Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Batteries au Li-Ion“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Batteries au Li-Ion" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Batteries au Li-Ion"
Gupta, Aman, Ditipriya Bose, Sandeep Tiwari, Vikrant Sharma und Jai Prakash. „Techno–economic and environmental impact analysis of electric two-wheeler batteries in India“. Clean Energy 8, Nr. 3 (03.05.2024): 147–56. http://dx.doi.org/10.1093/ce/zkad094.
Der volle Inhalt der QuelleConder, Joanna, Cyril Marino, Petr Novák und Claire Villevieille. „Do imaging techniques add real value to the development of better post-Li-ion batteries?“ Journal of Materials Chemistry A 6, Nr. 8 (2018): 3304–27. http://dx.doi.org/10.1039/c7ta10622j.
Der volle Inhalt der QuelleKulkarni, Gautam. „Comparative Material Selection of Battery Pack Casing for an Electric Vehicle“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 12 (31.12.2023): 66–75. http://dx.doi.org/10.22214/ijraset.2023.56595.
Der volle Inhalt der QuelleChattopadhyay, Jayeeta, Tara Sankar Pathak und Diogo M. F. Santos. „Applications of Polymer Electrolytes in Lithium-Ion Batteries: A Review“. Polymers 15, Nr. 19 (27.09.2023): 3907. http://dx.doi.org/10.3390/polym15193907.
Der volle Inhalt der QuelleWinter, Martin, Brian Barnett und Kang Xu. „Before Li Ion Batteries“. Chemical Reviews 118, Nr. 23 (30.11.2018): 11433–56. http://dx.doi.org/10.1021/acs.chemrev.8b00422.
Der volle Inhalt der QuelleBae, Jin-Yong. „Electrical Modeling and Impedance Spectra of Lithium-Ion Batteries and Supercapacitors“. Batteries 9, Nr. 3 (08.03.2023): 160. http://dx.doi.org/10.3390/batteries9030160.
Der volle Inhalt der QuelleMackereth, Matthew, Rong Kou und Sohail Anwar. „Zinc-Ion Battery Research and Development: A Brief Overview“. European Journal of Engineering and Technology Research 8, Nr. 5 (20.10.2023): 70–73. http://dx.doi.org/10.24018/ejeng.2023.8.5.2983.
Der volle Inhalt der QuelleJin, Yucheng. „A general comparison on energy density between Li-Ion, Li-S and Li-O2 batteries“. Applied and Computational Engineering 11, Nr. 1 (25.09.2023): 283–88. http://dx.doi.org/10.54254/2755-2721/11/20230267.
Der volle Inhalt der QuelleKim, Hee-Je, TNV Krishna, Kamran Zeb, Vinodh Rajangam, Chandu V. V. Muralee Gopi, Sangaraju Sambasivam, Kummara Venkata Guru Raghavendra und Ihab M. Obaidat. „A Comprehensive Review of Li-Ion Battery Materials and Their Recycling Techniques“. Electronics 9, Nr. 7 (17.07.2020): 1161. http://dx.doi.org/10.3390/electronics9071161.
Der volle Inhalt der QuelleHao, Shuai. „Studies on the Performance of Two Dimensional AlSi as the Anodes of Li Ion Battery“. Solid State Phenomena 324 (20.09.2021): 109–15. http://dx.doi.org/10.4028/www.scientific.net/ssp.324.109.
Der volle Inhalt der QuelleDissertationen zum Thema "Batteries au Li-Ion"
Yang, Luyi. „Batteries beyond Li-ion : an investigation of Li-Air and Li-S batteries“. Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/384921/.
Der volle Inhalt der QuelleVERSACI, DANIELE. „Materials for high energy Li-ion and post Li-ion batteries“. Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2896992.
Der volle Inhalt der QuelleAndersson, Anna. „Surface Phenomena in Li-Ion Batteries“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2001. http://publications.uu.se/theses/91-554-5120-9/.
Der volle Inhalt der QuelleOltean, Alina. „Organic Negative Electrode Materials For Li-ion and Na-ion Batteries“. Licentiate thesis, Uppsala universitet, Institutionen för kemi - Ångström, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-243273.
Der volle Inhalt der QuelleWhitehead, Adam Harding. „Carbon-based negative electrodes for Li-ion batteries“. Thesis, University of Southampton, 1997. https://eprints.soton.ac.uk/394278/.
Der volle Inhalt der QuelleRuggeri, Irene <1989>. „Beyond Li-ion batteries: novel concepts and designs“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amsdottorato.unibo.it/8763/1/Thesis_IR.pdf.
Der volle Inhalt der QuelleVERGORI, ELENA. „Li-ion batteries monitoring for electrified vehicles applications“. Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2839860.
Der volle Inhalt der QuelleFleury, Xavier. „Corrélation entre dégradation des composants internes et sécurité de fonctionnement des batteries Li-ion“. Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI060/document.
Der volle Inhalt der QuelleLithium-ion batteries have undeniable assets to meet several of the requirements for embedded applications. They provide high energy density and long cycle life. Nevertheless, they can face irreversible damage during their lives which could cause safety issues like the thermal runaway of the battery and its explosion. It is then essential to understand the degradation mechanisms of all the internal components of an accumulator (i.e. electrode materials, collectors, separator and electrolyte) and the progress of events in abusive conditions that can lead to an accident scenario. The aim of this thesis is to work on the security aspects of Lithium-ion batteries in order to understand these degradation mechanisms and to help to prevent future incidents.Even if the degradation mechanisms of all the internal components are studied in this work, a special attention is given to the separator. This component is indeed one of the most important safety devices of a battery and have to be electrochemically, mechanically and thermally characterized after ageing. Different washing methods have been study in order to characterize the separator without any degradation product of the electrolyte which could interfere. Porosity and tortuosity associated with the ionic conductivity of the separator have been tested.The results show that even if the separator is electrochemically inactive, its porosity can decrease because of the degradation of the negative graphite electrode. Indeed, SEI components obstruct the surface porosity of the separator. This porosity change do not cause any mechanical degradation but decrease separator performances at high current rate and promote lithium dendrite growth
Perre, Emilie. „Nano-structured 3D Electrodes for Li-ion Micro-batteries“. Doctoral thesis, Uppsala universitet, Institutionen för materialkemi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-119485.
Der volle Inhalt der QuelleGullbrekken, Øystein. „Thermal characterisation of anode materials for Li-ion batteries“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19224.
Der volle Inhalt der QuelleBücher zum Thema "Batteries au Li-Ion"
Monconduit, Laure, Laurence Croguennec und Rémi Dedryvère. Electrodes for Li-Ion Batteries. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119007364.
Der volle Inhalt der QuelleLi li zi dian chi yong lin suan tie li zheng ji cai liao: LiFePO4 Cathode Material Used for Li-ion Battery. Beijing Shi: Ke xue chu ban she, 2013.
Den vollen Inhalt der Quelle findenLi, Biao. Studies on Anionic Redox in Li-Rich Cathode Materials of Li-Ion Batteries. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2847-3.
Der volle Inhalt der QuelleMcCalla, Eric. Consequences of Combinatorial Studies of Positive Electrodes for Li-ion Batteries. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05849-8.
Der volle Inhalt der QuelleKeyser, Matt. Development of a novel test method for on-demand internal short circuit in a li-ion cell. Golden, CO: National Renewable Energy Laboratory, 2011.
Den vollen Inhalt der Quelle findenKim, Gi-Heon, und Matthew Keyser. Numerical and experimental investigation of internal short circuits in a Li-ion cell. Golden, Colo.]: National Renewable Energy Laboratory, 2011.
Den vollen Inhalt der Quelle findenDian dong qi che yong li li zi er ci dian chi. 2. Aufl. Beijing: Ke xue chu ban she, 2013.
Den vollen Inhalt der Quelle findenDian dong qi che yong li li zi er ci dian chi. Beijing: Ke xue chu ban she, 2010.
Den vollen Inhalt der Quelle findenPlatform Li-lon battery risk assessment tool: Cooperative research and development final report. Golden, CO]: National Renewable Energy Laboratory, 2012.
Den vollen Inhalt der Quelle findenBenayad, Anass, BrunoVE Béranger, Céline Barchasz und Michel Bardet. Batteries Li-ion. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2410-6.
Der volle Inhalt der QuelleBuchteile zum Thema "Batteries au Li-Ion"
Julien, Christian, Alain Mauger, Ashok Vijh und Karim Zaghib. „Anodes for Li-Ion Batteries“. In Lithium Batteries, 323–429. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19108-9_10.
Der volle Inhalt der QuelleJulien, Christian, Alain Mauger, Ashok Vijh und Karim Zaghib. „Safety Aspects of Li-Ion Batteries“. In Lithium Batteries, 549–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19108-9_14.
Der volle Inhalt der QuelleJulien, Christian, Alain Mauger, Ashok Vijh und Karim Zaghib. „Technology of the Li-Ion Batteries“. In Lithium Batteries, 585–603. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19108-9_15.
Der volle Inhalt der QuelleMazzola, Michael S., und Masood Shahverdi. „Li-Ion Battery Pack and Applications“. In Rechargeable Batteries, 455–76. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15458-9_16.
Der volle Inhalt der QuelleLiu, Kailong, Yujie Wang und Xin Lai. „Introduction to Battery Full-Lifespan Management“. In Data Science-Based Full-Lifespan Management of Lithium-Ion Battery, 1–25. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01340-9_1.
Der volle Inhalt der QuelleLuong, Huu Duc, Thien Lan Tran und Van An Dinh. „Small Polaron–Li-Ion Complex Diffusion in the Cathodes of Rechargeable Li-Ion Batteries“. In Lithium-Related Batteries, 29–39. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003263807-2.
Der volle Inhalt der QuelleSaxena, Saurabh, Yinjiao Xing und Michael G. Pecht. „PHM of Li-ion Batteries“. In Prognostics and Health Management of Electronics, 349–75. Chichester, UK: John Wiley and Sons Ltd, 2018. http://dx.doi.org/10.1002/9781119515326.ch13.
Der volle Inhalt der QuelleCho, Seok-Kyu, JongTae Yoo und Sang-Young Lee. „Nanocarbons in Li-Ion Batteries“. In Nanocarbons for Energy Conversion: Supramolecular Approaches, 419–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92917-0_18.
Der volle Inhalt der QuelleHameed, Abdulrahman Shahul. „Introduction to Li-ion Batteries“. In Phosphate Based Cathodes and Reduced Graphene Oxide Composite Anodes for Energy Storage Applications, 1–30. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2302-6_1.
Der volle Inhalt der QuelleBramnik, Natalia N., und Helmut Ehrenberg. „Oxides for Li Intercalation, Li-ion Batteries“. In Ceramics Science and Technology, 471–94. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527631940.ch63.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Batteries au Li-Ion"
Xidong Tang, Xiaofeng Mao, Jian Lin und Brian Koch. „Capacity estimation for Li-ion batteries“. In 2011 American Control Conference. IEEE, 2011. http://dx.doi.org/10.1109/acc.2011.5991410.
Der volle Inhalt der QuelleKNAUTH, P., und T. DJENIZIAN. „NANOSTRUCTURED TiO2 FOR Li-ION BATTERIES“. In Proceedings of International Conference Nanomeeting – 2011. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814343909_0133.
Der volle Inhalt der QuelleDurganjali, C. Santhi, Harini Raghavan und Sudha Radhika. „Modelling and Performance Analysis of Different Types of Li-Ion Battery“. In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24404.
Der volle Inhalt der QuelleHamidi, Seyed Ahmad, Emad Manla und Adel Nasiri. „Li-ion batteries and Li-ion ultracapacitors: Characteristics, modeling and grid applications“. In 2015 IEEE Energy Conversion Congress and Exposition. IEEE, 2015. http://dx.doi.org/10.1109/ecce.2015.7310361.
Der volle Inhalt der QuelleAlavi-Soltani, S. R., T. S. Ravigururajan und Mary Rezac. „Thermal Issues in Lithium-Ion Batteries“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15106.
Der volle Inhalt der QuelleDoersam, T., S. Schoerle, E. Hoene, K. D. Lang, C. Spieker und T. Waldmann. „High frequency impedance of Li-ion batteries“. In 2015 IEEE International Symposium on Electromagnetic Compatibility - EMC 2015. IEEE, 2015. http://dx.doi.org/10.1109/isemc.2015.7256251.
Der volle Inhalt der QuelleNiroshana, S. M. Isuru, und Siriroj Sirisukprasert. „Adaptive pulse charger for Li-ion batteries“. In 2017 8th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES). IEEE, 2017. http://dx.doi.org/10.1109/ictemsys.2017.7958780.
Der volle Inhalt der QuelleBhattacharyya, Aninda J., und Monalisa Patel. „Soft matter electrolytes for Li-ion batteries“. In SPIE Defense, Security, and Sensing, herausgegeben von Nibir K. Dhar, Priyalal S. Wijewarnasuriya und Achyut K. Dutta. SPIE, 2011. http://dx.doi.org/10.1117/12.883968.
Der volle Inhalt der QuelleBarreras, Jorge Varela, Erik Schaltz, Soren Juhl Andreasen und Tomasz Minko. „Datasheet-based modeling of Li-Ion batteries“. In 2012 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2012. http://dx.doi.org/10.1109/vppc.2012.6422730.
Der volle Inhalt der QuelleJano, Rajmond, Adelina Ioana Ilies und Alexandra Fodor. „Thermal Simulations for 18650 Li-Ion Batteries“. In 2022 IEEE 28th International Symposium for Design and Technology in Electronic Packaging (SIITME). IEEE, 2022. http://dx.doi.org/10.1109/siitme56728.2022.9987899.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Batteries au Li-Ion"
Lee, Sehee. Solid State Li-ion Batteries. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2013. http://dx.doi.org/10.21236/ada589846.
Der volle Inhalt der QuelleJohnson, Erik B. Li-Ion Batteries for Forensic Neutron Dosimetry. Fort Belvoir, VA: Defense Technical Information Center, März 2016. http://dx.doi.org/10.21236/ad1005451.
Der volle Inhalt der QuelleB. Fultz. Anode Materials for Rechargeable Li-Ion Batteries. Office of Scientific and Technical Information (OSTI), Januar 2001. http://dx.doi.org/10.2172/773359.
Der volle Inhalt der QuelleXu, Kang, und Arthur v. Cresce. Electrolytes in Support of 5V Li-ion Batteries. Fort Belvoir, VA: Defense Technical Information Center, November 2010. http://dx.doi.org/10.21236/ad1000143.
Der volle Inhalt der QuelleKidner, Neil. Cobalt-Free Cathodes for Next Generation Li-Ion Batteries. Office of Scientific and Technical Information (OSTI), Juli 2022. http://dx.doi.org/10.2172/1880765.
Der volle Inhalt der QuelleHenriksen, G. L., K. Amine und J. Liu. Materials cost evaluation report for high-power Li-ion batteries. Office of Scientific and Technical Information (OSTI), Januar 2003. http://dx.doi.org/10.2172/808426.
Der volle Inhalt der QuelleBraithwaite, J. W., A. Gonzales und S. J. Lucero. Degradation of the materials of construction in Li-ion batteries. Office of Scientific and Technical Information (OSTI), März 1997. http://dx.doi.org/10.2172/461265.
Der volle Inhalt der QuelleGao, Yue, Guoxing Li, Pei Shi und Linh Le. Multifunctional Li-ion Conducting Interfacial Materials for Lithium Metal Batteries”. Office of Scientific and Technical Information (OSTI), Dezember 2021. http://dx.doi.org/10.2172/1839857.
Der volle Inhalt der QuelleWang, Donghai, Au Nguyen, Heng Jiang und Jasiel Lira. High-Performance Low-Cobalt Cathode Materials for Li-ion Batteries. Office of Scientific and Technical Information (OSTI), Mai 2023. http://dx.doi.org/10.2172/1972477.
Der volle Inhalt der QuelleKostecki, Robert. In situ analysis of potential distribution in Li-ion Batteries. Office of Scientific and Technical Information (OSTI), März 2018. http://dx.doi.org/10.2172/1436865.
Der volle Inhalt der Quelle