Auswahl der wissenschaftlichen Literatur zum Thema „Batteries au Li-Ion“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Batteries au Li-Ion" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Batteries au Li-Ion"

1

Gupta, Aman, Ditipriya Bose, Sandeep Tiwari, Vikrant Sharma und Jai Prakash. „Techno–economic and environmental impact analysis of electric two-wheeler batteries in India“. Clean Energy 8, Nr. 3 (03.05.2024): 147–56. http://dx.doi.org/10.1093/ce/zkad094.

Der volle Inhalt der Quelle
Annotation:
Abstract This paper presents a comprehensive techno–economic and environmental impact analysis of electric two-wheeler batteries in India. The technical comparison reveals that sodium-ion (Na-ion) and lithium-ion (Li-ion) batteries outperform lead–acid batteries in various parameters, with Na-ion and Li-ion batteries exhibiting higher energy densities, higher power densities, longer cycle lives, faster charge rates, better compactness, lighter weight and lower self-discharge rates. In economic comparison, Na-ion batteries were found to be ~12–14% more expensive than Li-ion batteries. However, the longer lifespans and higher energy densities of Na-ion and Li-ion batteries can offset their higher costs through improved performance and long-term savings. Lead–acid batteries have the highest environmental impact, while Li-ion batteries demonstrate better environmental performance and potential for recycling. Na-ion batteries offer promising environmental advantages with their abundance, lower cost and lower toxic and hazardous material content. Efficient recycling processes can further enhance the environmental benefits of Na-ion batteries. Overall, this research examines the potential of Na-ion batteries as a cheaper alternative to Li-ion batteries, considering India’s abundant sodium resources in regions such as Rajasthan, Chhattisgarh, Jharkhand and others.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Conder, Joanna, Cyril Marino, Petr Novák und Claire Villevieille. „Do imaging techniques add real value to the development of better post-Li-ion batteries?“ Journal of Materials Chemistry A 6, Nr. 8 (2018): 3304–27. http://dx.doi.org/10.1039/c7ta10622j.

Der volle Inhalt der Quelle
Annotation:
Imaging techniques are increasingly used to study Li-ion batteries and, in particular, post-Li-ion batteries such as Li–S batteries, Na-ion batteries, Na–air batteries and all-solid-state batteries. Herein, we review recent advances in the field made through the use of these techniques.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kulkarni, Gautam. „Comparative Material Selection of Battery Pack Casing for an Electric Vehicle“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 12 (31.12.2023): 66–75. http://dx.doi.org/10.22214/ijraset.2023.56595.

Der volle Inhalt der Quelle
Annotation:
Abstract: This paper discusses the battery pack thermal management components for electric vehicles that are necessary for the batteries to operate effectively in all weather. Due to their high energy density and long-life cycle, lithium-ion (Li-ion) battery cells are utilized in electric vehicles. Operating temperature affects the Li-ion battery's performance and lifespan. Moreover, this project aims to review materials for electric vehicles battery pack casing by incorporating proper thermal management required for efficient working of batteries in any climatic conditions. Lithium-ion (Li-ion) battery cells are being used for electric vehicles because they having high density of energy and long-life cycle. Higher operating temperatures lengthen battery life and boost capacity. The use of air, water and phase change materials (PCMs) as thermal management techniques are explored and contrasted. Following comparison, a useful battery pack casing for temperature management system is discussed. In this study, we explore the phenomena of heat generation and temperature problems of Li-ion batteries
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chattopadhyay, Jayeeta, Tara Sankar Pathak und Diogo M. F. Santos. „Applications of Polymer Electrolytes in Lithium-Ion Batteries: A Review“. Polymers 15, Nr. 19 (27.09.2023): 3907. http://dx.doi.org/10.3390/polym15193907.

Der volle Inhalt der Quelle
Annotation:
Polymer electrolytes, a type of electrolyte used in lithium-ion batteries, combine polymers and ionic salts. Their integration into lithium-ion batteries has resulted in significant advancements in battery technology, including improved safety, increased capacity, and longer cycle life. This review summarizes the mechanisms governing ion transport mechanism, fundamental characteristics, and preparation methods of different types of polymer electrolytes, including solid polymer electrolytes and gel polymer electrolytes. Furthermore, this work explores recent advancements in non-aqueous Li-based battery systems, where polymer electrolytes lead to inherent performance improvements. These battery systems encompass Li-ion polymer batteries, Li-ion solid-state batteries, Li-air batteries, Li-metal batteries, and Li-sulfur batteries. Notably, the advantages of polymer electrolytes extend beyond enhancing safety. This review also highlights the remaining challenges and provides future perspectives, aiming to propose strategies for developing novel polymer electrolytes for high-performance Li-based batteries.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Winter, Martin, Brian Barnett und Kang Xu. „Before Li Ion Batteries“. Chemical Reviews 118, Nr. 23 (30.11.2018): 11433–56. http://dx.doi.org/10.1021/acs.chemrev.8b00422.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bae, Jin-Yong. „Electrical Modeling and Impedance Spectra of Lithium-Ion Batteries and Supercapacitors“. Batteries 9, Nr. 3 (08.03.2023): 160. http://dx.doi.org/10.3390/batteries9030160.

Der volle Inhalt der Quelle
Annotation:
In this study, electrical models for cylindrical/pouch-type lithium Li-ion batteries and supercapacitors were investigated, and the impedance spectra characteristics were studied. Cylindrical Li-ion batteries use Ni, Co, and Al as the main materials, while pouch-type Li-ion batteries use Ni, Co, and Mn as the main materials. Herein, 2600–3600 mAh 18650-type cylindrical Li-ion batteries, 5000 mAh 21700-type cylindrical Li-ion batteries, 37–50.5 Ah pouch-type Li-ion batteries, and a 2.7 V, 600 F supercapacitor are compared and analyzed. For a cylindrical Li-ion battery, the RS value of a battery with a protection device (circular thermal disc cap) is in the range of 14–38 mΩ. For the 18650-type cylindrical Li-ion battery with a protection device, the RS value of the battery is between 48 and 105 mΩ, and the protection device increases the RS value by at least 33 mΩ. A good Li-ion battery exhibits RS. Moreover, it has small overall RP and CP values. For the 21700-type cylindrical Li-ion battery with a protection device, the RS value of the battery is 25 mΩ. For the pouch-type Li-ion battery, the RS value of the battery is between 0.86 and 1.04 mΩ. For the supercapacitor, the RS value of the battery is between 0.4779 and 0.5737 mΩ. A cylindrical Li-ion battery exhibits a semicircular shape in the impedance spectrum, due to the oxidation and reduction reactions of Li ions, and the impedance increases with a slope of 45° in the complex plane, due to the ZW generated by Li ion diffusion. However, for a pouch-type Li-ion battery, the impedance spectrum exhibits a part of the semicircular shape, due to the oxidation and reduction reactions of Li ions, and the ZW generated by Li ion diffusion does not appear. In a supercapacitor, the oxidation and reduction reactions of ions do not appear at all, and the ZW generated by Li ion diffusion does not occur.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Mackereth, Matthew, Rong Kou und Sohail Anwar. „Zinc-Ion Battery Research and Development: A Brief Overview“. European Journal of Engineering and Technology Research 8, Nr. 5 (20.10.2023): 70–73. http://dx.doi.org/10.24018/ejeng.2023.8.5.2983.

Der volle Inhalt der Quelle
Annotation:
With the advancement in the technology of lithium-ion batteries, the popularity and awareness of rechargeable, durable, long-lasting, and lightweight ion batteries have been in the public eye for a while now. Lithium-ion (Li-ion) is not the only type of ion battery out there. Zinc-ion (Zn-ion) batteries are a heavier, but safer, cheaper, and environmentally friendly form of this battery technology that has uses when portability is not the primary objective. One such use case is large format energy storage for intermittent renewable energy such as solar and wind fields for when the sun is no longer shining, or the wind blowing. One of the disadvantages of Zn-ion batteries is that the current battery life needs to be increased to stand a chance against Li-ion batteries in terms of consumer demands. This paper describes the effect of electrode structures and charging/discharging rates on battery cycle life in coin cells. The symmetric cell study shows that higher charging/discharging rates decrease the battery's cycle life, and the polymer-coated Zn anodes improve the battery's cycle life. It is also noted that maintaining good contact with all the major components in batteries is crucial for batteries to work properly. The battery-making process carried out in the lab and the important details of battery manufacturing are described in this manuscript.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Jin, Yucheng. „A general comparison on energy density between Li-Ion, Li-S and Li-O2 batteries“. Applied and Computational Engineering 11, Nr. 1 (25.09.2023): 283–88. http://dx.doi.org/10.54254/2755-2721/11/20230267.

Der volle Inhalt der Quelle
Annotation:
Today, under the situation of the rapid development of EVs. Li-ion batteries is the first choice to power EVs than any other energy storage system. Many researches are done on various types of batteries with different theoretical and practical energy density and specific energy, where Li-O2 and Li-S battery are considered ultimate alternatives to Li-ion battery, mainly due to their high energy density. Basic mechanisms of these three types of batteries are introduced, and some of the recent researches being done on components of Li-ion battery is briefly discussed. Comparisons on energy density between these three types of batteries are made in the article, where Li-O2 battery has a highest theoretical and practical energy density, followed by Li-S battery, and finally Li-ion battery. By applying a high energy density storage system in EV can further expand the EV market, and hence tend to be potentially beneficial to the global environment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kim, Hee-Je, TNV Krishna, Kamran Zeb, Vinodh Rajangam, Chandu V. V. Muralee Gopi, Sangaraju Sambasivam, Kummara Venkata Guru Raghavendra und Ihab M. Obaidat. „A Comprehensive Review of Li-Ion Battery Materials and Their Recycling Techniques“. Electronics 9, Nr. 7 (17.07.2020): 1161. http://dx.doi.org/10.3390/electronics9071161.

Der volle Inhalt der Quelle
Annotation:
In the context of constant growth in the utilization of the Li-ion batteries, there was a great surge in the quest for electrode materials and predominant usage that lead to the retiring of Li-ion batteries. This review focuses on the recent advances in the anode and cathode materials for the next-generation Li-ion batteries. To achieve higher power and energy demands of Li-ion batteries in future energy storage applications, the selection of the electrode materials plays a crucial role. The electrode materials, such as carbon-based, semiconductor/metal, metal oxides/nitrides/phosphides/sulfides, determine appreciable properties of Li-ion batteries such as greater specific surface area, a minimal distance of diffusion, and higher conductivity. Various classifications of the anode materials such as the intercalation/de- intercalation, alloy/de-alloy, and various conversion materials are illustrated lucidly. Further, the cathode materials, such as nickel-rich LiNixCoyMnzO2 (NCM), were discussed. NCM members such as NCM 333, NCM 523 that enabled to advance for NCM622 and NCM81are reported. The nanostructured materials bridged the gap in the realization of next-generation Li-ion batteries. Li-ion batteries’ electrode nanostructure synthesis, performance, and reaction mechanisms were considered with great concern. The serious effects of Li-ion batteries disposal need to be cut significantly to reduce the detrimental effect on the environment. Hence, the recycling of spent Li-ion batteries has gained much attention in recent years. Various recycling techniques and their effect on the electroactive materials are illustrated. The key areas covered in this review are anode and cathode materials and recent advances along with their recycling techniques. In light of crucial points covered in this review, it constitutes a suitable reference for engineers, researchers, and designers in energy storage applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hao, Shuai. „Studies on the Performance of Two Dimensional AlSi as the Anodes of Li Ion Battery“. Solid State Phenomena 324 (20.09.2021): 109–15. http://dx.doi.org/10.4028/www.scientific.net/ssp.324.109.

Der volle Inhalt der Quelle
Annotation:
Recently, two-dimensional (2D) materials have been rapidly developed and they provided a wide application on the anode of the batteries, reducing the adverse effect of traditional ion batteries including low capacity, short cycle life, low charging rate and poor safety mainly coming from the use of graphite anode. The current report investigates the anode performances of AlSi, a new 2D material exfoliated from NaAlSi, for Li ion batterys (LIBs) through density functional theory (DFT) calculations and gives quantitative discussions on the Li ion valences, binding energies and open-circuit voltages of 2D AlSi anode. The results indicate that 2D AlSi performs great as a novel anode due to the moderate adhesion to Li and low barrier for ion diffusion. Furthermore, our research results illustrate a broad application prospect on the new anode inventions as well as reducing useless consumption on the batteries by the practice of AlSi anode.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Batteries au Li-Ion"

1

Yang, Luyi. „Batteries beyond Li-ion : an investigation of Li-Air and Li-S batteries“. Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/384921/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

VERSACI, DANIELE. „Materials for high energy Li-ion and post Li-ion batteries“. Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2896992.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Andersson, Anna. „Surface Phenomena in Li-Ion Batteries“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2001. http://publications.uu.se/theses/91-554-5120-9/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Oltean, Alina. „Organic Negative Electrode Materials For Li-ion and Na-ion Batteries“. Licentiate thesis, Uppsala universitet, Institutionen för kemi - Ångström, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-243273.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Whitehead, Adam Harding. „Carbon-based negative electrodes for Li-ion batteries“. Thesis, University of Southampton, 1997. https://eprints.soton.ac.uk/394278/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ruggeri, Irene <1989&gt. „Beyond Li-ion batteries: novel concepts and designs“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amsdottorato.unibo.it/8763/1/Thesis_IR.pdf.

Der volle Inhalt der Quelle
Annotation:
Efforts are being globally spent today to boost stored energy produced by renewable sources and to encourage a sustainable electric transportation. High-energy conversion systems like batteries can satisfy these demands in an efficient way. Although Li-ion batteries (LIBs) are the best batteries on the market in terms of energy content, a drastic change is desirable to increase both energy and power performance. In this context, Li/O2 is the next generation system due to the theoretical 10-fold higher specific energy than commercial LIBs (3500 vs. 250 Wh kg-1). The aim of this PhD thesis is the development of novel concepts and cell designs with the purpose to increase the performance of the aprotic Li and Li/O2 batteries. Specifically, a novel design of electrolyte (i.e. solvent-in-salt “SIS” solutions, where the salt-to-solvent ratio is higher than 1), and an innovative concept of semi-solid lithium redox flow air (O2) battery (SLRFAB) technology, based on the use of a O2-saturated semi-solid catholyte, have been proposed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

VERGORI, ELENA. „Li-ion batteries monitoring for electrified vehicles applications“. Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2839860.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fleury, Xavier. „Corrélation entre dégradation des composants internes et sécurité de fonctionnement des batteries Li-ion“. Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI060/document.

Der volle Inhalt der Quelle
Annotation:
Les batteries lithium-ion sont présentes dans de nombreuses applications portables ou embarquées car leurs énergies massique et volumique et leur cyclabilité les placent en tête des autres technologies de stockage. Cependant, elles ne résistent pas aux fonctionnements abusifs et peuvent subir des emballements thermiques avec risque d’explosion. Par ailleurs, l’état des composants internes évoluant au cours du vieillissement de la batterie, son comportement en sécurité doit être considéré pour n'importe quel état de santé afin de mieux concevoir la gestion thermique des cellules et du pack batterie. Dans ce contexte, il est donc primordial de comprendre les mécanismes de dégradation de l’ensemble des composants internes d’un élément (matériaux d'électrodes, collecteurs, séparateur et électrolyte) lors d’un vieillissement en fonctionnement normal et le déroulement des évènements en conditions abusives pouvant aboutir à un scénario accidentel.Le séparateur doit alors être considéré comme le premier dispositif de sécurité intrinsèque car il assure la séparation physique entre l’électrode positive et négative. Il doit alors être étudié sur le plan de ses propriétés électrochimiques, mécaniques et thermiques. Pour cela, une méthodologie de caractérisation a été développée, mettant en œuvre un large panel de techniques de caractérisation physique et chimique, et appliquée sur des séparateurs issus de vieillissements en conditions normales et après surcharge. Différentes méthodes de lavage ont permis de discréditer l’évolution morphologique et électrochimique du polymère poreux sans l’interaction des résidus solides associées aux produits de dégradation de l’électrolyte. Ainsi, la porosité et la tortuosité de la matrice polymère, associées à la conductivité ionique du système séparateur/électrolyte, ont été pleinement étudiées.Il a pu être montré que, en accord avec la croissance de la SEI sur l’électrode négative graphite, sa porosité de surface se dégrade avec un encrassement des pores par accumulation de composés solides de la SEI. Aucune conséquence sur les propriétés mécaniques n’a été observée, mais les performances électrochimiques en puissance se dégradent fortement. Une évaluation face aux risques de court-circuit interne par percée dendritique a permis de montrer que la formation de dendrite est favorisée. Le séparateur en tant qu’organe de sécurité face aux risques mécaniques garde donc son efficacité tout au long de la vie de la batterie lithium-ion mais le risque de court-circuit est plus élevé
Lithium-ion batteries have undeniable assets to meet several of the requirements for embedded applications. They provide high energy density and long cycle life. Nevertheless, they can face irreversible damage during their lives which could cause safety issues like the thermal runaway of the battery and its explosion. It is then essential to understand the degradation mechanisms of all the internal components of an accumulator (i.e. electrode materials, collectors, separator and electrolyte) and the progress of events in abusive conditions that can lead to an accident scenario. The aim of this thesis is to work on the security aspects of Lithium-ion batteries in order to understand these degradation mechanisms and to help to prevent future incidents.Even if the degradation mechanisms of all the internal components are studied in this work, a special attention is given to the separator. This component is indeed one of the most important safety devices of a battery and have to be electrochemically, mechanically and thermally characterized after ageing. Different washing methods have been study in order to characterize the separator without any degradation product of the electrolyte which could interfere. Porosity and tortuosity associated with the ionic conductivity of the separator have been tested.The results show that even if the separator is electrochemically inactive, its porosity can decrease because of the degradation of the negative graphite electrode. Indeed, SEI components obstruct the surface porosity of the separator. This porosity change do not cause any mechanical degradation but decrease separator performances at high current rate and promote lithium dendrite growth
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Perre, Emilie. „Nano-structured 3D Electrodes for Li-ion Micro-batteries“. Doctoral thesis, Uppsala universitet, Institutionen för materialkemi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-119485.

Der volle Inhalt der Quelle
Annotation:
A new challenging application for Li-ion battery has arisen from the rapid development of micro-electronics. Powering Micro-ElectroMechanical Systems (MEMS) such as autonomous smart-dust nodes using conventional Li-ion batteries is not possible. It is not only new batteries based on new materials but there is also a need of modifying the actual battery design. In this context, the conception of 3D nano-architectured Li-ion batteries is explored. There are several micro-battery concepts that are studied; however in this thesis, the focus is concentrated on one particular architecture that can be described as the successive deposition of battery components (active material, electrolyte, active material) on free-standing arrays of nano-sized columns of a current collector. After a brief introduction about Li-ion batteries and 3D micro-batteries, the electrodeposition of Al through an alumina template using an ionic liquid electrolyte to form free-standing columns of Al current collector is described. The crucial deposition parameters influencing the nucleation and growth of the Al nano-rods are discussed. The deposition of active electrode material on the nano-structured current collector columns is described for 2 distinct active materials deposited using different techniques. Deposition of TiO2 using Atomic Layer Deposition (ALD) as active material on top of the nano-structured Al is also presented. The obtained deposits present high uniformity and high covering of the specific surface of the current collector. When cycled versus lithium and compared to planar electrodes, an increase of the capacity was proven to be directly proportional to the specific area gained from shifting from a 2D to a 3D construction. Cu2Sb 3D electrodes were prepared by the electrodeposition of Sb onto a nano-structured Cu current collector followed by an annealing step forcing the alloying between the current collector and Sb. The volume expansion observed during Sb alloying with Li is buffered by the Cu matrix and thus the electrode stability is greatly enhanced (from only 20 cycles to more than 120 cycles). Finally, the deposition of a hybrid polymer electrolyte onto the developed 3D electrodes is presented. Even though the deposition is not conformal and that issues of capacity fading need to be addressed, preliminary results attest that it is possible to cycle the obtained 3D electrode-electrolyte versus lithium without the appearance of short-circuits.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gullbrekken, Øystein. „Thermal characterisation of anode materials for Li-ion batteries“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19224.

Der volle Inhalt der Quelle
Annotation:
Coin cells with lithium and graphite electrodes were assembled using different combinations of graphite material and electrolyte. Specifically, three commercially available graphite materials and five electrolyte compositions were studied. The cells were discharge-charge cycled with varying parameters in order to determine the performance of the graphite materials and electrolytes. Particularly, a temperature chamber was employed to cycle some cells at temperatures between 0 and 40°C to find the significance of the electrolyte composition and graphite material on the cell performance at these temperatures. The cycled cells were disassembled and samples from the graphite electrode soaked with electrolyte were prepared for thermal analysis, specifically differential scanning calorimetry (DSC). The thermal stability of the graphite electrodes and the influence from the graphite and electrolyte properties and the cycling parameters were analysed. In order to facilitate the interpretation of the results from discharge-charge cycling at different temperatures, DSC analysis from -80 to +50°C was performed on the pure electrolytes.Confirming previous studies, it was found that both the thermal stability and cycling performance were highly influenced by the properties of a solid electrolyte interphase (SEI), situated between the graphite surface and the electrolyte and formed during cycling. The three graphites were good substrates for stable SEI formation, exhibited by high thermal stability after being cycled at room temperature. After cycling with a temperature program, subjecting the cells to temperatures between 0 and 40°C, the thermal stability was generally reduced. This was attributed to increased SEI formation. The properties of both the electrolyte and graphite influenced the SEI and consequent thermal stability, though in different ways.The cell capacity was considerably reduced upon cycling at lower temperatures, such as 10 and 0°C. The results indicate that the electrolyte properties, particularly the viscosity and resulting conductivity, played the most important role in determining the cell performance. Low viscosity electrolyte components should be utilised, maintaining the electrolyte conductivity even at reduced temperatures. The graphite properties did not influence the cell performance at the temperatures studied. Advice is given on which electrolyte components should be avoided to build Li-ion cells performing acceptably at temperatures from 0 to 40°C.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Batteries au Li-Ion"

1

Monconduit, Laure, Laurence Croguennec und Rémi Dedryvère. Electrodes for Li-Ion Batteries. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119007364.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Li li zi dian chi yong lin suan tie li zheng ji cai liao: LiFePO4 Cathode Material Used for Li-ion Battery. Beijing Shi: Ke xue chu ban she, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Li, Biao. Studies on Anionic Redox in Li-Rich Cathode Materials of Li-Ion Batteries. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2847-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

McCalla, Eric. Consequences of Combinatorial Studies of Positive Electrodes for Li-ion Batteries. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05849-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Keyser, Matt. Development of a novel test method for on-demand internal short circuit in a li-ion cell. Golden, CO: National Renewable Energy Laboratory, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kim, Gi-Heon, und Matthew Keyser. Numerical and experimental investigation of internal short circuits in a Li-ion cell. Golden, Colo.]: National Renewable Energy Laboratory, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dian dong qi che yong li li zi er ci dian chi. 2. Aufl. Beijing: Ke xue chu ban she, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Dian dong qi che yong li li zi er ci dian chi. Beijing: Ke xue chu ban she, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Platform Li-lon battery risk assessment tool: Cooperative research and development final report. Golden, CO]: National Renewable Energy Laboratory, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Benayad, Anass, BrunoVE Béranger, Céline Barchasz und Michel Bardet. Batteries Li-ion. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2410-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Batteries au Li-Ion"

1

Julien, Christian, Alain Mauger, Ashok Vijh und Karim Zaghib. „Anodes for Li-Ion Batteries“. In Lithium Batteries, 323–429. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19108-9_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Julien, Christian, Alain Mauger, Ashok Vijh und Karim Zaghib. „Safety Aspects of Li-Ion Batteries“. In Lithium Batteries, 549–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19108-9_14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Julien, Christian, Alain Mauger, Ashok Vijh und Karim Zaghib. „Technology of the Li-Ion Batteries“. In Lithium Batteries, 585–603. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19108-9_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mazzola, Michael S., und Masood Shahverdi. „Li-Ion Battery Pack and Applications“. In Rechargeable Batteries, 455–76. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15458-9_16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Liu, Kailong, Yujie Wang und Xin Lai. „Introduction to Battery Full-Lifespan Management“. In Data Science-Based Full-Lifespan Management of Lithium-Ion Battery, 1–25. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01340-9_1.

Der volle Inhalt der Quelle
Annotation:
AbstractAs one of the most promising alternatives to effectively bypass fossil fuels and promote net-zero carbon emission target around the world, rechargeable lithium-ion (Li-ion) batteries have become a mainstream energy storage technology in numerous important applications such as electric vehicles, renewable energy storage, and smart grid. However, Li-ion batteries present inevitable ageing and performance degradation with time. To ensure efficiency, safety, and avoid potential failures for Li-ion batteries, reliable battery management during its full-lifespan is of significant importance. This chapter first introduces the background and motivation of Li-ion battery, followed by the description of Li-ion battery fundamentals and the demands of battery management. After that, the basic information and benefits of using data science technologies to achieve effective battery full-lifespan management are presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Luong, Huu Duc, Thien Lan Tran und Van An Dinh. „Small Polaron–Li-Ion Complex Diffusion in the Cathodes of Rechargeable Li-Ion Batteries“. In Lithium-Related Batteries, 29–39. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003263807-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Saxena, Saurabh, Yinjiao Xing und Michael G. Pecht. „PHM of Li-ion Batteries“. In Prognostics and Health Management of Electronics, 349–75. Chichester, UK: John Wiley and Sons Ltd, 2018. http://dx.doi.org/10.1002/9781119515326.ch13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Cho, Seok-Kyu, JongTae Yoo und Sang-Young Lee. „Nanocarbons in Li-Ion Batteries“. In Nanocarbons for Energy Conversion: Supramolecular Approaches, 419–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92917-0_18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hameed, Abdulrahman Shahul. „Introduction to Li-ion Batteries“. In Phosphate Based Cathodes and Reduced Graphene Oxide Composite Anodes for Energy Storage Applications, 1–30. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2302-6_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bramnik, Natalia N., und Helmut Ehrenberg. „Oxides for Li Intercalation, Li-ion Batteries“. In Ceramics Science and Technology, 471–94. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527631940.ch63.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Batteries au Li-Ion"

1

Xidong Tang, Xiaofeng Mao, Jian Lin und Brian Koch. „Capacity estimation for Li-ion batteries“. In 2011 American Control Conference. IEEE, 2011. http://dx.doi.org/10.1109/acc.2011.5991410.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

KNAUTH, P., und T. DJENIZIAN. „NANOSTRUCTURED TiO2 FOR Li-ION BATTERIES“. In Proceedings of International Conference Nanomeeting – 2011. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814343909_0133.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Durganjali, C. Santhi, Harini Raghavan und Sudha Radhika. „Modelling and Performance Analysis of Different Types of Li-Ion Battery“. In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24404.

Der volle Inhalt der Quelle
Annotation:
Abstract Lithium ion batteries are at present, the most widely used battery technology in the world. Every battery’s performance is characterized by certain parameters like the State of Charge, and Depth of Discharge, C-rate etc. To explore the possibility of more efficient types of Li-ion batteries for more applications a wide demand in identifying, modeling and testing of different possible combinations of electrode materials and electrolytes of Li-ion batteries arose. Taking this demand into consideration authors of this paper focus on the modeling and simulation of a wide variety of possible combinations of Li-ion battery in a 2-dimensional model. In addition to that, a thermal model of a cylindrical lithium ion battery was built in 3-dimensions and was validated with experimental data. The simulations were carried out on COMSOL:Multiphysics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hamidi, Seyed Ahmad, Emad Manla und Adel Nasiri. „Li-ion batteries and Li-ion ultracapacitors: Characteristics, modeling and grid applications“. In 2015 IEEE Energy Conversion Congress and Exposition. IEEE, 2015. http://dx.doi.org/10.1109/ecce.2015.7310361.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Alavi-Soltani, S. R., T. S. Ravigururajan und Mary Rezac. „Thermal Issues in Lithium-Ion Batteries“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15106.

Der volle Inhalt der Quelle
Annotation:
This paper reviews various studies carried out on thermal issues in lithium-ion batteries. Although thermal behavior of Li-ion batteries plays an important role in performance, life cycle and safety of these batteries, it has not been studied as intensely as chemical characteristics of these batteries. In this review paper, studies concerning thermal issues on Li-ion batteries are classified based on their methodologies and the battery components being investigated. The methodologies include mathematical thermal modeling, calorimetry, electrochemical impedance spectroscopy and thermal management system method. The battery components that have been studied include anode, cathode, electrolyte and the whole cell.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Doersam, T., S. Schoerle, E. Hoene, K. D. Lang, C. Spieker und T. Waldmann. „High frequency impedance of Li-ion batteries“. In 2015 IEEE International Symposium on Electromagnetic Compatibility - EMC 2015. IEEE, 2015. http://dx.doi.org/10.1109/isemc.2015.7256251.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Niroshana, S. M. Isuru, und Siriroj Sirisukprasert. „Adaptive pulse charger for Li-ion batteries“. In 2017 8th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES). IEEE, 2017. http://dx.doi.org/10.1109/ictemsys.2017.7958780.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bhattacharyya, Aninda J., und Monalisa Patel. „Soft matter electrolytes for Li-ion batteries“. In SPIE Defense, Security, and Sensing, herausgegeben von Nibir K. Dhar, Priyalal S. Wijewarnasuriya und Achyut K. Dutta. SPIE, 2011. http://dx.doi.org/10.1117/12.883968.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Barreras, Jorge Varela, Erik Schaltz, Soren Juhl Andreasen und Tomasz Minko. „Datasheet-based modeling of Li-Ion batteries“. In 2012 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2012. http://dx.doi.org/10.1109/vppc.2012.6422730.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Jano, Rajmond, Adelina Ioana Ilies und Alexandra Fodor. „Thermal Simulations for 18650 Li-Ion Batteries“. In 2022 IEEE 28th International Symposium for Design and Technology in Electronic Packaging (SIITME). IEEE, 2022. http://dx.doi.org/10.1109/siitme56728.2022.9987899.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Batteries au Li-Ion"

1

Lee, Sehee. Solid State Li-ion Batteries. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2013. http://dx.doi.org/10.21236/ada589846.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Johnson, Erik B. Li-Ion Batteries for Forensic Neutron Dosimetry. Fort Belvoir, VA: Defense Technical Information Center, März 2016. http://dx.doi.org/10.21236/ad1005451.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

B. Fultz. Anode Materials for Rechargeable Li-Ion Batteries. Office of Scientific and Technical Information (OSTI), Januar 2001. http://dx.doi.org/10.2172/773359.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Xu, Kang, und Arthur v. Cresce. Electrolytes in Support of 5V Li-ion Batteries. Fort Belvoir, VA: Defense Technical Information Center, November 2010. http://dx.doi.org/10.21236/ad1000143.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kidner, Neil. Cobalt-Free Cathodes for Next Generation Li-Ion Batteries. Office of Scientific and Technical Information (OSTI), Juli 2022. http://dx.doi.org/10.2172/1880765.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Henriksen, G. L., K. Amine und J. Liu. Materials cost evaluation report for high-power Li-ion batteries. Office of Scientific and Technical Information (OSTI), Januar 2003. http://dx.doi.org/10.2172/808426.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Braithwaite, J. W., A. Gonzales und S. J. Lucero. Degradation of the materials of construction in Li-ion batteries. Office of Scientific and Technical Information (OSTI), März 1997. http://dx.doi.org/10.2172/461265.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gao, Yue, Guoxing Li, Pei Shi und Linh Le. Multifunctional Li-ion Conducting Interfacial Materials for Lithium Metal Batteries”. Office of Scientific and Technical Information (OSTI), Dezember 2021. http://dx.doi.org/10.2172/1839857.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wang, Donghai, Au Nguyen, Heng Jiang und Jasiel Lira. High-Performance Low-Cobalt Cathode Materials for Li-ion Batteries. Office of Scientific and Technical Information (OSTI), Mai 2023. http://dx.doi.org/10.2172/1972477.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kostecki, Robert. In situ analysis of potential distribution in Li-ion Batteries. Office of Scientific and Technical Information (OSTI), März 2018. http://dx.doi.org/10.2172/1436865.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie