024.10692526.
Der volle Inhalt der QuelleNieto-Chaupis, Huber. „The Geometrical Bayes Theorem and Probabilistic Prediction of Next Global Pandemic“. In 2024 International Conference on Electrical, Computer and Energy Technologies (ICECET), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/icecet61485.2024.10698141.
Der volle Inhalt der QuelleMohamed Elhadi Hussen, Ali Abdulsamea, und Ahmad Saikhu. „Modeling Of Student Graduation Prediction Using the Naive Bayes Classifier Algorithm“. In 2024 3rd International Conference on Creative Communication and Innovative Technology (ICCIT), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/iccit62134.2024.10701117.
Der volle Inhalt der QuelleAntony, Ashin, Devi A und Kuruvilla Varghese. „High Throughput Hardware for Hoeffding Tree Algorithm with Adaptive Naive Bayes Predictor“. In 2021 6th International Conference for Convergence in Technology (I2CT). IEEE, 2021. http://dx.doi.org/10.1109/i2ct51068.2021.9418100.
Der volle Inhalt der QuelleShkurti, Lamir, und Faton Kabashi. „Albanian News Category Predictor System using a Multinomial Naïve Bayes and Logistic Regression Algorithms“. In 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). IEEE, 2021. http://dx.doi.org/10.1109/ismsit52890.2021.9604602.
Der volle Inhalt der QuelleSomwanshi, Harshada, und Pramod Ganjewar. „Real-Time Dengue Prediction Using Naive Bayes Predicator in the IoT“. In 2018 International Conference on Inventive Research in Computing Applications (ICIRCA). IEEE, 2018. http://dx.doi.org/10.1109/icirca.2018.8596796.
Der volle Inhalt der QuelleK, Sibhi, Thanvir Ibrahim S, Akil Malik und Praveen Joe I. R. „Career Prediction Using Naive Bayes“. In 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). IEEE, 2022. http://dx.doi.org/10.1109/icicict54557.2022.9917745.
Der volle Inhalt der QuelleWang, Tao, und Wei-hua Li. „Naive Bayes Software Defect Prediction Model“. In 2010 International Conference on Computational Intelligence and Software Engineering (CiSE). IEEE, 2010. http://dx.doi.org/10.1109/cise.2010.5677057.
Der volle Inhalt der QuelleBiteau, J. „Pressure, Seals and Traps: the Bases for the Petroleum System to Work Efficiently“. In Second EAGE Workshop on Pore Pressure Prediction. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201900497.
Der volle Inhalt der QuelleMeiriza, Allsela, Endang Lestari, Pacu Putra, Ayu Monaputri und Dini Ayu Lestari. „Prediction Graduate Student Use Naive Bayes Classifier“. In Sriwijaya International Conference on Information Technology and Its Applications (SICONIAN 2019). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/aisr.k.200424.056.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Bayes predictor"
Knox, Thomas, James Stock und Mark Watson. Empirical Bayes Forecasts of One Time Series Using Many Predictors. Cambridge, MA: National Bureau of Economic Research, März 2001. http://dx.doi.org/10.3386/t0269.
Der volle Inhalt der QuelleCheng, Hao, Rohan L. Fernando und Dorian J. Garrick. Three Different Gibbs Samplers for BayesB Genomic Prediction. Ames (Iowa): Iowa State University, Januar 2014. http://dx.doi.org/10.31274/ans_air-180814-1152.
Der volle Inhalt der QuelleCeylan, Ismail Ilkan, Stefan Borgwardt und Thomas Lukasiewicz. Most Probable Explanations for Probabilistic Database Queries. Technische Universität Dresden, 2017. http://dx.doi.org/10.25368/2023.220.
Der volle Inhalt der QuelleGirolamo Neto, Cesare, Rodolfo Jaffe, Rosane Cavalcante und Samia Nunes. Comparacao de modelos para predicao do desmatamento na Amazonia brasileira. ITV, 2021. http://dx.doi.org/10.29223/prod.tec.itv.ds.2021.25.girolamoneto.
Der volle Inhalt der QuelleSoloviev, V., und V. Solovieva. Quantum econophysics of cryptocurrencies crises. [б. в.], 2018. http://dx.doi.org/10.31812/0564/2464.
Der volle Inhalt der QuelleThe current bases for roof fall prediction at WIPP and a preliminary prediction for SPDV Room 2. Office of Scientific and Technical Information (OSTI), Oktober 1993. http://dx.doi.org/10.2172/10191310.
Der volle Inhalt der QuelleROTATIONAL STIFFNESS MODEL FOR SHALLOW EMBEDDED STEEL COLUMN BASES. The Hong Kong Institute of Steel Construction, August 2022. http://dx.doi.org/10.18057/icass2020.p.308.
Der volle Inhalt der Quelle