Auswahl der wissenschaftlichen Literatur zum Thema „Batteries lithium-ion – Recyclage“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Batteries lithium-ion – Recyclage" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Batteries lithium-ion – Recyclage"

1

de Margerie, Victoire. „Batteries de véhicules électriques : quelles alternatives à la technologie lithium ion ?“ Annales des Mines - Responsabilité et environnement N° 111, Nr. 3 (20.10.2023): 67–68. http://dx.doi.org/10.3917/re1.111.0067.

Der volle Inhalt der Quelle
Annotation:
L’arrêt d’ici à 2035 de la production des véhicules à moteurs thermiques au profit principalement de véhicules électriques pose le défi des matières premières requises par ces derniers. La très forte croissance actuelle de leur production ne suffira pas pour répondre à la demande, le recyclage, bien qu’essentiel, pas plus, dans la mesure où il n’y aura pas assez de véhicules à recycler à moyen terme et où demeurent des pénuries prévisibles en cuivre et en nickel et des aléas géopolitiques pour le reste. L’acceptabilité de voitures à faible autonomie est limitée. Les innovations technologiques auront donc un rôle crucial à jouer : batteries au fer, au soufre ou au sodium, réduction des consommations de matériaux critiques dans d’autres activités… Si le progrès technique a dans le passé permis de résoudre nombre d’autres problèmes complexes, le rythme imposé de cette transition est ici sans précédent.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Coyle, Jaclyn, Kae Fink, Andrew Colclasure und Matthew Keyser. „Recycling Electric Vehicle Batteries: Opportunities and Challenges“. AM&P Technical Articles 181, Nr. 5 (01.07.2023): 19–23. http://dx.doi.org/10.31399/asm.amp.2023-05.p019.

Der volle Inhalt der Quelle
Annotation:
Abstract A surge in electric vehicle production is ushering in a new era of research on the best methods to recycle used lithium-ion batteries. This article describes existing recycling methods and the work needed to establish a more fully circular economy for lithium-ion batteries.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hsiang, Hsing-I., und Wei-Yu Chen. „Electrochemical Properties and the Adsorption of Lithium Ions in the Brine of Lithium-Ion Sieves Prepared from Spent Lithium Iron Phosphate Batteries“. Sustainability 14, Nr. 23 (05.12.2022): 16235. http://dx.doi.org/10.3390/su142316235.

Der volle Inhalt der Quelle
Annotation:
Because used LiFePO4 batteries contain no precious metals, converting the lithium iron phosphate cathode into recycled materials (Li2CO3, Fe, P) provides no economic benefits. Thus, few researchers are willing to recycle them. As a result, environmental sustainability can be achieved if the cathode material of spent lithium-iron phosphate batteries can be directly reused via electrochemical technology. Lithium iron phosphate films were developed in this study through electrophoretic deposition using spent lithium-iron phosphate cathodes as raw materials to serve as lithium-ion sieves. The lithium iron phosphate films were then coated with a layer of polypyrrole (PPy) conductive polymer to improve the electrochemical properties and the lithium-ion adsorption capacity for brine. Cyclic voltammetry, charge/discharge testing, and an AC impedance test were used to determine the electrochemical properties and lithium-ion adsorption capacity of lithium-ion sieves. The findings indicate that lithium iron phosphate films prepared from spent LiFePO4 cathodes have a high potential as a lithium-ion sieve for electro-sorption from brine.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wang, Feng, Rong Sun, Jun Xu, Zheng Chen und Ming Kang. „Recovery of cobalt from spent lithium ion batteries using sulphuric acid leaching followed by solid–liquid separation and solvent extraction“. RSC Advances 6, Nr. 88 (2016): 85303–11. http://dx.doi.org/10.1039/c6ra16801a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, Shubin, Zuotai Zhang, Zhouguang Lu und Zhenghe Xu. „A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries“. Green Chemistry 22, Nr. 14 (2020): 4473–82. http://dx.doi.org/10.1039/d0gc00701c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wan, Taotianchen, und Yikai Wang. „The Hazards of Electric Car Batteries and Their Recycling“. IOP Conference Series: Earth and Environmental Science 1011, Nr. 1 (01.04.2022): 012026. http://dx.doi.org/10.1088/1755-1315/1011/1/012026.

Der volle Inhalt der Quelle
Annotation:
Abstract In recent years, under the double pressure of energy exhaustion and environmental deterioration, the development of electric vehicles has become the major development trend of the automotive industry in the future. This paper discusses the problem of abandoned batteries caused by the limited life of a large number of batteries with the prosperity of new energy vehicle industry. This paper lists and analyzes the different characteristics of batteries commonly used by three new energy vehicles in the market :(1) lead-acid batteries will not leak in the use process due to tight sealing, but their use cycle is very short. (2) The production of nickel metal hydride battery is relatively mature, its production cost is low, and compared with lithium electronic battery is safer. (3) Lithium-ion batteries are made of non-toxic materials, which makes them known as “green batteries”. However, they are expensive to make and have poor compatibility with other batteries. Because discarded batteries pose a threat to human health and environmental sustainability, lithium-ion batteries may overheat and fire when exposed to high temperatures or when penetrated, releasing carbon monoxide and hydrogen cyanide that can be very harmful to human health. In addition, waste batteries will also cause water pollution and inhibit the growth and reproduction of aquatic organisms and other potential dangers. Therefore, it is necessary to recycle it efficiently. This paper then introduces the advantages of three recycling methods: step utilization and recovery, ultrasonic recovery and sodium ion battery. These recycling methods can maximize the reuse efficiency of waste batteries. This paper expects to find a better way to recycle waste batteries to solve the potential problems of improper disposal of waste batteries and reduce the environmental hazards of waste batteries.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zaidi, S. Z. J., M. Raza, S. Hassan, C. Harito und F. C. Walsh. „A DFT Study of Heteroatom Doped-Pyrazine as an Anode in Sodium ion Batteries“. Journal of New Materials for Electrochemical Systems 24, Nr. 1 (31.03.2021): 1–8. http://dx.doi.org/10.14447/jnmes.v24i1.a01.

Der volle Inhalt der Quelle
Annotation:
Lithium ion batteries cannot satisfy increasing demand for energy storage. A range of complementary batteries are needed which are environmentally acceptable, of moderate cost and easy to manufacture/recycle. In this case, we have chosen pyrazine to be used in the sodium ion batteries to meet the energy storage requirements of tomorrow. Pyrazine is studied as a possible anode material for bio-batteries, lithium-ion, and sodium ion batteries due to its broad set of useful properties such as ease of synthesis, low cost, ability to be charge-discharge cycled, and stability in the electrolyte. The heteroatom doped-pyrazine with atoms of boron, fluorine, phosphorous, and sulphur as an anode in sodium ion batteries has improved the stability and intercalation of sodium ions at the anode. The longest bond observed between sodium ion and sulphur-doped pyrazine at 2.034 Å. The electronic charge is improved and further enhanced by the presence of highly electronegative atoms such as fluorine and bromine in an already electron-attracting pyrazine compound. The highest adsorption energy is observed for the boron-doped pyrazine at -2.735 eV. The electron-deficient sites present in fluorine and bromine help in improving the electronic storage of the sodium ion batteries. A mismatch is observed between the adsorption energy and bond length in pyrazine doped with fluorine and phosphorus.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Marshall, Jean, Dominika Gastol, Roberto Sommerville, Beth Middleton, Vannessa Goodship und Emma Kendrick. „Disassembly of Li Ion Cells—Characterization and Safety Considerations of a Recycling Scheme“. Metals 10, Nr. 6 (09.06.2020): 773. http://dx.doi.org/10.3390/met10060773.

Der volle Inhalt der Quelle
Annotation:
It is predicted there will be a rapid increase in the number of lithium ion batteries reaching end of life. However, recently only 5% of lithium ion batteries (LIBs) were recycled in the European Union. This paper explores why and how this can be improved by controlled dismantling, characterization and recycling. Currently, the favored disposal route for batteries is shredding of complete systems and then separation of individual fractions. This can be effective for the partial recovery of some materials, producing impure, mixed or contaminated waste streams. For an effective circular economy it would be beneficial to produce greater purity waste streams and be able to re-use (as well as recycle) some components; thus, a dismantling system could have advantages over shredding. This paper presents an alternative complete system disassembly process route for lithium ion batteries and examines the various processes required to enable material or component recovery. A schematic is presented of the entire process for all material components along with a materials recovery assay. Health and safety considerations and options for each stage of the process are also reported. This is with an aim of encouraging future battery dismantling operations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fahimi, Ario, Alessandra Zanoletti, Antonella Cornelio, Elsayed Mousa, Guozhu Ye, Patrizia Frontera, Laura Eleonora Depero und Elza Bontempi. „Sustainability Analysis of Processes to Recycle Discharged Lithium-Ion Batteries, Based on the ESCAPE Approach“. Materials 15, Nr. 23 (30.11.2022): 8527. http://dx.doi.org/10.3390/ma15238527.

Der volle Inhalt der Quelle
Annotation:
There are several recycling methods to treat discharged lithium-ion batteries, mostly based on pyrometallurgical and hydrometallurgical approaches. Some of them are promising, showing high recovery efficiency (over 90%) of strategic metals such as lithium, cobalt, and nickel. However, technological efficiency must also consider the processes sustainability in terms of environmental impact. In this study, some recycling processes of spent lithium-ion batteries were considered, and their sustainability was evaluated based on the ESCAPE “Evaluation of Sustainability of material substitution using CArbon footPrint by a simplifiEd approach” approach, which is a screening tool preliminary to the Life Cycle Assessment (LCA). The work specifically focuses on cobalt recovery comparing the sustainability of using inorganic or organic acid for the leaching of waste derived from lithium-ion batteries. Based on the possibility to compare different processes, for the first time, some considerations about technologies optimization have been done, allowing proposing strategies able to save chemicals. In addition, the energy mix of each country, to generate electricity has been considered, showing its influence on the sustainability evaluation. This allows distinguishing the countries using more low-carbon sources (nuclear and renewables) for a share of the electricity mix, where the recycling processes result more sustainable. Finally, this outcome is reflected by another indicator, the eco-cost from the virtual pollution model 99′ proposed by Vogtländer, which integrates the monetary estimation of carbon footprint.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tsai, Lung Chang, Fang Chang Tsai, Ning Ma und Chi Min Shu. „Hydrometallurgical Process for Recovery of Lithium and Cobalt from Spent Lithium-Ion Secondary Batteries“. Advanced Materials Research 113-116 (Juni 2010): 1688–92. http://dx.doi.org/10.4028/www.scientific.net/amr.113-116.1688.

Der volle Inhalt der Quelle
Annotation:
Hydrometallurgical process for recovery of aluminum, lithium and cobalt from the spent secondary lithium–ion batteries of Yun–lin battery recycle corporation was investigated. The recovery efficiency of spent lithium–ion secondary batteries on the hydrometallurgical process of their leachant concentration, temperature (T), time (t), solid–to–liquid ratio (S:L) were investigated. The experimental procedure include the following three major steps: (1) solvent extraction separation of aluminum by NaOH, (2) solvent extraction separation of lithium and cobalt by 3 mol/L H2SO4 (4.76 % (v/v) 35% (v/v) H2O2) from the final solution after aluminum removal. Finally, (3) cobalt are precipitated by ammonium oxalate ((NH4)2C2O4) from the final solutions after aluminum removal. The experimental results for treating 3 g of anode plus in the battery by this new technique were reported, and some evaluation were also carried out. In the processing, the percent removal of impurities, such as aluminum could reach 90.6% or more, and that of lithium and cobalt were all more than 90.0%.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Batteries lithium-ion – Recyclage"

1

Richard, Mélissa. „Recyclage assisté des métaux stratégiques de batteries lithium-ion par chauffage micro-ondes“. Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS466.

Der volle Inhalt der Quelle
Annotation:
Avec la demande croissante en véhicules électriques, la demande en cobalt, constituant important des batteries li-ion ne cesse d’augmenter. Le cobalt est considéré comme une ressource critique et le recyclage des batteries constituent une mine secondaire qu’il est indispensable d’exploiter. Le but de ce projet de thèse et ANR, est de développer un nouveau procédé de recyclage des métaux critiques des batteries au lithium ions. Ce procédé d’hydrométallurgie en flux assisté par chauffage micro-ondes réalise simultanément les étapes de lixiviation et d’’extraction du cobalt, ce qui devrait le rendre moins coûteux en énergie, plus rapide, et utilisant des volumes de réactifs moindres et donc réduisant la production de déchets chimiques. L’apport du chauffage micro-ondes est de consommer moins d’énergie, grâce à sa capacité de chauffer sélectivement la phase aqueuse, siège de la dissolution, du matériau d’électrode. En effet, le procédé est réalisé en millifluidique sous forme d’un écoulement diphasique, avec alternance de gouttes aqueuses (pour la dissolution) et organiques (pour l’extraction des ions dissouts). La dimension millimétrique est un compromis entre une faible section qui assure un fort ratio surface/volume favorisant les transferts de matières aux interfaces et une dimension suffisante pour traiter plusieurs grammes de matériaux par heure. La thèse répond à 4 objectifs : 1) L'étude de la cinétique de dissolution des matériaux de cathodes a été réalisé pour optimiser des conditions opératoires afin de dissoudre un maximum de matériau en un minimum de temps et répondre à un premier objectif : une heure pour une dissolution totale en condition millifluidique. 2) La transposition des études effectuées dans un réacteur batch agité à une échelle plus petite dans un réacteur tubulaire de faible diamètre afin de dissoudre et extraire simultanément le cobalt du matériau des batteries. 3) L’étude de la sensibilité aux micro-ondes des fluides complexes non référencé impliqué dans la dissolution et l’extraction. Utiliser les mesures expérimentales pour mettre en place des modèles numériques grâce au logiciel COMSOL permettant de comprendre les transferts de chaleurs dans le système. 4) L’étude de la possibilité d’effets non thermiques du chauffage micro-ondes justifiant les différences d’efficacité de dissolution selon les modes de chauffage. Pour cela un montage a été réalisé permettant de décorréler la puissance micro-onde imposée et la température de dissolution
With the tremendous increase of electric vehicles market, the demand for cobalt, an important component of Li-ion batteries, is exploding. Cobalt is the considered as a critical resource and battery recycling, as a secondary mine, must be exploited. The present work proposes an innovative process for critical metals from lithium ion batteries recycling through hydrometallurgy. The usual batch process is transferred to a flow setup with assisted by microwave heating that enables simultaneous leaching and extraction the cobalt. This allows reduced energy and chemicals consumptions in continuous system . In a segmented water-kerosen flow, the selective heating the aqueous phase under microwave irradiation accelerate the dissolution of the electrode material. The presence of the water – kerosen interface allows extraction of cobalt simultaneously to its dissolution, thus increasing the LiCoO2 global dissolution rate. 1) The study of the kinetics leaching of the cathode materials was studied in order to optimize the operating conditions to leach a maximum of material in a minimum of time and to answer a first objective: one hour for a total dissolution in millifluidic condition. 2) The transposition of the studies in a stirred batch reactor to a smaller scale in a small diameter tubular reactor in order to simultaneously leach and extract the cobalt from the battery material. 3) The study of the microwave sensitivity of the complex fluids involved in the lixiviation and extraction. Use the experimental measurements to set up numerical models with the COMSOL software to understand the heat transfers in the system. 4) The study of the possibility of non-thermal effects of microwave heating justifying the differences in the leaching efficiency according to the heating modes. For this purpose, a set-up has been realized allowing to decorrelate the imposed microwave power and the dissolution temperature
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Joulié, Marion. „Mécanisme de dissolution de matériaux actifs d'électrodes de type LiNi1/3Mn1/3Co1/3O2 d'accumulateurs Li-ion en vue de leur recyclage“. Thesis, Montpellier, Ecole nationale supérieure de chimie, 2015. http://www.theses.fr/2015ENCM0011/document.

Der volle Inhalt der Quelle
Annotation:
La voie hydrométallugique représente une alternative pour la récupération des métaux de valeur tels que le nickel et le cobalt contenus dans les batteries Li-ion usagées. La première étape du procédé hydrométallurgique, l'étape de lixiviation a été optimisée grâce à l'étude du comportement du matériau actif d'électrode positive LiNi1/3Mn1/3Co1/3O2 (NMC) qui s'avère être le candidat idéal pour les batteries de véhicules électriques. Tout d'abord, l'étude des aspects thermodynamiques de la réaction de dissolution a permis de prédire le comportement du NMC dans divers acides. Puis, l'approche cinétique a conduit à l'élucidation du mécanisme se produisant lors de l'étape de lixiviation et à la mise en évidence de l'étape cinétiquement déterminante de la dissolution. Ce mécanisme a par la suite été généralisé aux autres matériaux couramment rencontrés dans les batteries Li-ion. L'impact d'agents réducteurs minéraux, organiques et métalliques pour promouvoir la dissolution du NMC a été évalué. Cette approche compare l'effet de réactifs à faible (acides sulfurique et chlorhydrique) et fort (acides citrique, oxalique et formique et peroxyde d'hydrogène) pouvoir réducteur ainsi que celui du cuivre et de l'aluminium provenant des collecteurs de courants des batteries Li-ion. Cette étude soulève le fort intérêt de l'emploi des collecteurs de courant présents de manière inhérente dans la fraction traitée par hydrométallurgie
Basic hydrometallurgical routes represent an alternative to recover valuable metals such as nickel and cobalt from spent Li-ion batteries. The first step of hydrometallurgical process, lixiviation step is optimized by studying the behaviour of LiNi1/3Mn1/3Co1/3O2 (NMC) positive electrode active material, due to its good performances which make it an adequate candidate for the electric vehicles. First of all, the study of thermodynamic aspects allows predicting the behaviour of NMC material in various acidic media. Then, the kinetic approach leads to define the mechanism occurring during the leaching step and to outline the rate-limiting step of the dissolution. The reductive effect of mineral, organic and metallic reducing agents to promote leaching of NMC material is evaluated. The approach comparatively evaluates the reducing power impact of weak (sulfuric and hydrochloric acids), strong reducing agents (citric, oxalic and formic acids and hydrogen peroxide) and copper and aluminum from Li-ion batteries current collectors. This work points out the strong interest to advantageously use current collectors inherently present in the fraction treated by hydrometallurgy
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ruiz, Onofre Patricia Nathaly. „Evaluation of pyrochemistry in molten salts for recycling Li-ion batteries“. Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS346.

Der volle Inhalt der Quelle
Annotation:
Pour pallier la demande croissante de batteries Li-ion, il existe aujourd’hui le besoin urgent de recycler les composants de ces dispositifs. Recycler les matériaux cathodes qui contiennent des oxydes des métaux de transition est stratégique. Ces trois dernières années les recherches dans ce domaine ont augmenté de manière très significative. Dans le contexte du recyclage des batteries, il existe actuellement deux méthodes utilisées dans l’industrie : l’hydrométallurgie et la pyrométallurgie. L’objectif de ce projet a été de proposer une méthode alternative permettant de recycler les composants organiques et inorganique, en utilisant des mélanges de sels fondus comme milieu réactionnel. Les carbonates et chlorures fondus ont été choisis comme solvants pour leur efficacité dans le traitement des déchets. Le cobalt est un des matériaux critiques dans les batteries, rare sur la planète et toxique. Dans ce projet, nous avons étudié la dissolution et récupération du cobalt dans les carbonates et chlorures fondus. Des techniques électrochimiques (voltammetrie cyclique, chronoampérométrie) et la spectroscopie des rayons X ont été utilisés pour mener les investigations. Les résultats montrent une lente et faible dissolution du cobalt dans les carbonates fondus et il est présent sous la forme de Co (II). Les chlorures fondus ont été choisi comme deuxième alternative de solvant. La dissolution du cobalt et sa récupération ont été réussis dans ce milieu en ajoutant des additifs
To meet the increasing demands of lithium-ion batteries, there is an urgent need to recycle the batteries components. In particular, electrode materials containing transition metal oxides such as LiCoO2, LiNi1/3Mn1/3Co1/3O2, and LiNi0.8Co0.15Al0.05O2 are of strategic importance. Over the last three years, this field research has rocketed. In the frame of batteries recycling, there are two main methods that are used in industry nowadays: hydrometallurgy and pyrometallurgy. The aim of our research project is to propose an alternative method to recycle organic compounds and metals of electrode materials based on molten salts as reactive medium. Molten carbonates and molten chlorides have been chosen for their great efficiency on wastes treatment. Cobalt is one of the critical raw materials in batteries and it is rare on the Earth-crust and toxic for environment. In this work, we study cobalt dissolution and recovery in molten carbonates and chlorides. Electrochemical techniques (cyclic voltammetry, chronoamperometry) and X-Ray spectroscopy have been used for the investigations. Results show that a low and slow dissolution of cobalt is obtained in molten carbonates and in the form of Co (II). Molten chlorides have been used as a second alternative of solvent. Cobalt dissolution increase and its recovery have been achieved in this solvent when using additives
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Idjis, Hakim. „La filière de valorisation des batteries de véhicules électriques en fin de vie : contribution à la modélisation d’un système organisationnel complexe en émergence“. Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLC015/document.

Der volle Inhalt der Quelle
Annotation:
Avec le développement des véhicules électriques, la question de la valorisation des batteries lithium-ion (BLI) se pose pour diverses raisons. Pourtant, une filière de valorisation structurée n’existe pas aujourd’hui. Notre travail académique a pour objet l’étude de cette dernière. La filière de valorisation des BLIs est définie comme un système sociotechnique, complexe en émergence. Notre problématique consiste alors à l’étudier d’un point de vue technico-économique, organisationnel et prospectif et ce en tenant compte des différentes complexités. Cette problématique soulève trois questions de recherche : Comment modéliser la filière de valorisation des BLIs comme un système organisationnel complexe en émergence ? Comment faire de la prospective sur la filière de valorisation des BLIs ? Comment analyser la gouvernance de la filière de valorisation des BLIs ?Pour modéliser la filière de valorisation des BLIs, nous mettons en œuvre d’une manière combinée trois méthodes de modélisation systémiques : SCOS’M (Systemics for Complex Organisational Systems’ Modelling), la cartographie cognitive et la dynamique des systèmes. La modélisation a pour objectif la caractérisation de la filière (parties prenantes, sous-systèmes …), la compréhension de ses dynamiques d’évolution et l’identification des variables clés dans ces dynamiques. Cette modélisation est une base pour la suite.Pour faire de la prospective sur la filière de valorisation des BLIs, nous préconisons l’utilisation des scénarios. Ces derniers sont définis à l’aide de la matrice SRI (Stranford Research Institute), en exploitant les variables clés qui interviennent dans les dynamiques d’évolution de la filière. La prospective est permise en simulant le modèle dynamique des systèmes avec différents scénarios, afin d’analyser les aspects technico-économiques. Pour l’étude de la gouvernance de la filière de valorisation des BLIs, le périmètre a été restreint à l’activité de reconditionnement. Dans ce cas, l’étude de la gouvernance revient à analyser des combinaisons de répartition (application 2nde vie, partie prenante). Une méthodologie d’aide à la décision a été développée pour cette fin. D’une manière générale, cette thèse a identifié les enjeux et questions qui se posent lors de l’étude de la valorisation des batteries lithium-ion des véhicules électriques. A travers notre modélisation, nous avons établi une base d’analyse utile à l’aide à la décision. Nous avons répondu à certaines questions (aspects technico-économiques et organisationnels) et ouvert la voie pour d’autres (aspects logistiques et environnementaux)
With the development of electric vehicles, the recovery of lithium-ion batteries (LIB) arises for various reasons. However, a structured recovery network does not exist today. Our academic work aims to study this latter. The LIBs recovery network is defined as a socio-technical complex emerging system. Our problematic is then to study it from a technical-economic, organizational and prospective perspective, taking into account the different complexities. This problematic raises three research questions: How to model the LIBs recovery network as a complex organizational emerging system? How to foresight on the LIBs recovery network? How to analyze the LIBs recovery network governance?To model the LIBs recovery network, we apply with combination three systemic modeling methods: SCOS'M (Systemics for Complex Organisational Systems' Modelling), cognitive mapping and system dynamics. The modeling aims to characterize the recovery network (stakeholders, subsystems ...), understand its dynamics and identify the key variables in these dynamics. This model is the basis for the following research questions.To Foresight on the LIBs recovery network, we recommend the use of scenarios. These are defined using the SRI matrix (Stranford Research Institute), exploiting the key variables. Foresight is permitted by simulating the system dynamics model with different scenarios to analyze the technical-economic aspects. For the study of the LIBs recovery network governance, the scope was restricted to the repurposing activity. In this case, the study of the governance comes down to analyzing the combinations (2nd life application, stakeholder). A decision aid methodology has been developed for this purpose. In general, this thesis identified the questions that arise when considering the recovery of LIBs. Through our modeling, we have established a useful basis for decision aid. We answered some questions (technical-economic and organizational aspects) and paved the way for others (logistical and environmental aspects)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Belchi, Lorente Daniel. „Proposition d’un modèle produit agile pour l’écoconception : application aux batteries Li-ion“. Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI050/document.

Der volle Inhalt der Quelle
Annotation:
Les produits high-tech sont couramment utilisés dans de nombreux secteurs industriels ainsi que dans nos vies de tous les jours. Ils améliorent notre qualité de vie, mais à quel prix ? En effet, la fabrication, l’utilisation et la fin-de-vie de ces produits high-tech génèrent des impacts environnementaux, économiques et sociaux importants. Ces impacts proviennent principalement des matériaux utilisés, de l’énergie consommée pour leur fabrication et pendant leur utilisation et des mauvaises conditions de travail pour l’extraction des matières premières et leur transformation. L’étape de fin-de-vie des produits high-tech contribue également à une grande partie des impacts, car cette phase est souvent négligée lors du processus de conception.Certaines études ont été faites afin de réduire l’impact environnemental des produits, mais ne considèrent qu’une partie des étapes de cycle de vie (par ex. la fabrication) et excluent d’autres étapes comme la fin-de-vie. D’autres études essayent d’intégrer les contraintes de toutes les étapes de cycle de vie mais négligent l’intégration des enjeux environnementaux et ne considèrent que les enjeux classiques de la conception (coûts, qualité, performance, etc.). D’autres études encore visent à intégrer les contraintes de toutes les étapes de cycle de vie et les enjeux environnementaux, mais ne sont pas adaptées à l’évolution rapide des développements dans le cas des produits high-tech (nouvelles technologies, nouveaux matériaux, etc.).Nous proposons donc un outil d’aide à la conception de produits high-tech, qui a pour objectif la prise en compte de toutes les étapes de cycle de vie — et notamment de la fin-de-vie — pour mieux considérer les enjeux environnementaux en plus des enjeux classiques de la conception. Il s’agit d’un modèle-produit agile pour l’écoconception : le MPAE, capable de guider les concepteurs tout au long du processus de conception sur les questions environnementales, malgré les nombreuses alternatives de conception envisagées lors de la conception des produits high-tech.Dans cette thèse, l’outil est appliqué sur un cas théorique de conception avec l’exemple des batteries Li-ion utilisées dans les véhicules électriques. Le modèle développé permet de cibler les paramètres de conception et les acteurs du cycle de vie à l’origine des impacts environnementaux, pour mieux considérer et tenter de les réduire.En résumé, cette thèse réinterroge l’application du concept de modèle produit dans le cas de la prise en compte des impacts environnementaux en conception afin d’aboutir à leur intégration efficace
High-tech products are widely used in many industrial sectors as well as in our everyday lives. They improve our quality of life, but with a high price to pay? The manufacture, use and end-of-life of these products cause strong environmental, economic and social impacts. These impacts are mainly due to the materials and to the energy used for the manufacturing, to their use, but also to bad working conditions to obtain raw materials. The end-of-life stage for high-tech products is a huge source of impacts because not considered during the design.Some researches have been conducted to reduce the environmental impact of high-tech products, but they only consider partially the life cycle stages (eg. The manufacturing phases) and exclude other stages, such as the end-de- life. Further studies are trying to integrate all the life cycle constraints but neglect the integration of environmental issues and they only consider the classical design constraints (cost, quality, performance, etc.). Other studies aimed at integrating the al the life cycle constraints and the environmental issues, but they are not adapted to quick features evolutions during the design process of high-tech product (new technologies, new materials, etc.We therefore propose a tool to guide the design of high-tech products, which aims to integrate all life-cycle stages including the end-of-life and environmental issues in addition to classic design issues. This is an agile product model for eco-design (APME), which considers the rapid evolution of the solutions during the development of high-tech products.In this thesis, the model is theoretically applied in a case study related to Li-ion batteries for electric automotive applications. The developed model is able to highlight the main design parameters and the main actors of the product life cycle which induce high environmental impacts to try to reduce them.This thesis considers the use of the product model concept when taking into account environmental impacts during the design process, for their efficient integration
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Moradi, Ghadi Bahar. „Advanced Perspective towards Improvement, Usage, and Recycle of Graphite Anodes in Lithium Ion Batteries by Surface Modification Using Carbon-Coated Fe3O4 Nanospindles“. Ohio University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1416926753.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Batteries lithium-ion – Recyclage"

1

Helbig, Christoph, und Martin Hillenbrand. „Principles of a Circular Economy for Batteries“. In The Materials Research Society Series, 13–25. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-48359-2_2.

Der volle Inhalt der Quelle
Annotation:
AbstractThe global market for batteries is rapidly growing, leading to significant material requirements to build up an in-use stock of batteries for mobility and stationary applications. One strategy to secure the material supply for batteries and simultaneously reduce the life cycle environmental impacts of batteries is the implementation of a circular economy for batteries, chiefly lithium-ion battery materials. In a circular economy, material cycles are narrowed, slowed, and closed to form cyclical or cascading material flows instead of linear take-make-waste schemes. The most common measures to implement a circular economy are so-called R-imperatives: refuse, rethink, reduce, reuse, repair, remanufacture, refurbish, repurpose, recycle, and recover. By implementing these R-imperatives, batteries can be designed to provide the highest functional value with the lowest material requirements. Their life is prolonged by repair and remanufacturing activities, and the valuable materials can be recycled through various processes. Legislative initiatives like the EU Battery Regulation and technological development foster the implementation of such a circular economy for batteries.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jin, Congrui, und Jianlin Li. „Bio-inspired nanotechnology for easy-to-recycle lithium-ion batteries“. In Nano Technology for Battery Recycling, Remanufacturing, and Reusing, 141–58. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-323-91134-4.00001-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Batteries lithium-ion – Recyclage"

1

Mo, Fan. „Comprehensive Analysis for Central Lithium-ion Batteries: Security Concerns and Recycle Strategies“. In 2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA). IEEE, 2023. http://dx.doi.org/10.1109/icpeca56706.2023.10075880.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhou, Jiexin, Qing Wang und Jie Wang. „Lithium-Ion Laptop Battery Testing and Energy Recycling“. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67803.

Der volle Inhalt der Quelle
Annotation:
Before recycling used lithium-ion laptop batteries, testing and sorting work is needed through charge and discharge tests. For current lithium-ion battery charge and discharge tests, the battery is discharged through a resistor. Thus, the energy in the process is all dissipated. In this paper, an energy-recycling battery test system model is introduced. In the system, a Li-ion 18650 battery can be charged at a constant current mode and a constant voltage mode and discharged at a constant current mode, which are realized by PWM-controlled DC-DC converters. The modes are automatically switched through a controller. In the discharging process, energy is transferred from the under-test battery to a storage battery, which can also serve as a charging source instead of the DC power supply to recycle the energy. The system is simulated using Matlab Simulink. Its test accuracy and energy-transferring efficiency is considerable. According to the simulation results, the system can save about 50% energy overall in one charge and discharge cycle.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kay, Ian, Roja Esmaeeli, Seyed Reza Hashemi, Ajay Mahajan und Siamak Farhad. „Recycling Li-Ion Batteries: Robotic Disassembly of Electric Vehicle Battery Systems“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11949.

Der volle Inhalt der Quelle
Annotation:
Abstract This paper presents the application of robotics for the disassembly of electric vehicle lithium-ion battery (LIB) packs for the purpose of recycling. Electric vehicle battery systems can be expensive and dangerous to disassemble, therefore making it cost inefficient to recycle them currently. Dangers associated with high voltage and thermal runaway make a robotic system suitable for this task, as the danger to technicians or workers is significantly reduced, and the cost to operate a robotic system would be potentially less expensive over the robots lifetime. The proposed method allows for the automated or semi-automated disassembly of electric vehicle LIB packs for the purpose of recycling. In order to understand the process, technicians were studied during the disassembly process, and the modes and operations were recorded. Various modes of interacting with the battery module were chosen and broken down into gripping and cutting operations. Operations involving cutting and gripping were chosen for experimentation, and custom end of arm tooling was designed for use in the disassembly process. Path planning was performed offline in both MATLAB/Simulink and ROBOGUIDE, and the simulation results were used to program the robot for experimental validation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie