Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Batterie au Li.

Dissertationen zum Thema „Batterie au Li“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Batterie au Li" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Idolo, Eugenio. „Modellazione di batterie Li-ione mediante circuiti elettrici“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.

Den vollen Inhalt der Quelle finden
Annotation:
Il funzionamento di una pila si basa essenzialmente su reazioni di ossido - riduzione, in cui una specie chimica si ossida perdendo elettroni mentre una seconda specie chimica si riduce acquistando gli elettroni persi dalla prima specie. Questo movimento di elettroni dal riducente all’ossidante non è altro che una corrente elettrica. Riuscire a definire l’andamento delle curve di carica e scarica delle batterie permette di capire in quale maniera si comporta il sistema se viene caricato o scaricato sotto certe condizioni operative piuttosto che altre; di conseguenza ciò permette di scegliere in maniera accurata le migliori condizioni di funzionamento della batteria, vale a dire i valori di corrente di scarica e di temperatura. Scopo principale di questo lavoro è quello di caratterizzare in maniera più accurata possibile alcuni modelli di batteria Litio - ione, cercando di riprodurne matematicamente le curve di carica e scarica: ciò è possibile grazie all’utilizzo di opportuni modelli elettrico - sperimentali da implementare all’interno di un ambiente di calcolo numerico. L'obiettivo finale del lavoro è quello di trovare dei parametri caratteristici, che siano esprimibili secondo una stessa equazione in funzione della corrente di scarica e della temperatura. In questo modo sarà possibile estendere il modello ad ogni batteria Litio - ione e costruire un modello unificato per poter prevedere il comportamento di una qualsiasi batteria Litio - ione durante la sua scarica.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hémery, Charles-Victor. „Etudes des phénomènes thermiques dans les batteries Li-ion“. Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00968666.

Der volle Inhalt der Quelle
Annotation:
Les travaux présentés dans cette thèse concernent l'étude thermique des batteries Li-ion en vue d'une application de gestion thermique pour l'automobile. La compréhension des phénomènes thermiques à l'échelle accumulateur est indispensable avant de réaliser une approche de type module ou pack batterie. Ces phénomènes thermiques sont mis en évidence à partir d'une modélisation thermique globale de deux accumulateurs de différentes chimies, en décharge à courant constant. La complexité du caractère résistif de l'accumulateur Li-ion a mené au développement d'un modèle prenant en compte l'interaction entre les phénomènes électrochimiques et thermiques, permettant une approche prédictive de son comportement. Enfin la réalisation de deux boucles expérimentales, de simulation de systèmes de gestion thermique d'un module de batterie, montre les limites d'un refroidissement classique par air à respecter les critères de management thermique. En comparaison, le second système basé sur l'intégration innovante d'un matériau à changement de phase (MCP) se montre performant lors de situations usuelles, de défauts ou encore lors du besoin d'une charge rapide de la batterie.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lu, Xueyi. „Architectural Nanomembranes as Cathode Materials for Li-O2 Batteries“. Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-228120.

Der volle Inhalt der Quelle
Annotation:
Li-O2 batteries have attracted world-wide research interest as an appealing candidate for future energy supplies because they possess the highest energy density of any battery technology. However, such system still face some challenges for the practical application. One of the key issues is exploring highly efficient cathode materials for Li-O2 batteries. Here, a rolled-up technology associated with other physical or chemical methods are applied to prepare architectural nanomembranes for the cathode materials in Li-O2 batteries. The strain-release technology has recently proven to be an efficient approach on the micro/nanoscale to fabricate composite nanomembranes with controlled thickness, versatile chemical composition and stacking sequence. This dissertation first focuses on the synthesis of trilayered Pd/MnOx/Pd nanomembranes. The incorporation of active Pd layers on both sides of the poor conductive MnOx layer commonly used in energy storage systems greatly enhances the conductivity and catalytic activity. Encouraged by this design, Pd nanoparticles functionalized MnOx-GeOy nanomembranes are also fabricated, which not only improve the conductivity but also facilitate the transport of Li+ and oxygen-containing species, thus greatly enhancing the performance of Li-O2 batteries. Similarly, Au and Pd arrays decorated MnOx nanomembranes act as bifunctional catalysts for both oxygen reduction reaction and oxygen evolution reaction in Li-O2 batteries. Moreover, by introducing hierarchical pores on the nanomembranes, the performance of Li-O2 batteries is further promoted by porous Pd/NiO nanomembranes. The macropores created by standard photolithography facilitate the rolling process and the nanopores in the nanomembranes induced by a novel template-free method supply fast channels for the reactants diffusion. In addition, a facile thermal treatment method is developed to fabricate Ag/NiO-Fe2O3/Ag hybrid nanomembranes as carbon-free cathode materials in Li-O2 batteries. A competing scheme between the intrinsic strain built in the oxide nanomembranes and an external driving force provided by the metal nanoparticles is introduced to tune the morphology of the 3D tubular architectures which greatly improve the performance by providing continuous tunnels for O2 and electrolyte diffusion and mitigating the side reactions produced by carbonaceous materials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

FIORE, MICHELE. „Nanostructured Materials for secondary alkaline ion batteries“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/262348.

Der volle Inhalt der Quelle
Annotation:
Thanks to their superior energy and power density, lithium-ion batteries (LIBs) currently dominate the market of power sources for portable devices. The economy of scale and engineering optimizations have driven the cost of LIBs below the 200 $/KWh at the pack level. This catalyzed the market penetration of electric vehicles and made them a viable candidate for stationary energy storage. However, the rapid market expansion of LIBs raised growing concerns about the future sustainability of this technology. In particular, lithium and cobalt supplies are considered vulnerable, primarily because of the geopolitical implications of their high concentration in only a few countries. In the search for the next generation secondary batteries, known as post-lithium ion batteries, candidates that do not use rare metals have been extensively investigated in the last 10 years. Sodium-ion batteries (SIBs) attracted considerable attention thanks to the high abundance of the precursors and wide distribution of sodium on the earth's crust. As a matter of fact, as it will be pointed out during the dissertation, it is not straightforward to allocate the reduction of the price of the alkaline ion precursors to the reduction of the battery price. However, the difficulties in the supply of raw materials for LIBs, such as shortages in lithium carbonates and cobalt ores, could make lithium and cobalt-free systems, such as SIBs, attractive and cost-competitive alternatives. Compared to other, more exotic chemistries including Ca2+, Mg2+ and Al3+ batteries, SIBs are nowadays considered one as the most promising alternative to LIBs. Despite the extensive research, anode materials for SIBs still represent a serious problem for the commercial exploitation of this technology. Accordingly, the doctoral research on SIBs has been focused on anode materials. In particular, the attention was directed towards conversion oxides. Compared to intercalation materials, conversion-based ones have higher capacities but are more challenging to deal with because of the high volume variation during cycling. This challenge was addressed by material's nanostructuring and morphology control which proved to significantly reduce the pulverization of the active material. Different anode candidates have been studied during the doctoral work. Cobalt oxide nanofibers have been here explored as a first prototype for conversion materials in sodium ion batteries. The sodiation-desodiation mechanism is analyzed by means of ex situ XRD which led to a deeper understanding of the conversion reaction in SIBs. A cost-effective and environmentally benign alternative based on iron oxide is then considered. The limits of iron (III) oxide are tackled by combining the advantages of the nanostructuring and the doping with an aliovalent element. Si-doped Fe2O3 nanofibers are synthesized via an easy scalable process based on the electrospinning method. It is found that Si-addition improves the transport properties as well as induces changes in the crystal structure and morphology. In the final section of the thesis, potassium-ion batteries (KIBs) are examined as a promising alternative to sodium ion batteries. KIBs exhibit all the benefits of SIBs, with the additional advantage that graphite, can reversibly accommodate K-ions. On the positive side, Potassium manganese hexacyanoferrate (KMnHCF), has been reported to provide high operating voltages and satisfactory capacity retention. The proposed research activity presents the use of an ionic liquid based electrolyte compatible with the most promising anode and cathode for KIBs. In addition, a high-throughput optimization of the KMnHCF synthesis is reported. The selected candidates are then fully characterized, and their electrochemical properties investigated. The optimized material exhibits the highest ever reported coulombic efficiency for the KMHCF. This find, opens up the possibility of highly efficient, high energy potassium ion batteries.
Thanks to their superior energy and power density, lithium-ion batteries (LIBs) currently dominate the market of power sources for portable devices. The economy of scale and engineering optimizations have driven the cost of LIBs below the 200 $/KWh at the pack level. This catalyzed the market penetration of electric vehicles and made them a viable candidate for stationary energy storage. However, the rapid market expansion of LIBs raised growing concerns about the future sustainability of this technology. In particular, lithium and cobalt supplies are considered vulnerable, primarily because of the geopolitical implications of their high concentration in only a few countries. In the search for the next generation secondary batteries, known as post-lithium ion batteries, candidates that do not use rare metals have been extensively investigated in the last 10 years. Sodium-ion batteries (SIBs) attracted considerable attention thanks to the high abundance of the precursors and wide distribution of sodium on the earth's crust. As a matter of fact, as it will be pointed out during the dissertation, it is not straightforward to allocate the reduction of the price of the alkaline ion precursors to the reduction of the battery price. However, the difficulties in the supply of raw materials for LIBs, such as shortages in lithium carbonates and cobalt ores, could make lithium and cobalt-free systems, such as SIBs, attractive and cost-competitive alternatives. Compared to other, more exotic chemistries including Ca2+, Mg2+ and Al3+ batteries, SIBs are nowadays considered one as the most promising alternative to LIBs. Despite the extensive research, anode materials for SIBs still represent a serious problem for the commercial exploitation of this technology. Accordingly, the doctoral research on SIBs has been focused on anode materials. In particular, the attention was directed towards conversion oxides. Compared to intercalation materials, conversion-based ones have higher capacities but are more challenging to deal with because of the high volume variation during cycling. This challenge was addressed by material's nanostructuring and morphology control which proved to significantly reduce the pulverization of the active material. Different anode candidates have been studied during the doctoral work. Cobalt oxide nanofibers have been here explored as a first prototype for conversion materials in sodium ion batteries. The sodiation-desodiation mechanism is analyzed by means of ex situ XRD which led to a deeper understanding of the conversion reaction in SIBs. A cost-effective and environmentally benign alternative based on iron oxide is then considered. The limits of iron (III) oxide are tackled by combining the advantages of the nanostructuring and the doping with an aliovalent element. Si-doped Fe2O3 nanofibers are synthesized via an easy scalable process based on the electrospinning method. It is found that Si-addition improves the transport properties as well as induces changes in the crystal structure and morphology. In the final section of the thesis, potassium-ion batteries (KIBs) are examined as a promising alternative to sodium ion batteries. KIBs exhibit all the benefits of SIBs, with the additional advantage that graphite, can reversibly accommodate K-ions. On the positive side, Potassium manganese hexacyanoferrate (KMnHCF), has been reported to provide high operating voltages and satisfactory capacity retention. The proposed research activity presents the use of an ionic liquid based electrolyte compatible with the most promising anode and cathode for KIBs. In addition, a high-throughput optimization of the KMnHCF synthesis is reported. The selected candidates are then fully characterized, and their electrochemical properties investigated. The optimized material exhibits the highest ever reported coulombic efficiency for the KMHCF. This find, opens up the possibility of highly efficient, high energy potassium ion batteries.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Celasun, Yagmur. „Synthèse et caractérisation de nouveaux matériaux d'électrode positive pour des applications Li-ion à haute énergie“. Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALI047.

Der volle Inhalt der Quelle
Annotation:
Cette thèse concerne le développement de rocksalts désordonnés surlithiés pour les systèmes Li-Ion à haute densité d’énergie. Dans un premier volet, les paramètres de synthèse ont été optimisés pour améliorer les performances du rocksalt désordonné Li2.2NiTi0.2Nb0.6O4. Pour comprendre l’origine de sa forte irréversibilité au premier cycle, des analyses in situ structurales et électrochimiques avancées montrent un changement structural avec l’apparition d’un désordre durant la première charge. Ensuite, le rocksalt désordonné Li2TiS3 a été préparé selon notre procédé breveté. De nouvelles compositions avec une substitution au Sélénium, Li2TiSexS3-x, ont permis d’obtenir de fortes capacités de décharge à des potentiels inférieurs avec une meilleure cyclabilité. L’activité réversible redox du soufre a été confirmée par électrochimie et par analyses de surface ex situ mais des caractérisations plus poussées sont nécessaires pour élucider le procédé redox complexe du sélénium
This thesis focuses on the development of overlithiated disordered rocksalts for high-energy Li-ion systems. Firstly, synthesis parameters have been optimized to improve the performances of the disordered rocksalt Li2.2NiTi0.2Nb0.6O4. To examine its high irreversibility (35%) at the first cycle, in situ advanced structural and electrochemical analyses have been performed. Results show that a structural change and disordering happen during the first charge. In a second part, the disordered rocksalt Li2TiS3 has been prepared with our patented process. To improve cycling stability of the cells, Li2TiS3 has been partially substituted with selenium and new Li2TiSexS3-x compositions have been prepared. Li2TiSexS3-x cells have large discharge capacities at slightly lower potentials. Reversible sulfur redox activity is confirmed by electrochemistry and ex situ surface analyses, however further characterizations are required to elucidate the relatively complex selenium redox process
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tonin, Guillaume. „Caractérisation operando des accumulateurs Li/S par tomographie d’absorption et diffraction des rayons X, vers une meilleure compréhension des mécanismes électrochimiques“. Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI036/document.

Der volle Inhalt der Quelle
Annotation:
L’objectif principal de la thèse était d’identifier les processus limitants et les phénomènes de dégradation intervenant lors du cyclage d’un accumulateur Li/S, et d’expliciter l’évolution des performances électrochimiques au cours du temps. Pour ce faire, une cellule électrochimique a été développée permettant de réaliser des caractérisations à l’ESRF par diffraction et absorption des rayons X en mode operando. Ces deux techniques complémentaires ont permis de mettre en évidence des changements morphologiques importants et des cinétiques de réactions limitées par le transport de matière au sein de la structure 3D de l’électrode positive de soufre. L’oxydation/réduction de l’électrode négative de lithium a également été caractérisée, permettant de mettre en évidence une évolution hétérogène de l’interface lithium/électrolyte, fonction de la densité de courant, induisant une diminution des performances électrochimiques en cyclage
The main objective was to identify the degradations phenomena and the limiting processes occurring while cycling Li/S accumulators to therefore put in relation the electrode morphology, the cell design, the electrochemical performances and the degradations phenomena. A new design of operando cell has been developed to be suitable with ESRF experiments. Operando Absorption and X-ray Diffraction tomography technics were performed. Thanks to both technics, the morphological changes and transport limitation kinetics along the 3D positive electrode have been evidenced. In addition, the lithium electrode/electrolyte interface has been characterized and heterogeneous stripping/plating has been evidenced, leading to low electrochemical performances while cycling
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Marchal, Laureline. „Développement d'une nouvelle technologie Li-ion fonctionnant en solution aqueuse“. Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00728179.

Der volle Inhalt der Quelle
Annotation:
L'utilisation d'un électrolyte aqueux pour la technologie Li-ion devrait permettre des performances en termes de puissance et de coût tout en garantissant une sécurité de fonctionnement et un impact neutre vis-à-vis de l'environnement. Cette technologie utilise des composés d'insertion du lithium fonctionnant habituellement en milieu organique dont le choix doit être adapté à un électrolyte aqueux, présentant une fenêtre de stabilité électrochimique réduite. Le travail de thèse porte dans un premier temps sur la sélection des différents éléments constituant un accumulateur Li-ion aqueux: choix de l'électrolyte, des collecteurs de courant, des liants d'électrode et des matériaux d'électrode. Les performances électrochimiques en milieu aqueux de différents composés d'insertion du lithium ont été évaluées. Afin d'augmenter la fenêtre de stabilité électrochimique de l'électrolyte aqueux, la passivation des électrodes par réduction de sels de diazonium a été réalisée. L'influence de la nature des sels de diazonium et de l'épaisseur des films sur les performances électrochimiques des électrodes a été évaluée par diverses techniques, voltampérométrie et impédance électrochimique. Les résultats obtenus montrent l'impact positif des dépôts obtenus vis-à-vis de l'augmentation de la surtension de réduction de l'eau. Ces travaux ouvrent la voie à des perspectives prometteuses sur cette technologie Li-Ion aqueuse.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bertasi, Federico. „Advanced Materials for High-Performance Secondary Li and Mg Batteries“. Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3424613.

Der volle Inhalt der Quelle
Annotation:
In order to obtain advanced energy storage systems with high energy density, the research activity here described, is focused on the study of electrolyte and cathodic materials for application in Lithium and Magnesium batteries. The materials are synthesized through inert atmosphere procedures and characterized with several techniques such as: Thermogravimetric Analyses (TGA), Differential Scanning Calorimetry (DSC), Vibrational spectroscopies (MIR, FIR, Raman), Solid state MAS-NMR, several electrochemical techniques (CV, CA, EIS) and Broadband Electrical Spectroscopy (BES). The results are used to study the interplay between the structure and the conduction mechanism of these materials. The most promising materials are then tested in prototype cells in order to evaluate their performance in operating devices. As a general procedure, the electrolytes are synthesized with different concentrations of Li+ or Mg2+ charge carriers in order to evaluate the effect of the cation concentration on the thermal properties and conductivity of the materials. In addition, the complexation of the cations and its effect on the long-range charge transfer migration is carefully studied by Infrared and Raman spectroscopy. In the case of the cathodic materials the and their composition are modulated in order to study their effect on the lithium intercalation/deintercalation processes, efficiencies and on battery prototype performance. The investigated materials comprise: a) an inorganic Solid-state Li-ion conductors, based on lithium-functionalized fluorinated titanium oxide NPs; b) a new class of single-ion conducting nanocomposite polymer electrolytes for Li batteries; and c) two electrolytes for Mg secondary batteries based on ILs and an innovative Mg salt. Moreover two studies about dielectric relaxation phenomena in 4a) Magnesium-polymer electrolytes and 4b) clay-based solid polymer electrolytes (SPEs) are presented which elucidate the interplay existent between molecular relazations in host polymer matrices and long range charge transfer processes. Concerning cathodic materials a family of high voltage multi-metal phosphate cathodic materials for secondary lithium batteries is proposed, studied and tested in button battery prototypes. Firstly, a general introduction about the state of art of electrolytes and cathodes, with a particular attention on drawbacks and possible solution, which characterize these materials, is presented. Secondly, details about the synthesis and the characterizations of each class of materials is described in great details. Thirdly a concluding remark is provided.
Al fine di ottenere sistemi di accumulo di energia elettrica sempre più performanti, l'attività di ricerca qui descritta, è focalizzata sullo studio di elettroliti e materiali catodici per applicazioni in batterie al litio e magnesio. I materiali vengono sintetizzati attraverso sintesi in atmosfera inerte e caratterizzati con diverse tecniche quali: analisi termogravimetrica (TGA), calorimetria a scansione differenziale (DSC), spettroscopie vibrazionali (FT-MIR, FT-FIR, Raman), NMR di stato solido, diverse tecniche elettrochimiche (voltammetria ciclica, cronoamperometria, impedenza elettrochimica) e spettroscopia elettrica a banda larga. I risultati sono utilizzati per studiare l'interazione tra la struttura e il meccanismo di conduzione di questi materiali. I materiali più promettenti sono testati in batterie a bottone prototipo tipo CR2032 per valutare la loro ciclabilità e stabilità su lungo periodo. Come procedura generale, gli elettroliti vengono sintetizzati con differenti concentrazioni di portatori di carica tipo Mg2+ o Li+ per valutare l'effetto della concentrazione di cationi sulle proprietà termiche e sulla conducibilità dei materiali. Inoltre, la complessazione dei cationi e il suo effetto sul trasferimento di carica a lungo raggio sono studiati accuratamente tramite spettroscopia infrarossa e Raman. Nel caso dei materiali catodici la struttura e la composizione chimica di questi sistemi è modulata al fine di studiare il loro effetto sul processo di intercalazione/deinteracalazione dello ione litio, sull’efficienza e le prestastazioni dei prototipi di batteria a bottone tipo CR2032. I materiali studiati comprendono: a) un conduttore inorganico di stato solido a singolo catione di litio basato su di un ossido di titanio fluorurato; b) una nuova classe di elettroliti nanocompositi polimerici per batterie al litio; e c) due elettroliti per batterie al magnesio basati su liquidi ionici e un sale innovativo di Mg. Inoltre, al fine di evidenziare le correlazioni esistenti tra le dinamiche dei rilassamenti molecolari degli elettroliti e i processi di trasferimento di carica a lungo raggio, sono stati effettuati due studi sui meccanismi di rilassamento dielettrico di: a) elettroliti polimerici al Mg; e b) elettroliti polimerici solidi a base di alluminio silicati (SPE). Infine viene proposta una nuova promettente famiglia di materiali catodici di cui si studiano le correlazioni tra struttura, morfologia e prestazioni in batterie secondare prototipo a bottone. La tesi inizia con un’ introduzione generale sullo stato dell'arte degli elettroliti e dei catodi. Particolare attenzione è rivolta sugli svantaggi e sulle possibili future soluzioni. In secondo luogo, vengono descritti I n dettaglio la sintesi e caratterizzazione di ciascuna classe di materiali qui proposti. Quindi, si conclude evidenziando I risultati più salient ottenuti sui vari sistemi proposti.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Perez, Arnaud. „Energy storage properties of iridium oxides : model materials for the study of anionic redox“. Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066323/document.

Der volle Inhalt der Quelle
Annotation:
L’amélioration des systèmes de stockage d’énergie représente un défi majeur de la transition vers les véhicules électriques et les énergies renouvelables. Les accumulateurs Li-ion, qui ont déjà conquis le marché de l’électronique portatif, constitueront la technologie dominante pour réaliser cet objectif, et sont donc l’objet d’intense recherches afin d’améliorer leurs performances, en particulier en termes de capacité. Parmi les stratégies les plus prometteuse pour augmenter la capacité des matériaux de cathodes, beaucoup d’espoir est placé dans la préparation de matériaux riches en lithium, qui combinent l’activité électrochimique des cations (métaux de transitions) et des anions (oxygène). Cependant, l’activation des propriétés redox de l’oxygène est accompagnée de plusieurs problèmes qui freinent le développement industriel de ces matériaux. Il est donc nécessaire d’obtenir de solides connaissances fondamentales sur le phénomène de redox anionique pour résoudre ces problèmes. En utilisant des matériaux modèles à base d’iridium, ce travail explore comment l’activité de l’oxygène est influencé par son environnement local. Les propriétés électrochimiques des composés Na2IrO3 et Na(Li1/3Ir2/3)O2 sont étudiés afin de comprendre l’impact de la nature de l’ion alcalin. L’influence du ratio Li/M dans les oxydes de structure NaCl est étudié à travers la synthèse d’un nouveau composé de formule Li3IrO4, qui présente la plus haute capacité réversible parmi les matériaux d’insertion utilisés comme cathode. Cette famille de matériau est finalement étendue à des phases contenant des protons par une simple méthode d’échange cationique, et les propriétés électrochimiques d’un nouveau composé H3+xIrO4 sont étudiées, dévoilant de très bonnes propriétés de stockage de puissance en milieu aqueux
Improving energy storage stands as a key challenge to facilitate the transition to electric vehicles and renewable energy sources in the next years. Li-ion batteries, which have already conquered the portable electronic market, will be the leading technology to achieve this goal and are therefore the focus of intense research activities to improve their performances, especially in terms of capacity. Among the most promising strategies to obtain high capacity cathode materials, the preparation of Li-rich materials combining the redox activity of cations (transition metals) and anions (oxygen) attracts considerable interest. However, activation of anionic redox in these high capacity materials comes with several issues that need to be solved prior their implementation in the energy storage market. Deep fundamental understanding of anionic redox is therefore required to go forward. Using model systems based on iridium, this work explores how the oxygen local environment can play a role on the activation of anionic redox. The electrochemical properties of Na2IrO3 and Na(Li1/3Ir2/3)O2 phases are studied to understand the impact of the alkali nature. The influence of the Li/M ratio in rocksalt oxides is investigated with the synthesis of a new material Li3IrO4, which presents the highest reversible capacity among intercalation cathode materials. The rich electrochemical properties of this family of iridate materials are finally extended by preparing proton-based materials through a simple ion-exchange reaction and the electrochemical properties of a new H3+xIrO4 material are presented, with high rate capability performances
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ahouari, Hania. „Exploration de nouveaux matériaux d'électrodes positives à base de polyanions carboxylates (oxalates, malonates et carbonates) et de métaux de transition“. Thesis, Amiens, 2015. http://www.theses.fr/2015AMIE0027/document.

Der volle Inhalt der Quelle
Annotation:
Dans cette thèse, nous avons exploré toute une palette de composés à base de métaux de transition et de polyanions carboxylates (oxalates, malonates et carbonates) préparés via des procédés éco-efficaces. La synthèse du composé oxalate de fer (III) (Fe2(C2O4)3·4H2O) dont nous en avons élucidé pour la première fois la structure cristalline en combinant les techniques de diffraction des rayons X et neutrons, fait l'objet de la première partie de cette étude. Ce composé cristallise dans une maille triclinique (P -1) et il présente des propriétés électrochimiques intéressantes (98 mAh/g à 3.35 V vs. Li+/Li0). Dans cette quête pour de meilleurs matériaux, nous avons exploré la famille des oxalates Na2M2(C2O4)3·2H2O, dont la synthèse avait été déjà rapportée, mais sans qu'aucune activité électrochimique ne puisse être détectée. En revanche, le remplacement du groupement oxalate par un groupement malonate nous a permis d’obtenir pour la première fois plusieurs membres de la famille (Na2M(H2C3O4)2·nH2O (n=0, 2), M= Mn, Fe, Co, Ni, Zn et Mg) dont nous avons résolu leurs structures cristallines correspondantes. Cependant, comme dans le cas des oxalates, ces phases ne dévoilent aucune activité électrochimique vis-à-vis du lithium, bien qu'elles présentent des propriétés magnétiques intéressantes. Enfin nous avons conclu ce travail par la synthèse de composés appartenant à la famille des fluorocarbonates KMCO3F (M= Ca et Mn) en utilisant la voie tout solide. La phase au calcium, déjà rapportée dans la littérature, a fait l'objet d'une étude en température qui nous a permis de mettre en évidence pour la première fois la formation d'une phase haute température (KCaCO3F-HT), pour T≥320°C, dont nous avons résolu la structure. Finalement, l'utilisation du Mn au lieu du Ca a conduit à l'obtention d'une nouvelle phase (KMnCO3F) qui cristallise dans une maille hexagonale (P -6 c 2)
This thesis has focused on the exploration of new compounds based on 3d-metal and carboxylate polyanions (oxalates, malonates and carbonates) prepared through different sustainable synthetic approaches. In the first part, we report a new synthetic route to prepare the iron (III) oxalate compound (Fe2(C2O4)3·4H2O) and solve its crystal structure through combined X-ray and neutron powder diffraction. The compound crystallizes within a triclinic cell (P-1) and exhibits attractive electrochemical properties (98 mAh/g at 3.35 V vs. Li+/Li0). Motivated by this finding we pursued our quest for new positive electrode materials. We prepared by hydrothermal synthesis single crystals of sodium 3d-metal oxalates Na2M2(C2O4)3·2H2O, which are widely investigated in the literature for their magnetic properties. Unfortunately, these phases are electrochemically inactive versus lithium. Thereafter, we extended the synthesis towards the malonate family and we reported for the first time several members (Na2M(H2C3O4)2·nH2O (n= 0, 2), M= Mn, Fe, Co, Ni, Zn et Mg). These systems present rich crystal chemistry together with interesting antiferromagnetic properties but as in the case of the oxalates, they are not electrochemically active versus lithium. Finally, we synthesized two members of fluorocarbonates compounds KMCO3F (M= Ca and Mn) using solid state process. We succeeded in the preparation of the calcium member, already reported in the literature and we identified for the first time a phase transition at 320°C. The crystal structure of the high temperature phase (KCaCO3F-HT) was solved using neutron powder diffraction. A new manganese phase (KMnCO3F) was synthesized using the same technique and its crystal structure was solved by combining TEM, XR and neutrons powder diffraction techniques. This compound crystallizes within a hexagonal unit cell (P -6 c 2)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Pelloni, Simone. „Modellazione termica di batterie ad alta tensione con tecnologia Li-Ion per veicoli ibridi“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13616/.

Der volle Inhalt der Quelle
Annotation:
L’industria automotive sta attraversando un periodo di grandi mutamenti. A tale cambiamento hanno contribuito l’aumento del costo del carburante e la legislazione legata alle emissioni sempre più stringente. Alla luce di questa situazione le automobili ibride ed elettriche stanno emergendo. Lo sviluppo e l’implementazione di batterie agli ioni di litio è dunque cruciale e richiede una conoscenza approfondita anche del comportamento termico nelle varie condizioni operative. La costruzione di modelli termici del comportamento della batteria e del suo sistema di raffreddamento consente, nella fase iniziale di sviluppo, di effettuare scelte determinanti su quello che sarà il “thermal management” della vettura. In questo scritto si va a modellare il comportamento termico di una batteria composta da celle agli ioni di litio per applicazione su veicolo ibrido ad elevate prestazioni. La tesi di laurea è stata svolta presso l’azienda Ferrari S.p.a. all’interno della divisione GT. Nella prima parte si introducono le caratteristiche termo-elettriche delle batterie agli ioni di litio per applicazioni ibride su automobili e le caratteristiche dei veicoli ibridi. Nella seconda parte viene modellata la generazione di calore all’interno di una singola cella agli ioni di litio “in aria” attraverso modelli termo-elettrici 3D utilizzando il software CFD Ansys CFX. Il modello termico applicato viene validato su dati sperimentali presenti in letteratura e su dati sperimentali già presenti in azienda. Nella terza parte si applicano i modelli ricavati nella parte precedente al caso con sistema di raffreddamento attivo delle celle all’interno di un pacco batteria allo scopo di progettare un sistema di raffreddamento che mantenga le celle all’interno dell’intervallo di temperatura consentito utilizzando i software Fluent e CFX.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Tesfaye, Alexander Teklit. „Study and improve the electrochemical behaviour of new negative electrodes for li-ion batteries“. Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0346/document.

Der volle Inhalt der Quelle
Annotation:
Les accumulateurs commerciaux à base de lithium-ion (LIB) utilisent des matériaux à base de carbone (graphite) comme électrode négative; cependant, la technologie atteint sa limite en raison de la faible capacité spécifique théorique. L'objectif de cette thèse est d'étudier le comportement électrochimique de trois nouvelles anodes à haute capacité (SnSb microsturé, Ti3SiC2 anodisé et nanotubes de Si poreux) comme alternatives au graphite, d'identifier les principaux paramètres responsables de la perte de capacité et de proposer une solution commune pour améliorer leurs performances électrochimiques. Ces matériaux d'électrode présentent une bonne performance électrochimique qui les rend prometteurs pour remplacer le carbone en tant qu'électrode négative pour batteries au Li-ion. Cependant, ils présentent une perte de capacité initiale importante qui doit être résolue avant la commercialisation. Les limitations observées sont attribuées à de nombreux facteurs, et en particulier à la formation et la croissance d’une SEI à la surface des matériaux. En raison de la forte perte de la capacité et du manque d’études détaillées sur les matériaux à base d’étain, en particulier le SnSb, nous avons concentré la suite du travail à la formation et la croissance de la SEI sur cette électrode négative. L'évolution des propriétés électriques, de la composition chimique et de la morphologie du SnSb microstructuré a été étudiée en détail pour comprendre son comportement électrochimique. Pour limiter l’effet de la SEI, nous avons proposé d’appliquer un film protecteur à la surface de l'électrode
Currently, commercial lithium ion batteries (LIBs) use carbon based materials as negative electrode; however the technology is reaching its limit because of the low theoretical specific capacity. The objective of this thesis is to study the electrochemical behaviour of three different new high capacity anodes (SnSb alloy, anodized Ti3SiC2, and Si nanotubes) as alternative to graphite, identify the main parameters responsible for the capacity fading, and propose a versatile solution to improve their electrochemical performance. These electrode materials exhibit good electrochemical performance which makes them promising candidates to replace carbon as a negative electrode for LIBs. However, their limitation due to capacity fading and the large initial irreversible capacity loss must be resolved before commercialization. The observed limitations are attributed to many factors, and particularly, to the formation and growth of SEI layer which is the common factor for all the three electrode materials. Because of the strong capacity fade and lack of many detailed studies on the Sn-based materials, specifically SnSb, we focus our study to investigate the formation and growth of SEI layer on SnSb electrode. The evolution of the electrical, compositional, and morphological properties have been investigated in detail to understand the electrochemical behavior of micron-sized SnSb. To limit the capacity fade, we propose the use of a protective film on the electrode surface. The electrochemical performance of micron-sized SnSb electrode coated with thermoplastic elastomer protective film, namely poly(styrene-b-2-hydroxyethyl acrylate) PS-b-PHEA has been achieved
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Jacquet, Quentin. „Li-rich Li3MO4 model compounds for deciphering capacity and voltage aspects in anionic redox materials“. Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS332.

Der volle Inhalt der Quelle
Annotation:
Le réchauffement climatique, provoqué par l’augmentation de la concentration de CO2 dans l’atmosphère, est un problème majeur du 21ème siècle. C’est pourquoi, il est d’une importance capitale de valoriser l’utilisation des énergies renouvelables et des technologies de stockage d’énergie telles que les batteries Li-ion. Suivant ce but, les chercheurs ont mis au point un nouveau matériau d’électrode, le Li-rich NMC, dont l’utilisation permet d’augmenter significativement la capacité des batteries Li-ion grâce à la participation des oxygènes de l’oxyde dans la réaction électrochimique. Cependant, ce nouveau phénomène va de pair avec une hystérésis de potentiel qui empêche la commercialisation du Li-rich NMC. Afin de proposer une solution à l’hystérésis de potentiel tout en continuant à augmenter la capacité des électrodes, des études fondamentales sont nécessaires, notamment: la redox anionique a-t-elle une limite de capacité ? et, quelle est l’origine de l’hystérésis ? Pour répondre à la première question, nous avons conçu des matériaux, de composition chimique A3MO4 (A étant du Li ou Na, et M un mix de Ru, Sb, Nb, Ta ou Ir), ayant une redox anionique exacerbée. Après avoir caractérisé la structure de ces nouveaux matériaux, nous avons étudié leur mécanisme électrochimique et montré que la redox anionique est limitée par la décomposition de l’électrode via formation de O2 ou dissolution. Dans un second temps, par l’étude de deux nouveaux matériaux, Li1.3Ni0.27Ta0.43O2 et Li1.3Mn0.4Ta0.3O2 ayant des hystérésis de potentiel très différentes, nous avons montré le lien entre la redox anionique, la taille de la bande interdite, et l’hystérésis de potentiel
Global warming, due to the increasing CO2 concentration in the atmosphere, is a major issue of the 21th century, hence the need to move towards the use of renewable energies and the development of electrical storage devices, such as Li-ion batteries. Along that line, a new electrode material called Li-rich NMCs have been developed, having higher capacity, 290 mAh/g, than commercial materials, like LiCoO2 (150 mAh/g), thanks to participation of oxygen anions into the redox reaction. This process, called anionic redox, unfortunately comes with voltage hysteresis preventing the commercialization of Li-rich NMC. To alleviate this issue while increasing the capacity, fundamental understanding on anionic redox is needed, specifically concerning two points: is anionic redox limited in terms of capacity? And what is the origin of the voltage hysteresis? In a first part, with the aim to assess the limit of anionic redox capacity, we designed new compounds, having enhanced oxygen oxidation behavior, belonging to the A3MO4 family (A being Li or Na and with M a mix of Ru, Ir, Nb, Sb or Ta). We performed their synthesis, deeply characterized their structure, and, by studying their charge compensation mechanism, we showed that anionic redox is always limited by either O2 release or metal dissolution. In a second part, we designed two new materials, Li1.3Ni0.27Ta0.43O2 and Li1.3Mn0.4Ta0.3O2, having different voltage hysteresis, in order to identify the origin of this phenomenon. Coupling spectroscopic techniques with theoretical calculations, we suggest that the electronic structure, namely the size of the charge transfer band gap, plays a decisive role in voltage hysteresis
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Thoss, Franziska. „Amorphe, Al-basierte Anodenmaterialien für Li-Ionen-Batterien“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-119680.

Der volle Inhalt der Quelle
Annotation:
Hochleistungsfähige Lithium-Ionen-Batterien sind insbesondere von der hohen spezifischen Kapazität ihrer Elektrodenmaterialien abhängig. Intermetallische Phasen sind vielversprechende Kandidaten für alternative Anodenmaterialien mit verbesserten spezifischen Kapazitäten (LiAl: 993 Ah/kg; Li22Si5: 4191 Ah/kg) gegenüber den derzeit vielfach verwendeten Kohlenstoff-Materialien (LiC6: 372 Ah/kg). Nachteilig ist jedoch, dass die kristallinen Phasenumwandlungen während der Lade-Entlade-Prozesse Volumenänderungen von 100-300% verursachen. Durch die Sprödigkeit der intermetallischen Phasen führt dies zum Zerbrechen des Elektrodenmaterials und damit zum Kontaktverlust. Um Lithiierungs- und Delithiierunsprozesse ohne kristalline Phasenumwandlungen zu realisieren und somit große Volumenänderungen zu vermeiden, wurden amorphe Al-Legierungen untersucht. In amorphe, mittels Schmelzspinnen hergestellte Legierungen (Al86Ni8La6 und Al86Ni8Y6) kann beim galvanostatischen Zyklieren nur sehr wenig Li eingelagert werden. Da kristalline Phasenumwandlungen im amorphen Zustand nicht möglich sind, wird für die Diffusion und Einlagerung von Li-Ionen ein ausreichendes freies Volumen im amorphen Atomgerüst benötigt. Die Dichtemessung der Legierungen zeigt, dass dieses freie Volumen für eine signifikante Lithiierung nicht ausreichend ist. Wird Li bereits in die amorphe Ausgangslegierung integriert, können Li-Ionen auf elektrochemischem Wege aus ihr entfernt und auch wieder eingebaut werden. Die neuartige Legierung Al43Li43Ni8Y6, die Li bereits im Ausgangszustand enthält, konnte mittels Hochenergiemahlung als amorphes Pulver hergestellt werden. Verglichen mit den Li-freien amorphen Legierungen Al86Ni8La6 bzw. Al86Ni8Y6 und ihren kristallisierten Pendants zeigt diese neu entwickelte, amorphe Legierung eine signifikant höhere Lithiierungsfähigkeit und erreicht damit eine spezifische Kapazität von ca. 800 Ah/kg bezogen auf den Al-Anteil. Durch den Abrieb des Stahlmahlbechers enthält das Pulver Al43Li43Ni8Y6 einen Fe-Anteil von ca. 15 Masse%. Dieses mit Fe verunreinigte Material zeigt besonders bei niedrigen Laderaten eine bessere Zyklenstabilität als ein im abriebfesten Siliziumnitrid-Becher gemahlenes Pulver der gleichen Zusammensetzung. Mittels Mössbauerspektroskopie wurde nachgewiesen, dass das Pulver z.T. oxidisches Fe enthält. Dieses kann über Konversionsmechanismen einen Beitrag zur spezifischen Kapazität leisten
High-energy Li-ion batteries exceedingly depend on the high specific capacity of electrode materials. Intermetallic alloys are promising candidates to be alternative anode materials with enhanced specific capacities (LiAl: 993 Ah/kg; Li22Si5: 4191 Ah/kg) in contrast to state-of-the-art techniques, dominated by carbon materials (LiC6: 372 Ah/kg). Disadvantageously the phase transitions during the charge-discharge processes, induced by the lithiation process, cause volume changes of 100-300 %. Due to the brittleness of intermetallic phases, the fracturing of the electrode material leads to the loss of the electrical contact. In order to overcome the huge volume changes amorphous Al-based alloys were investigated with the intension to realize the lithiation process without a phase transformation. Amorphous powders (Al86Ni8La6 and Al86Ni8Y6) produced via melt spinning and subsequent ball milling only show a minor lithiation during the electrochemical cycling process. This is mainly caused by the insufficient free volume, which is necessary to transfer and store Li-ions, since phase transitions are impossible in the amorphous state. If Li is already integrated into the amorphous alloy, Li-ions can easily be removed and inserted electrochemically. The new alloy Al43Li43Ni8Y6 contains Li already in its initial state and could be prepared by high energy milling as an amorphous powder. Compared with the Li-free amorphous alloys Al86Ni8La6 or Al86Ni8Y6 and their crystalline counterparts, this newly developed amorphous alloy achieves a significantly higher lithiation and therefore reaches a specific capacity of 800 Ah/kg, based on the Al-content. By the abrasion of the steel milling vials the powder contains a wear debris of 15 mass% Fe. This contaminated material shows a better cycling stability than a powder of the same composition, milled in a non-abrasive silicon nitride vial. By means of Mössbauer spectroscopy has been shown that the wear debris contains Fe oxides. This may contribute to the enhancement of the specific capacity about conversion mechanisms
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Tessier, Alexandre Oliver. „Bloc batterie li-ion pour véhicules électriques : méthode de classement novatrice en temps réel des paramètres électriques des cellules“. Mémoire, Université de Sherbrooke, 2015. http://hdl.handle.net/11143/8026.

Der volle Inhalt der Quelle
Annotation:
Avec l’arrivée en masse des véhicules à traction électrique, la puissance sollicitée à des blocs de cellules chimiques ne cesse d’augmenter. Les nouvelles technologies développées pour répondre à la demande exposent un nouveau problème jamais observé sur les assemblages multi-cellules : la disparité des paramètres internes. Une étude a démontré que ces faibles variations de capacité ou de résistance interne causeront une dégradation prématurée si elles ne sont pas prises en comptes. La littérature sur le sujet comprend plusieurs travaux qui tentent de palier à ce problème cependant très peu d’information n’est disponible pour quantifier ces divergences de paramètres internes. Ceux qui proposent des solutions viables le font généralement dans un contexte non transférable aux véhicules électriques ou hybrides. Ce document présente une étude complète de l’état de l’art sur l’utilisation et la gestion des batteries au lithium-ion ainsi que l’analyse d’un nouvel outil de mesure pour système de gestion de batteries permettant de mesurer et d’utiliser ces dispersions de paramètres internes des cellules. L’algorithme de mesure sera basé sur un système de classement des données recueillies novateur permettant de répertorié les données selon les conditions de conduites vécues lors de la mesure plutôt qu’en fonction du temps. La conception d’un système de gestion de batteries capable de mettre en œuvre cet outil de mesure dans un contexte de véhicule électrique ainsi que l’élaboration de partons de charge/décharge des cellules, afin de les plonger dans des conditions similaires à celles vécues par un bloc batterie de véhicule électrique, seront aussi exposées. La distribution des résistances internes des 16 cellules étudiées et une discussion de ces résultats complètera ce document.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Arayamparambil, Jeethu Jiju. „Metal carbodiimides and cyanamides, a new family of electrode materials for Li-ion batteries“. Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS066.

Der volle Inhalt der Quelle
Annotation:
Les batteries Li-ion constituent actuellement la technologie de choix pour tous les équipements portables, les moyens de transports électriques et le stockage stationnaire des énergies renouvelables. Actuellement, le graphite est incontestablement le matériau d'anode le plus utilisé pour les batteries Li-ion en raison de ses excellentes propriétés telles que sa durabilité, son abondance et son faible coût. Cependant, sa faible densité d'énergie est son talon d'Achille. En plus, le graphite présente certains problèmes de sécurité, en particulier à des puissances élevées. En conséquence, d’autres matériaux sûrs, économiques, à haute densité énergétique et à longue durée de vie, font l’objet d’importants travaux de recherche notamment des candidats comme le silicium et l’étain. Depuis 2015, la possibilité d'utiliser des carbodiimides de métaux de a été rapportée, et certains d'entre eux ont montré des performances électrochimiques prometteuses en tant que matériaux anodiques pour les batteries aux ions Li et Na. Comme tous les matériaux d'électrode à base de métaux divalents, les carbodiimides souffrent d'une capacité irréversible initiale et d'un potentiel de fonctionnement élevés, mais présentent une meilleure tenue en cyclage. L'application de carbodiimides de métaux de transition dans le domaine du stockage (et de la conversion) de l'énergie en est encore à ses débuts malgré les progrès réalisés en terme d'évaluation électrochimique. Il reste encore beaucoup à faire pour établir les mécanismes réactionnels qui régissent les performances prometteuses observées. Outre les carbodiimides de métaux de transition, il reste encore de nombreux carbodiimides inorganiques à explorer. Par conséquent, les principaux objectifs de cette thèse sont (i) d’évaluer la possibilité d’application de nouveaux carbodiimides comme matériaux d’électrode pour les batteries Li-ion et (ii) d’établir les mécanismes réactionnels électrochimique de ces matériaux au moyen de techniques de caractérisation operando avancées couplées à des calculs DFT. En ce qui concerne les performances électrochimiques, Cr2(NCN)3 s'est révélé être le meilleur matériau d'anode, avec une capacité spécifique stable de plus de 600 mAh.g-1 sur plus de 900 cycles à un régime de 2C. CoNCN et FeNCN ont également d’excellentes propriétés électrochimiques, car ils peuvent maintenir une capacité spécifique supérieure à 500 mAh.g-1 pendant plus de 100 cycles à un régime de 2C. Des performances plus modestes ont été observées pour PbNCN, Ag2NCN et ZnNCN car les capacités pratiques sont bien inférieures aux capacités théoriques. Ces phases montrent également une chute de la capacité sur les premiers 20 cycles. Ces trois catégories de performances sont bien corrélées avec les trois mécanismes différents réactionnels établis pour toutes les phases étudiées. Jusqu'à présent, trois types de mécanismes réactionnels ont été identifiés, à savoir (i) un processus combinant une étape d’intercalation suivie d’une étape de conversion dans le cas de Cr2(NCN)3, (ii) une réaction de conversion pure dans le cas de CoNCN et enfin (iii) un mécanisme combiné de conversion et d’alliage dans le cas des composés Pb, Zn et Ag. Il convient de noter que, quelle que soit le mécanisme réactionnel, tous les matériaux d'anode carbodiimide sont confrontés à la limitation d'une faible efficacité coulombique au cours des premiers cycles. Pour surmonter cet obstacle, il faut déployer plus d'efforts pour clarifier la nature et le rôle de la SEI dans la performance globale de cette famille de matériaux. Bien que les résultats prometteurs présentés dans ce travail ne répondent probablement pas aux normes requises pour intégrer les carbodiimides dans des applications commerciales, ils ont au moins le mérite de montrer la richesse de la chimie des carbodiimides et de stimuler davantage de travaux de recherche sur cette famille de matériaux inorganiques moléculaires relativement jeune
Li-ion batteries are currently the most common choice for all portable electronic devices but also for hybrid electric vehicles and renewable energy sectors. At present, graphite is routinely employed as the anode material for Li-ion-batteries due to its excellent attributes such as long cycle life, abundance, and relatively cost effective. However, the disadvantages of graphitic anode include low energy density and safety concerns. As a consequence, alternative cost effective anode materials with high energy density and long cycle life have been widely explored. Among this transition metal based compounds are an exciting and reasonable alternative for graphite owing to their high specific capacity. Compounds with the formula MX where M is a divalent metal and X = O, S, PO4, and CO3 have been reported to be electrochemically active at average voltages around 1 volts. In spite of their high theoretical specific capacities, high irreversible capacity in the first lithiation and the weak cycling life prevent the practical use of these materials. Since 2015, the possibility of using transition metal carbodiimides (MNCN, with M = Fe, Mn, Co, Cu, Zn, Ni) have been reported, and some of them have shown promising electrochemical performance as anode materials for both Li and Na ion batteries. Like all divalent metal based electrode materials, carbodiimides have been found to suffer from high initial irreversible capacity and high operating voltage, however they show a better cycle life. The application of transition metal carbodiimides in the field of energy storage (and conversion) is still in its early stages and despite progress in electrochemical evaluation much remains to be done in order to establish the reaction mechanisms that govern the reported promising performances. Besides the transition metal carbodiimides there are still many other inorganic cyanamides and carbodiimides materials to explore. Therefore the main targets of this PhD work are (i) to assess the properties of new carbodiimides/cyanamides as electrode materials for LiBs and (ii) to establish their electrochemical reaction mechanisms via advanced operando techniques and DFT calculations. Concerning the electrochemical performance, Cr2(NCN)3 turned out to be by the far the best carbodiimide anode material with stable specific capacity of more than 600 mAh.g-1 for more than 900 cycles at 2C rate. CoNCN and FeNCN have also shown excellent electrochemical properties since they can sustain a specific capacity higher than 500 mAh.g-1 for more than 100 cycles at 2C rate. Poor performance was observed for PbNCN, Ag2NCN and ZnNCN since the practical capacities are well below the theoretical ones. These phase show also fast capacity fading during the first 20 cycles. These three performance categories correlate well with the three different reaction mechanisms established for the investigated phases. Up to now, three types of reaction mechanism have been identified including (i) Combined intercalation and conversion processes in the case of Cr2(NCN)3 as evidenced by both theoretical and experimental methods, (ii) pure conversion reaction in the case of CoNCN and finally (iii) a combined conversion and alloying mechanism in the case of Pb, Zn and Ag compounds. It is worth noting that whatever the reaction pathway, all the carbodiimide/cyanamide anode materials face the limitation of a significantly low coulombic efficiency during the first cycles. To overcome this obstacle, much effort is needed to clarify the nature and the role of SEI in the overall performance of this family of materials. The promising results reported in this work do not probably yet meet the standards needed to take carbodiimides/cyanamides into the practical applications, but they clearly evidence the rich possibilities offered by this young family of molecular inorganic materials
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Dupré, Nicolas. „Etude du phosphate de vanadyle comme matériau d'électrode de batteries Li-ion“. Paris 6, 2001. http://www.theses.fr/2001PA066420.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Lefevre, Guillaume. „Synthèse et étude électrochimique de matériaux silicates utilisés en tant qu'électrode positive pour les accumulateurs Li-Ion“. Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI021/document.

Der volle Inhalt der Quelle
Annotation:
La société fait face à des défis tels que le réchauffement climatique et la diminution des ressources. Ils sont intimement liés à l’énergie et à son stockage, dont les batteries Li-ion sont à ce jour la technologie la plus utilisée. L’amélioration de la densité d’énergie et la sécurité, ainsi que la réduction des éléments toxiques, rares et coûteux sont recherchées. Durant cette étude, les électrodes positives basées sur des matériaux polyanioniques silicates sont considérées pour répondre à ces demandes. Deux composés sont particulièrement étudiés, Li2MnSiO4, dont la capacité spécifique est supérieure à 300mAh.g-1 et LiMnSiO4, de structure olivine, encore jamais répertorié, dont la capacité (174mAh.g-1) et le potentiel (>3.7V) théoriques sont prometteurs.Dans un premier volet, un nanomatériau Li2MnSiO4/C est synthétisé par voie sol-gel. Ses propriétés électrochimiques et structurales sont étudiées. Les différents phénomènes de dégradation observés sont discutés par la suite. Une stratégie de dopage est proposée pour limiter la perte de capacité en cyclage par stabilisation de la structure via le composé Li2-xMn1+xAlxSi1-xO4/C. Enfin l’influence du stockage à l’air de Li2MnSiO4/C est mise en évidence et un mécanisme concernant la formation de Li2CO3 est proposé.En seconde partie, une synthèse de LiMnSiO4/C en plusieurs étapes est proposée à partir de l’olivine MgMnSiO4/C, suivie d’une oxydation chimique et d’une lithiation électrochimique. Chaque étape est caractérisée pour déterminer la structure, l’état d’oxydation et le comportement électrochimique du matériau obtenu.Pour conclure cette étude, les deux matériaux optimisés ont été testés suivant les profils d’applications spatiales (satellites LEO et GEO). La meilleure cyclablité de LiMnSiO4/C est confirmée ainsi que sa légitimité en tant qu’alternative prometteuse au matériau conventionnel Li2MnSiO4/C
The society is currently facing challenges such as global warming and rarefaction of resources. These issues have a factor in common, energy and more specifically its storage, for which lithium-ion batteries are today the state-of-the-art technology. Researchers and industries are focusing on the increase of energy density and safety and the reduction of toxic, costly and rare elements. In this study, positive electrodes based on silicate polyanionic materials are considered to fulfill these requirements. Two materials are studied, Li2MnSiO4 that exhibits appealing large capacity (>300mAh.g-1) and an unreported LiMnSiO4 with olivine structure that would have medium capacity (174 mAh.g-1) but associated with a high voltage (>3.7V).In a first part, a nanocomposite material Li2MnSiO4/C is synthesized by sol-gel route. Its electrochemical and structural properties are studied. The different degradation phenomena are discussed thereafter. Al-doped and Mn-rich Li2-xMn1+xAlxSi1-xO4/C is also proposed to lower the structural collapse during cycling. Finally the impact of its storage in air is assessed and a mechanism is proposed to explain the formation of Li2CO3.In a second part, a multistep synthesis is designed starting from olivine MgMnSiO4/C, followed by chemical oxidation and electrochemical lithiation to obtain LiMnSiO4/C. Each step is characterized to assess the structure, oxidation degree and electrochemical behavior of the final material.Finally, the testing of the two materials for space applications (LEO and GEO satellites profiles) confirms the better cyclability of LiMnSiO4/C and its validity as promising alternative to the conventional unstable Li2MnSiO4 compound
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Dridi, Zrelli Yosra. „Électrochimie et spectroscopie Raman de matériaux d’électrode positive pour batteries Li-ion“. Thesis, Paris Est, 2012. http://www.theses.fr/2012PEST1126/document.

Der volle Inhalt der Quelle
Annotation:
Dans ce travail de thèse, la microspectrométrie Raman a été mise à profit pour décrire les changements structuraux induits par la réaction électrochimique d'insertion/désinsertion des ions lithium dans des composés de structure lamellaire LiCoO2 et cubique LiMn2O4 et LiNi0.4Mn1.6O4, utilisés comme électrodes positives dans les batteries Li-ion. L'étude du composé d'électrode LiCoO2 pendant le processus de charge permet de mettre en évidence une région biphasée où la phase initiale coexiste avec une nouvelle phase hexagonale caractérisée par une expansion du paramètre inter-feuillets de l'ordre de 3% et un affaiblissement de la liaison Co-O dans le plan des feuillets. Dans le cas de LiMn2O4, une nouvelle attribution du spectre Raman a pu être proposée. Pendant la charge à 4V, un mécanisme à trois phases (phase initiale LiMn2O4, phase intermédiaire, phase pauvre en lithium) est décrit par spectroscopie Raman alors que la diffraction des RX ne permet pas d'observer la phase intermédiaire dans nos conditions de mesure. L'étude de l'insertion électrochimique du lithium dans LiMn2O4 (région 3V), a permis de montrer pour la première fois par spectroscopie Raman la formation progressive d'une phase tétragonale de composition Li2Mn2O4 qui coexiste avec la phase cubique initiale et qui est pure en fin de décharge. La réversibilité de cette transition structurale a également été démontrée. Dans le cas du composé substitué au nickel, LiNi0.4Mn1.6O4, une attribution complète du spectre Raman est proposée pour la première fois. L'étude par diffraction des RX du matériau en fonction de l'état de charge et de décharge met en évidence une conservation de la structure cubique avec des variations modérées de paramètres de maille. Le spectre Raman présente quant à lui des variations très significatives qui rendent compte de la présence dans des proportions différentes des espèces redox impliquées dans le fonctionnement électrochimique (Mn4+, Mn3+, Ni2+, Ni3+, Ni4+). Une analyse spectrale par décompositions de bandes permet d'identifier et de quantifier les proportions relatives des différents couples redox du nickel. Une réversibilité complète de la signature Raman est observée en décharge. Une application concrète et originale de la spectroscopie Raman a consisté à étudier le mécanisme d'autodécharge qui est observé pour le matériau LiNi0.4Mn1.6O4 complètement chargé. L'évolution des spectres Raman permet de mettre en évidence une réduction rapide et quantitative des ions Ni4+ pendant les premières heures de séjour dans l'électrolyte, puis un processus plus lent de réduction des ions Ni3+. Enfin, pour la première fois également, l'insertion du lithium dans le composé LiNi0.4Mn1.6O4 a été explorée par microspectrométrie Raman et a permis notamment d'identifier l'empreinte Raman de la phase la plus réduite de symétrie tétragonale Li2Ni0.4Mn1.6O4. L'originalité de ce travail a été d'apporter un grand nombre de données Raman expérimentales sur des matériaux d'électrode performants fonctionnant à 4V. De nouvelles attributions ont pu être proposées pour les composés initiaux, et des données vibrationnelles inédites ont été fournies sur les composés formés en charge et en décharge. Dans certains cas, ces données ont permis, sur la base d'une analyse détaillée des spectres Raman par décompositions de bandes, de proposer un raisonnement quantitatif sur l'existence de phases ou d'espèces redox en mélange. Il conviendrait bien sûr de corroborer ces nouvelles données et attributions par des calculs théoriques ab initio capables de simuler les fréquences et les intensités des modes vibrationnels dans les structures hôtes et lithiées
In this work, we show the relevance of Raman spectroscopy as a useful technique to investigate the local changes induced by the electrochemical reaction of intercalation/deintercalation of lithium in positive electrode materials for rechargeable lithium ion batteries.Raman investigations concern three types of high voltage cathode materials (4-5Volts) which are layered LiCoO2 and cubic LiMn2O4 and LiNi0.4Mn1.6O4.During electrochemical deintercalation of LiCoO2, we show the existence of a two phase region where the initial hexagonal phase coexist with a second hexagonal phase with a 3% expansion of the lattice parameter indicating a weakening of the Co-O bond in the Li1-xCoO2 material.On the other hand, a new assignment of LiMn2O4 Raman spectrum was proposed. During the charge in the 4V region, a three region phase (initial LiMn2O4 phase, intermediary phase and poor lithium phase) was described using Raman spectroscopy. RX measurements can not detect this intermediary phase. Lithiated phase Raman signature shows a specific local order: Fd3m for extreme phases and F43m for partially lithiated phase. A rich Raman band spectrum is attributed to this later phase in coherence with literature calculations. Structural changes reversibility is demonstrated. Identification of this intermediary phase as a major component of a cycled electrode, underline the incomplete reduction and explain the important loss of capacity observed during cycling. Raman study of LiMn2O4 electrochemical insertion in the 3V region, has demonstrated for the first time a progressive formation of tetragonal Li2Mn2O4 phase, which is in coexistence with initial cubic phase and is pure at the end of discharge. Structural transition reversibility was also demonstrated.In the case of LiNi0.4Mn1.6O4, the assignment of the Raman spectrum of LiNi0.4Mn1.6O4 is provided for the first time. DRX study in function of the state of charge and discharge, exhibit cubic structure conservation with moderate lattice parameters variations. The Raman spectrum of the spinel oxide exhibits drastic spectral changes during Li extraction. These changes have been directly related to the Mn and Ni oxidation states in the cathode material under operation. It comes out that electrochemical reactions of LiNi0.4Mn1.6O4 are reversible and based on three redox couples of Mn3+/Mn4+, Ni2+/Ni3+, and Ni3+/Ni4+. An original and concrete Raman spectroscopy application is the study of self discharge mechanism of completely charged LiNi0.4Mn1.6O4. Raman spectra evolution exhibits a quantitative Ni4+ reduction during the first hours, and then a slower Ni3+ reduction process. Finally, LiNi0.4Mn1.6O4 lithium insertion has been explored for the first time using Raman spectroscopy, and a tetragonal Li2Ni0.4Mn1.6O4 phase has been identified.The originality of this work is the important number of experimental Raman data of 4V electrode materials. New assignment of initial compound has been proposed and original vibrationnal data of compound during charge/discharge has been presented. These Raman data has permitted to propose a quantitative explanation which must be completed with ab initio calculations to simulate vibrationnal modes frequencies/ intensities
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Chartrel, Thibaut. „Optimisation de liants polymères pour électrodes négatives à base de silicium d'accumulateurs Li-ion“. Thesis, Amiens, 2019. http://www.theses.fr/2019AMIE0005.

Der volle Inhalt der Quelle
Annotation:
L'impact du broyage du liant polymère dans la formulation d'encre d'électrode négative à base de silicium pour la technologie Li-ion a été pour la première fois étudiée. Nous avons démontré avec l'exemple de l'acide poly(acrylique) la dégradation du liant lors de la formulation d'électrode impliquant un broyage. Nous avons proposé de nouvelles formulations d'électrode s'affranchissant de ce broyage. La nouvelle formulation [(Si+C)SPEX+LP)MAG permet une augmentation de la rétention de capacité de 65 à 84 % à 20 cycles pour une électrode riche en silicium grâce à l'absence de dégradation du liant. Un nouveau polymère, l'acide polyfumarique, a été synthétisé et utilisé en tant que liant pour électrode négative. Les performances modestes des électrodes à base de ce nouveau liant sont améliorées par l'augmentation de sa masse molaire moyenne ainsi que par la formulation d'électrode développée lors de ces travaux. Bien que les résultats électrochimiques des électrodes à base de ce polymère restent modestes, des optimisations sont possibles pour améliorer ses performances en tant que liant.Enfin, la transposition de ces travaux a été réalisée sur deux matériaux d'électrodes négatives pour accumulateurs Li-ion : TiSnSb et le composite Si:Gr. Comme décrit dans la littérature, les améliorations apportées au silicium ne sont pas strictement transposables à TiSnSb et les électrodes à base de ce matériau ne bénéficient pas d'amélioration significative de leur durée de vie grâce à la formulation développée. L'étude des différents ratios massique Si:Gr montre que le que le silicium ne doit pas dépasser 30 % de la matière active pour permettre des rétentions de capacité intéressantes
Ball milling impact into polymeric binder for Li-ion silicon-based negative electrode slurry was for the first time investigated. The poly(acrylic acid) degradation characterization is carried out and a solution is proposed in the form of new milling-free formulation development. [(Si+C)SPEX+B]MAG formulation then allows a capacity retention increase from 65 to 84 % at the 20th cycle for silicon rich electrode thanks to the polymeric binder ball milling deleterious absence. A polymer, poly(fumaric acid), is synthetized and used for the first time as silicon-based negative electrode binder. Its modest performance is improved by increasing its average molecular mass and the formulation developed during this work. Altough the electrochemical results of the electrodes based on this polymer are lower than those using PAA but optimizations are possible to improve its performance as a binder. Finally, the transposition of these works was carried out on two other negative electrode materials for Li-ion batteries: TiSnSb and silicon-graphite composite. As described in the literature, the silicon-based electrodes improvements are not strictly transposable to TiSnSb and the electrodes based on this material do not benefit from a significant improvement in their lifetime thanks to the formulation developed. The study of various weight ratios of Si:Gr shows that the silicon content should not be higher than 30 % in mass in the active material to allow interesting capacity retentions
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Grizzanti, Andrea. „Verifiche, selezione e matching delle celle Li-Ion per il pacco batterie del micro-satellite ESEO“. Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14768/.

Der volle Inhalt der Quelle
Annotation:
Il lavoro di tesi è stato svolto presso la sede di Forlì dell’azienda SITAEL S.p.A., che appartiene alla finanziaria Angelo Investments, un gruppo leader nel settore trasporti e aerospaziale, ed offre soluzioni per facilitare l'accesso ai servizi e alle applicazioni spaziali tramite progettazione e produzione di innovativi microsatelliti. Obbiettivo principale dell’elaborato, che rappresenta il proseguimento del tirocinio curriculare in cui è stata stilata una procedura tecnica aziendale per svolgere i test su trecentosessanta celle, sono stati la selezione e l’ottimale assemblaggio delle trentasei celle che comporranno il pacco batteria del micro-satellite European Student Earth Orbiter (ESEO). Attraverso i test si è ricavata la caratterizzazione di ogni singola cella e con l’utilizzo dell’ambiente MATLAB si sono processati i dati al fine di selezionare le celle più adatte a comporre il pacco batterie. Successivamente, sono state svolte delle simulazioni dell’intero pacco batterie, con l’impiego del software Simulink necessario per la modellazione, la simulazione e l'analisi di sistemi dinamici.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Phung, Thanh Hai. „Conception d'un équilibreur de charge de batterie à base du réseau de micro-convertisseurs“. Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00954170.

Der volle Inhalt der Quelle
Annotation:
Depuis ces années, le développement de systèmes de stockage d'énergie pour la mobilité électrique avec davantage d'autonomie de durabilité est au cœur des contraintes de développement des véhicules électriques ou hybrides entraînant une émergence de l'utilisation des systèmes de management ainsi que des circuits d'équilibrage. Les travaux de thèse portent sur la conception et la réalisation d'une nouvelle structure d'équilibrage à base du réseau de micro-convertisseurs (RµC) utilisant les matrices de connections ainsi que les stratégies de commande appropriées. L'objectif principal est de concevoir un équilibreur actif forcé de haute performance, intégrable à base de technologies d'aujourd'hui et avec une stratégie de contrôle simple à mettre en œuvre. Le mémoire de thèse se structure en quatre chapitres : approche du RµC versus l'équilibrage des batteries, conception de la structure et des stratégies d'équilibrage à base du RµC, conception et dimensionnement du système de contrôle intégrée, version intégrée de l'équilibreur-perspectives. Les premiers prototypes de l'équilibreur utilisant des composants discrets ont été mis en place afin de valider notre structure ainsi que les solutions de contrôle proposées. La réalisation des versions intégrées en se basant sur l'utilisation les technologies disponible au sein du laboratoire ouvre un avenir promettant pour les systèmes de management de batterie.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Godet-Bar, Thibault. „Synthèse et étude physico-chimique de nouveaux matériaux organiques d'électrode positive à base de phénothiazine pour les applications dans les accumulateurs au lithium“. Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENI022.

Der volle Inhalt der Quelle
Annotation:
L’objectif de cette thèse est de développer des matériaux organiques rédox à base de phénothiazine pour être utilisés à l’électrode positive des batteries lithium. Les matériaux organiques s’inscrivent en rupture des matériaux inorganiques coûteux et toxiques. Dans ce but, des matériaux rédox contenant l’unité phénothiazine ont été synthétisés, caractérisés. Leurs propriétés électrochimiques ont été analysées par dépôt sur électrode et par microélectrode à cavité, puis les plus prometteurs ont été testés en cellule lithium et sodium. La cible rédox choisie, la phénothiazine, a été polymérisée et substituée à un squelette phosphazène. Les tests en cellules ont mis en évidence la dissolution systématique du matériau et la nécessité d’empêcher ce phénomène rédhibitoire pour l’application batterie. Dans ce but, l’utilisation de polymères insolubles et de copolymères dotés d’une fonction post-réticulable ont permis d’augmenter significativement la cyclabilité et les performances énergétiques des cellules lithium. De plus, l’utilisation du sodium à l’électrode négative et d’anions peu lipophiles ont également permis de limiter cette contribution de dissolution. Une fonctionnalisation du carbone par la phénothiazine a également été investiguée par deux stratégies différentes. Dans les deux cas, un greffage a été réalisé avec succès. Les analyses électrochimiques ont permis de confirmer des propriétés électrochimiques très prometteuses de ces carbones modifiés
The aim of this work is to develop phenothiazine-based redox organic materials for lithium positive electrode. Comparatively to inorganic materials, organic ones can constitute clear break by decreasing the cost, toxicity and security issues while keeping good performances. In that purpose, redox materials involving phenothiazine moieties have been synthesized, characterized, then, their electrochemical properties have been analyzed electrochemically, the most promising ones have been tested in lithium and sodium cells. The redox target chosen, the phenothiazine, has been polymerized and functionalized onto phosphazene backbone. Cell tests showed material dissolution contribution has to be avoided. In this context, insoluble polyphenothiazine and cross-linkable copolymers were able to upgrade significantly the cyclability and the energetic performances of lithium cells. Moreover, sodium cells with a poor lipophilic anion showed lower dissolution contribution. Carbon grafting by phenothiazine has also been investigated. It has been performed by electrochemical and chemical means and has led to promising electrochemical performances
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Catozzi, Francesco. „Metodi per l’elaborazione di risultati di test su batterie agli ioni di litio a scopo modellizzazione“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Den vollen Inhalt der Quelle finden
Annotation:
Il lavoro di tesi, svoltosi in collaborazione con il laboratorio LEMAD dell'Università degli Studi di Bologna, si inserisce in una attività di test di batterie agli ioni di litio, in particolare, allo sviluppo di uno script Matlab che, sulla base dei dati raccolti ed alla tipologia di test ai quali è stata sottoposta la cella in prova, è in grado di produrre automaticamente report mirati per la sua caratterizzazione e successiva modellizzazione. Nello specifico, i report prodotti hanno l'obiettivo di analizzare e confrontare il comportamento delle celle in prova in differenti condizioni di temperatura e corrente e di realizzare un modello parametrico della cella, con dipendenza da temperatura e stato di carica.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Dalverny, Anne-Laure. „Étude théorique des phénomènes électrochimiques de surfaces et d'interfaces dans les matériaux d'électrodes pour batterie Li-ion“. Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20100/document.

Der volle Inhalt der Quelle
Annotation:
Les nombreuses problématiques soulevées par la nanostructuration des électrodes pour batteries Li-Ion nécessitent de nouveaux développements théoriques. Ce travail propose une nouvelle méthodologie basée sur des calculs de type premiers principes (DFT) et prenant en compte explicitement les phénomènes électrochimiques à l'échelle du matériau massif, de ses surfaces et de ses interfaces. Développée dans le cadre des réactions de conversion, en particulier celle de l'oxyde de cobalt CoO + 2 Li → Co + Li2O, cette méthodologie, simple et généralisable à tout type de réaction polyphasée, permet de dégager les facteurs mécaniques, chimiques et électriques responsables des phénomènes électrochimiques aux interfaces et d'interpréter les mécanismes réactionnels observés expérimentalement
The numerous questions arising from the nanostructuration of Li-ion batteries require new developments in theoretical methods. This work proposes a new methodology based on first principles calculations (DFT) andallows explicit treatment of the electrochemical phenomena at the bulk compound level, and also at the surface and interface level.Developed in the context of the conversion reactions, in particular the conversion of the cobalt oxide CoO + 2 Li → Co + Li2O, this simple methodology can be extended to any polyphasic reaction. It sheds light on the mechanical, chemical and electrical factors responsible for the electrochemical phenomena at the interfaces and allows the interpretation of the mechanisms that are experimentally observed
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Nguyen, Olivier. „Towards a Li-ion photo-rechargeable battery“. Electronic Thesis or Diss., Sorbonne université, 2018. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2018SORUS437.pdf.

Der volle Inhalt der Quelle
Annotation:
Utilisée en tant que source d’énergie renouvelable, l’énergie solaire peut permettre de repousser les limites d’autonomie des batteries, tandis que l’utilisation de batteries est nécessaire pour gérer le problème d’intermittence de l’énergie solaire. Le design conventionnel d’une batterie solaire implique l’utilisation d’une unité de stockage et d’une unité de conversion reliées l’une à l’autre par des fils électriques. Dans ce travail, une autre approche est explorée pour permettre la conversion et le stockage de l’énergie dans un dispositif unique qui utilise une électrode de TiO2 anatase en tant qu’électrode de batterie Lithium-ion photo-rechargeable. Des films minces mésoporeux de TiO2 anatase déposés sur substrats de FTO sont utilisés en tant qu’électrode modèle pour permettre le contrôle de l’architecture de l’électrode. Ces films sont préparés en combinant la chimie sol-gel et le procédé de trempage-retrait (dip-coating). Le comportement électrochimique sous illumination de ces électrodes est étudié dans une configuration de batterie Li-ion afin d’apporter la preuve de concept de la photo-recharge de l’électrode de TiO2. Les mécanismes photo-induits ainsi que le destin des photo-charges est analysé en étudiant notamment l’influence de l’architecture de l’électrode et le rôle de l’électrolyte
Sunlight, as abundant clean source of energy, can alleviate the energy limits of batteries, while batteries can address photovoltaic intermittency. Conventional design of solar charging batteries involves the use of batteries and solar modules as two separate units connected by electric wires. In this work, we have studied another approach to harvest and store solar energy simultaneously into a single device, using a TiO2 bi-functional Li-ion battery photo-electrode. The apprehension of an electrode undergoing simultaneous light absorption and Li+ intercalation/extraction is very rich in terms of potentialities. At the same time, the various facets of the electrode evolution are very challenging to track and understand. Mesoporous TiO2 anatase thin film on FTO substrates are used as model electrodes to allow a careful control of the electrode architecture. They are prepared by combining the sol-gel chemistry with the dip-coating process, using the “evaporation induced self-assembly” (EISA) approach. In order to bring the proof of concept of the photo-recharge of the electrode, its electrochemical behaviour under illumination is studied using a Li-ion battery configuration. Photo-induced mechanisms and fate of photo-charges are investigated by studying the influence of the electrode architecture and of the electrolyte
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Noh, Mohd Hilmi. „Charge rapide de batteries lithium-ion basée sur la compensation de chute-ohmique“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI076/document.

Der volle Inhalt der Quelle
Annotation:
L'objectif de cette thèse est l’étude de la charge rapide de batteries lithium-ion basée sur la méthode de la compensation chute ohmique. Cette méthode permet théoriquement de réduire le temps total de charge des batteries. Dans cette thèse, cette méthode a été mise en œuvre sur trois types différents de cellules de format 18650 : C/ FP, C/NMC et LTO/LFP. Cette méthode montre de bons résultats pour les batteries C/LFP et LTO/LFP avec une réduction du temps de charge total d'environ 70% par rapport à la méthode classique. Néanmoins, cette méthode présente des inconvénients comme notamment l’élévation de la température interne de la batterie pendant la charge rapide. De plus, cette méthode implique un courant élevé et conduit à des potentiels élevés qui peuvent engendrer également des dégradations. En particulier, nous avons démontré que la batterie C / LFP subissait des dégradations internes notamment une déformation mécanique de l’enroulement et une dégradation de la composition d’électrolyte
The aim of this thesis is to study fast-charging of lithium-ion, battery using the ohmic-drop compensation method. The latter method theoretically will reduce the total charging of the batteries considered. In this thesis, the ODC method was implemented on three different types of 18650 battery cells. These batteries are C/LFP, C/NMC and LTO/LFP. This method show a good result for C/LFP and LTO/LFP batteries with a reduction of total charging time of about 70% in comparison with the classical method. Nevertheless, there are some issues regarding this method; the temperature elevation of the battery is high during fast-charging. Indeed, almost all fast-charging procedure experiences the same problem concerning that matter. Moreover, with ODC fast-charging method, high current rate and high voltage will worsen the situation. These complications of the ODC fast-charging method are key points for both performance and durability of the batteries. Particularly, we have demonstrated that C/LFP battery underwent internal degradation as a mechanical deformation of the active materials and degradation of electrolyte
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Ezzedine, Mariam. „Fabrication of hierarchical hybrid nanostructured electrodes based on nanoparticles decorated carbon nanotubes for Li-Ion batteries“. Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX105/document.

Der volle Inhalt der Quelle
Annotation:
Cette thèse est consacrée à la fabrication ascendante (bottom-up) de matériaux nanostructurés hybrides hiérarchisés à base de nanotubes de carbone alignés verticalement (VACNTs) décorés par des nanoparticules (NPs). En fonction de leur utilisation comme cathode ou anode, des nanoparticules de soufre (S) ou silicium (Si) ont été déposées. En raison de leur structure unique et de leurs propriétés électroniques, les VACNTs agissent comme une matrice de support et un excellent collecteur de courant, améliorant ainsi les voies de transport électroniques et ioniques. La nanostructuration et le contact du S avec un matériau hôte conducteur améliore sa conductivité, tandis que la nanostructuration du Si permet d'accommoder plus facilement les variations de volume pendant les réactions électrochimiques. Dans la première partie de la thèse, nous avons synthétisé des VACNTs par une méthode de dépôt chimique en phase vapeur (HF-CVD) directement sur des fines feuilles commerciales d'aluminium et de cuivre sans aucun prétraitement des substrats. Dans la deuxième partie, nous avons décoré les parois latérales des VACNTs avec différents matériaux d'électrode, dont des nanoparticules de S et de Si. Nous avons également déposé et caractérisé des nanoparticules de nickel (Ni) sur les VACNTs en tant que matériaux alternatifs pour l'électrode positive. Aucun additif conducteur ou aucun liant polymère n'a été ajouté à la composition d'électrode. La décoration des nanotubes de carbone a été effectuée par deux méthodes différentes: méthode humide par électrodéposition et méthode sèche (par dépôt physique en phase vapeur (PVD) ou par CVD). Les structures hybrides obtenues ont été testées électrochimiquement séparément dans une pile bouton contre une contre-électrode de lithium. A notre connaissance, il s'agit de la première étude de l'évaporation du soufre sur les VACNTs et de la structure résultante (appelée ici S@VACNTs). Des essais préliminaires sur les cathodes nanostructurées obtenues (S@VACNTs revêtus d'alumine ou de polyaniline) ont montré qu'il est possible d'atteindre une capacité spécifique proche de la capacité théorique du soufre. La capacité surfacique de S@VACNTs, avec une masse de S de 0.76 mg cm-2, à un régime C/20 atteint une capacité de 1.15 mAh cm-2 au premier cycle. Pour les anodes nanostructurées au silicium (Si@VACNTs), avec une masse de Si de 4.11 mg cm-2, on montre une excellente capacité surfacique de 12.6 mAh cm-2, valeur la plus élevée pour les anodes à base de silicium nanostructurées obtenues jusqu'à présent. Dans la dernière partie de la thèse, les électrodes nanostructurées fabriquées ont été assemblées afin de réaliser la batterie complète (Li2S/Si) et sa performance électrochimique a été testée. Les capacités surfaciques obtenues pour les électrodes nanostructurées de S et de Si ouvrent la voie à la réalisation d'une LIB à haute densité d'énergie, entièrement nanostructurée, et démontrent le grand potentiel du concept proposé à base d'électrodes nanostructurées hybrides hiérarchisées
This thesis is devoted to the bottom-up fabrication of hierarchical hybrid nanostructured materials based on active vertically aligned carbon nanotubes (VACNTs) decorated with nanoparticles (NPs). Owing to their unique structure and electronic properties, VACNTs act as a support matrix and an excellent current collector, and thus enhance the electronic and ionic transport pathways. The nanostructuration and the confinement of sulfur (S) in a conductive host material improve its conductivity, while the nanostructuration of silicon (Si) accommodates better the volume change during the electrochemical reactions. In the first part of the thesis, we have synthesized VACNTs by a hot filament chemical vapor deposition (HF-CVD) method directly over aluminum and copper commercial foils without any pretreatment of the substrates. In the second part, we have decorated the sidewalls and the surface of the VACNT carpets with various LIB's active electrode materials, including S and Si NPs. We have also deposited and characterized nickel (Ni) NPs on CNTs as alternative materials for the cathode electrode. No conductive additives or any polymer binder have been added to the electrode composition. The CNTs decoration has been done systematically through two different methods: wet method by electrodeposition and dry method by physical vapor deposition (PVD). The obtained hybrid structures have been electrochemically tested separately in a coin cell against a lithium counter-electrode. Regarding the S evaporationon VACNTs, and the S@VACNTs structure, these topics are investigated for the first time to the best of our knowledge.Preliminary tests on the obtained nanostructured cathodes (S@VACNTs coated with alumina or polyaniline) have shown that it is possible to attain a specific capacity close to S theoretical storage capacity. The surface capacity of S@VACNTs, with 0.76 mg cm-2 of S, at C/20 rate reaches 1.15 mAh cm-2 at the first cycle. For the nanostructured anodes Si@VACNTs, with 4.11 mg cm-2 of Si showed an excellent surface capacity of 12.6 mAh cm-2, the highest value for nanostructured silicon anodes obtained so far. In the last part of the thesis, the fabricated nanostructured electrodes have been assembled in a full battery (Li2S/Si) and its electrochemical performances experimentally tested. The high and well-balanced surface capacities obtained for S and Si nanostructured electrodes pave the way for realization of high energy density, all-nanostructured LIBs and demonstrate the large potentialities of the proposed hierarchical hybrid nanostructures' concept
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Raghibi, Mohamed. „Etude des processus limitant la puissance au sein des batteries Li-ion“. Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALI011.

Der volle Inhalt der Quelle
Annotation:
De nos jours, grâce à de nombreux avantages, notamment une haute densité d’énergie, une longue durée de vie, et un rendement élevé, les batteries Li-ion sont prédominantes pour alimenter les appareils électroniques comme les téléphones et ordinateurs portables. De plus, leur utilisation s’est élargie à grande échelle comme système de stockage d’énergie pour les véhicules électrifiés et les applications stationnaires. Néanmoins, pour répondre aux exigences du marché du transport électrique et étendre la pénétration des batteries au Li dans ce secteur, des améliorations sont nécessaires, notamment en termes de densité d’énergie, de sécurité, et de durée de vie. En plus du développement de matériaux actifs, plusieurs approches sont proposées et étudiées en vue d’augmenter l’autonomie des batteries. Parmi elles, une consiste à optimiser le design de l'électrode composite à savoir la porosité, le grammage, la composition et la microstructure. Cela revient à augmenter le ratio des matériaux actifs (épaisseur d’électrode positive et négative) par rapport aux autres composants inactifs à savoir les collecteurs de courant et le séparateur. Cependant, pour les électrodes fortement grammées la capacité de décharge devient limitée par le transport de charges au sein de l’électrode, notamment à fort courant, ce qui implique une forte diminution de la densité de puissance.Ce projet de thèse a pour but d’étudier la capacité restituée dans les batteries au Li en fonction du design de l’électrode, à savoir la formulation (microstructure), la composition chimique (nature des matériaux actifs), le grammage et la porosité, mais aussi la température de travail. Pour cela, deux matériaux d’électrode positive seront étudiés à savoir LiFePO4 (LFP) et LiNi0.8Mn0.1Co0.1O2 (NMC 811), des électrodes à différents grammages (0.4 et 3.4 mAh.cm-2), et compositions, sont formulées et calandrées pour atteindre des porosités variées (20 à 50 %). La morphologie et la surface spécifique des matériaux actifs et des électrodes est investiguée via des analyses MEB, Granulométrique et BET. Ensuite, les performances en puissance de la batterie, capacité vs densité de courant, sont établies en utilisant un protocole de cyclage spécifique, permettant la détermination d’une densité de courant limite (Jlim) qui est relié au coefficient de diffusion effectif (Deff) correspondant au processus de transport limitant. En plus, la résistance de transfère de charge (Rct) en fonction de la stœchiométrie est aussi rapportée en couplant le GITT et l’EIS afin de capturer les processus physico-chimiques mis en jeu lors du fonctionnement de la batterie. Enfin, la corrélation entre le design de l’électrode, la température et les paramètres électrochimiques effectifs tel que le Deff, Jlim, and Rct seront discutés
Li-ion batteries have become a necessity in human daily life as the most versatile, efficient and performing energy storage & conversion technology, they power our nomad electronic, cars and buffer the renewable intermittent energy sources. However, improvement of current battery systems is needed to meet the requirements of the transport sector in terms of energy density, safety, and cycle life. Besides the active materials, among the strategies to increase battery autonomy, one consists in optimizing the design parameters of the electrode such as the formulation, loading, microstructure, and porosity. The idea is simply to increase the ratio of active materials (negative and positive electrode thickness) to inactive components (separator, current collector…). However, by doing so, the output power density becomes strongly limited by the charge transport within the composite electrodes, notably at high current densities.In this PhD work, Li-battery capacity is investigated as a function of the current density with respect to electrode design parameters such as porosity, formulation, loading, and microstructure as well as temperature. For this purpose, LiFePO4 (LFP) and LiNi0.8Mn0.1Co0.1O2 (NMC 811) based positive electrodes were formulated at different loadings (from 0.4 to 3.4 mAh.cm-2), compositions (Active material%, Carbon%, PVDF binder %), and calendered to reach different porosities (from 20 to 50 %). The microstructure and specific area of the active materials and the electrodes are fully characterized by SEM, Granulometry and BET. Then, the battery power performance, capacity as a function of discharge current, is fully captured and analyzed using a time-saving methodology which enables the determination of a limiting current density (Jlim) and the extraction of an effective diffusion coefficient (Deff) corresponding to the limiting transport process. In addition, the charge transfer resistance (Rct) as a function of the state of charge (SOC) is also reported by coupling GITT and EIS allowing to capture of the physico-chemical processes at stake during the battery cycling. Afterwards, the correlation between design parameters, the temperature and the effective electrochemical parameters such as Deff, Jlim, and Rct is discussed
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Si, Wenping. „Designing Electrochemical Energy Storage Microdevices: Li-Ion Batteries and Flexible Supercapacitors“. Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-160049.

Der volle Inhalt der Quelle
Annotation:
Die Menschheit steht vor der großen Herausforderung der Energieversorgung des 21. Jahrhundert. Nirgendwo ist diese noch dringlicher geworden als im Bereich der Energiespeicherung und Umwandlung. Konventionelle Energie kommt hauptsächlich aus fossilen Brennstoffen, die auf der Erde nur begrenzt vorhanden sind, und hat zu einer starken Belastung der Umwelt geführt. Zusätzlich nimmt der Energieverbrauch weiter zu, insbesondere durch die rasante Verbreitung von Fahrzeugen und verschiedener Kundenelektronik wie PCs und Mobiltelefone. Alternative Energiequellen sollten vor einer Energiekrise entwickelt werden. Die Gewinnung erneuerbarer Energie aus Sonne und Wind sind auf jeden Fall sehr wichtig, aber diese Energien sind oft nicht gleichmäßig und andauernd vorhanden. Energiespeichervorrichtungen sind daher von großer Bedeutung, weil sie für eine Stabilisierung der umgewandelten Energie sorgen. Darüber hinaus ist es eine enttäuschende Tatsache, dass der Akku eines Smartphones jeglichen Herstellers heute gerade einen Tag lang ausreicht, und die Nutzer einen zusätzlichen Akku zur Hand haben müssen. Die tragbare Elektronik benötigt dringend Hochleistungsenergiespeicher mit höherer Energiedichte. Der erste Teil der vorliegenden Arbeit beinhaltet Lithium-Ionen-Batterien unter Verwendung von einzelnen aufgerollten Siliziumstrukturen als Anoden, die durch nanotechnologische Methoden hergestellt werden. Eine Lab-on-Chip-Plattform wird für die Untersuchung der elektrochemischen Kinetik, der elektrischen Eigenschaften und die von dem Lithium verursachten strukturellen Veränderungen von einzelnen Siliziumrohrchen als Anoden in einer Lithium-Ionen-Batterie vorgestellt. In dem zweiten Teil wird ein neues Design und die Herstellung von flexiblen on-Chip, Festkörper Mikrosuperkondensatoren auf Basis von MnOx/Au-Multischichten vorgestellt, die mit aktueller Mikroelektronik kompatibel sind. Der Mikrosuperkondensator erzielt eine maximale Energiedichte von 1,75 mW h cm-3 und eine maximale Leistungsdichte von 3,44 W cm-3. Weiterhin wird ein flexibler und faserartig verwebter Superkondensator mit einem Cu-Draht als Substrat vorgestellt. Diese Dissertation wurde im Rahmen des Forschungsprojekts GRK 1215 "Rolled-up Nanotechnologie für on-Chip Energiespeicherung" 2010-2013, finanziell unterstützt von der International Research Training Group (IRTG), und dem PAKT Projekt "Elektrochemische Energiespeicherung in autonomen Systemen, no. 49004401" 2013-2014, angefertigt. Das Ziel der Projekte war die Entwicklung von fortschrittlichen Energiespeichermaterialien für die nächste Generation von Akkus und von flexiblen Superkondensatoren, um das Problem der Energiespeicherung zu addressieren. Hier bedanke ich mich sehr, dass IRTG mir die Möglichkeit angebotet hat, die Forschung in Deutschland stattzufinden
Human beings are facing the grand energy challenge in the 21st century. Nowhere has this become more urgent than in the area of energy storage and conversion. Conventional energy is based on fossil fuels which are limited on the earth, and has caused extensive environmental pollutions. Additionally, the consumptions of energy are still increasing, especially with the rapid proliferation of vehicles and various consumer electronics like PCs and cell phones. We cannot rely on the earth’s limited legacy forever. Alternative energy resources should be developed before an energy crisis. The developments of renewable conversion energy from solar and wind are very important but these energies are often not even and continuous. Therefore, energy storage devices are of significant importance since they are the one stabilizing the converted energy. In addition, it is a disappointing fact that nowadays a smart phone, no matter of which brand, runs out of power in one day, and users have to carry an extra mobile power pack. Portable electronics demands urgently high-performance energy storage devices with higher energy density. The first part of this work involves lithium-ion micro-batteries utilizing single silicon rolled-up tubes as anodes, which are fabricated by the rolled-up nanotechnology approach. A lab-on-chip electrochemical device platform is presented for probing the electrochemical kinetics, electrical properties and lithium-driven structural changes of a single silicon rolled-up tube as an anode in lithium ion batteries. The second part introduces the new design and fabrication of on chip, all solid-state and flexible micro-supercapacitors based on MnOx/Au multilayers, which are compatible with current microelectronics. The micro-supercapacitor exhibits a maximum energy density of 1.75 mW h cm-3 and a maximum power density of 3.44 W cm-3. Furthermore, a flexible and weavable fiber-like supercapacitor is also demonstrated using Cu wire as substrate. This dissertation was written based on the research project supported by the International Research Training Group (IRTG) GRK 1215 "Rolled-up nanotech for on-chip energy storage" from the year 2010 to 2013 and PAKT project "Electrochemical energy storage in autonomous systems, no. 49004401" from 2013 to 2014. The aim of the projects was to design advanced energy storage materials for next-generation rechargeable batteries and flexible supercapacitors in order to address the energy issue. Here, I am deeply indebted to IRTG for giving me an opportunity to carry out the research project in Germany. September 2014, IFW Dresden, Germany Wenping Si
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Al, Nazer Rouba. „Système de mesure d'impédance électrique embarqué, application aux batteries Li-ion“. Phd thesis, Université de Grenoble, 2014. http://tel.archives-ouvertes.fr/tel-00958783.

Der volle Inhalt der Quelle
Annotation:
La mesure d'impédance électrique en embarqué sur véhicule est un sujet clé pour améliorer les fonctions de diagnostic d'un pack batterie. On cherche en particulier à fournir ainsi des mesures supplémentaires à celles du courant pack et des tensions cellules, afin d'enrichir les indicateurs de vieillissement dans un premier temps, et d'état de santé et de charge dans un second temps. Une méthode classique de laboratoire pour obtenir des mesures d'impédance d'une batterie est la spectroscopie d'impédance électrochimique (ou EIS). Elle consiste à envoyer un signal sinusoïdal en courant (ou tension) de fréquence variable balayant une gamme de fréquences d'intérêt et mesurer ensuite la réponse en tension (ou courant) pour chaque fréquence. Une technique d'identification active basée sur l'utilisation des signaux large bande à motifs carrés est proposée. En particulier, des simulations ont permis de comparer les performances d'identification de différents signaux d'excitation fréquemment utilisés dans le domaine de l'identification et de vérifier les conditions correspondant à un comportement linéaire et invariant dans le temps de l'élément électrochimique. L'évaluation de la qualité d'estimation est effectuée en utilisant une grandeur spécifique : la cohérence. Cette grandeur statistique permet de déterminer un intervalle de confiance sur le module et la phase de l'impédance estimée. Elle permet de sélectionner la gamme de fréquence où la batterie respecte les hypothèses imposées par la méthode d'identification large bande. Afin de valider les résultats, une électronique de test a été conçue. Les résultats expérimentaux permettent de mettre en valeur l'intérêt de cette approche par motifs carrés. Un circuit de référence est utilisé afin d'évaluer les performances en métrologie des méthodes. L'étude expérimentale est ensuite poursuivie sur une batterie Li-ion soumise à un courant de polarisation et à différents états de charge. Des essais comparatifs avec l'EIS sont réalisés. Le cahier de charge établi à l'aide d'un simulateur de batterie Li-ion a permis d'évaluer les performances de la technique large bande proposée et de structurer son utilité pour l'estimation des états de vieillissement et de charge.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Tran, Thanh-Ha. „Études thermiques du stockeur d'énergie électrique automobile“. Thesis, Valenciennes, 2014. http://www.theses.fr/2014VALE0009/document.

Der volle Inhalt der Quelle
Annotation:
Le but de la thèse est de développer d’une part, une méthode permettant de quantifier la chaleur générée par la cellule de manière précise. D’autre part, il s’agit d’évaluer la performance thermique d’un panel de solutions de refroidissement pour les batteries destinées à des applications HEV/PHEV/EV. La première partie de ce rapport présente une méthode d’estimation de la chaleur globale de la cellule, permettant de prendre en compte la chaleur ohmique et la chaleur entropique. Ce modèle d’estimation de perte est couplé à un modèle thermique 2D afin d’estimer la température de la cellule. La température obtenue par simulation pour une cellule LiNi0.8Co0.15Al0.05O2/graphite 22 Ah correspond très bien aux mesures expérimentales. Dans la deuxième partie du rapport, la performance thermique de plusieurs solutions de refroidissement (refroidissement à air, refroidissement par matériau à changement de phase (MCP) et refroidissement par caloduc) pour la batterie a été évaluée expérimentalement sous plusieurs puissances de perte et plusieurs conditions de ventilation. Le refroidissement par caloduc s’est révélé d’être une solution efficace, même sous des conditions de ventilation critiques. Quant à la solution de refroidissement par MCP, le prototype qui a été expérimenté a une faible performance thermique. Cela est principalement dû à la faible conductivité thermique de la formulation MCP utilisée. Toutefois, l’utilisation d’autres formulations alternatives de MCP est envisageable. Les résultats de simulation montrent que ces formulations permettraient une amélioration significative de la performance thermique du système de refroidissement par MCP
Lithium-ion batteries, characterized by their high energy and power density, are highly recommended as power sources for electrified vehicles (HEV/PHEV/EV). However, lithium-ion batteries are very sensitive to their environment and are prone to thermal runaway at high temperature. The goals of this thesis are to develop an accurate lithium-ion cell heat loss calculation method and to investigate the thermal performance of several cooling solutions for HEV/PHEV/EV batteries. The first part presents a global heat calculation procedure for lithium-ion cell which takes into account both the polarization heat and the entropic heat. This heat generation model was coupled with a cell two-dimensional thermal model in order to predict the cell’s temperature. Temperature estimations obtained by simulation for a 22 Ah LiNi0.8Co0.15Al0.05O2/graphite cell showed a very good agreement with experimental results. In the second part, thermal performances of several cooling solutions for HEV/PHEV/EV batteries (air, phase change material (PCM) and heat pipe) were evaluated experimentally under several heat rates and cooling conditions. Heat pipe cooling was found to be a promising cooling solution which works efficiently even under low rate ventilation cooling condition. The experimented PCM cooling system had very poor thermal performance, mainly due to the low thermal conductivity of the used PCM formulation. However, simulations showed that significant improvement could be achieved by using another alternative PCM formulation
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Gruet, David. „Modélisation cinétique de la spectroscopie d'impédance électrochimique de cellules Li-ion“. Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS401.

Der volle Inhalt der Quelle
Annotation:
La Spectroscopie d'impédance électrochimique (SIE) est une technique électrochimique permettant de caractériser un système électrochimique. L'interprétation des spectres d’impédance des batteries Li-ion est cependant compliquée car ces systèmes sont composés d'électrodes poreuses. La modélisation est un outil puissant pour pouvoir améliorer l'interprétation des spectres d'impédance des systèmes Li-ion. Dans les années 60, le groupe de Newman ont développé un modèle dans lequel ils ont traduit l'ensemble des phénomènes physico-chimiques se déroulant au sein d’une électrode poreuse. En se basant sur leurs travaux, nous avons développé un modèle permettant d’obtenir la réponse d’impédance d’une électrode. Ainsi, notre modèle est directement relié aux phénomènes physico-chimiques se produisant au sein d’une électrode poreuse. Nous avons pu étudier l’impact des paramètres géométriques et l’impact des paramètres cinétiques et des paramètres de transport sur la réponse d’impédance et nous avons étudié comment la formation d’une couche passivante autour des particules de matériau actif modifiait la réponse d'impédance. Enfin, nous avons également introduit le concept de porosité optimale, pour laquelle les performances de l'électrode sont optimisées. Une ultime partie de l'étude a consisté à utiliser ce modèle pour ajuster les spectres d'impédance expérimentaux. Ainsi, nous avons déterminé la densité de courant d'échange et le coefficient de diffusion de la poudre de graphite grâce à la technique de la microélectrode en cavité. En utilisant ces paramètres, nous avons pu comparer les résultats expérimentaux d’impédance avec le modèle
Electrochemical Impedance Spectroscopy (EIS) is a powerful technique for characterizing electrochemical system. The interpretation of EIS spectra performed on Li-ion batteries can be however tedious because these systems are composed of porous electrodes. A way to improve the interpretation of these impedance data is to use modelling. In the 60s, Newman’s group developed a model for porous electrodes, describing the whole battery system taking into account physicochemical phenomena occurring in the composite electrodes. Based on their work, we developed an analytical solution for EIS by linearizing all the equations of the Newman’s model. The model obtained is then directly connected to the physical phenomena occurring inside the porous electrodes which will greatly help to interpret impedance spectra, thus, enabling to study the impact of geometrical parameters or the impact of kinetic and transport parameters on the EIS response. We also studied how an insulating layer forming around the particles of active material influenced the impedance response of the porous electrode. We were able to determine the origin of the different time constants observed on the EIS diagrams. Finally, we also introduced the concept of optimal porosity, which corresponds to a porosity for which the performance of the battery is optimized. In the last part of our work, the fit of experimental impedance spectra with our model was performed. We thus determined the exchange current density and the diffusion coefficient of graphite powder thanks to the cavity microelectrode technique. Using these parameters, we have been able to compare the experimental impedance results we obtained with the model
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Tranchot, Alix. „Etude par émission acoustique et dilatométrie d'électrodes à base de silicium pour batteries Li-ion“. Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI101/document.

Der volle Inhalt der Quelle
Annotation:
Afin d’augmenter la densité d’énergie des batteries Li-ion, en particulier pour le marché des véhicules électriques, il est nécessaire de développer des matériaux d’électrode plus performants. Le silicium, dont la capacité spécifique (3579mAh/g) est dix fois supérieure à celle du graphite, est un matériau particulièrement prometteur. Néanmoins, lors de sa lithiation, il subit une forte expansion volumique (280% contre 10% pour le graphite) conduisant à la décrépitation des particules de Si et à la fissuration/décohésion de l’électrode. Il en résulte une diminution notable de la durée de vie de l’anode. Pour améliorer la tenue au cyclage des électrodes, il est nécessaire de bien comprendre/quantifier leur dégradation morphologique, ce que permettent difficilement des analyses post mortem conventionnelles. Notre objectif est d’utiliser et de développer des outils permettant d'étudier in operando la dégradation de ces électrodes. Nous avons mis en œuvre des protocoles de caractérisation in operando couplant des mesures électrochimiques à l’émission acoustique d’une part et à la dilatométrie d’autre part. Le suivi de l’activité acoustique au cours du cyclage de l’électrode a montré que les particules de Si micrométrique constituant cette électrode se fracturent dès le début de la lithiation, et que la fissuration de l’électrode se produit progressivement tout au long de la 1ère lithiation. Peu d’activité acoustique est détectée par la suite. Par l’analyse des signaux acoustiques, trois types de signaux ont été identifiés, se différenciant principalement selon leur fréquence de pic. Les signaux de hautes fréquences sont associés principalement aux micro-fractures des particules en début de lithiation, et les signaux à moyennes et basses fréquences sont respectivement attribuées à la fissuration de l’électrode et aux macro-fractures des particules de Si en fin de lithiation. L’étude dilatométrique a montré une expansion volumique maximale de ~170% avec une encre tamponnée à pH3 versus 300% si l’électrode est préparée à pH7. Cette différence s’explique par la formation de liaisons cohésives entre le liant CMC et les particules de Si lorsque l’électrode est préparée à pH 3, améliorant sa résistance mécanique. Ce qui a été confirmé par des mesures d’indentation. Ainsi, l’électrode formulée à pH 3 montre une meilleure cyclabilité. Enfin, nous avons démontré qu’une diminution notable de la durée de vie de l’électrode est observée lorsque la taille initiale des particules de Si est réduite de 230 à 85nm. Nous expliquons ce résultat inattendu par une quantité insuffisante de CMC par rapport à la surface spécifique plus élevée des particules de taille plus faible. De fait, sa résistance mécanique est insuffisante et conduit à une fissuration et une exfoliation importantes de l’électrode. Ceci est appuyé par les mesures de dilatométrie, d’émission acoustique et des observations MEB
To increase the energy density of Li-ion batteries, especially for the electric vehicle market, the development of new electrode materials is required. Silicon is a particularly interesting material, thanks to its high specific capacity (3579mAh/g, ten times higher than the capacity of graphite). Nevertheless, upon lithiation, silicon undergoes an important expansion (300% vs 10% for graphite). This leads to the cracking of the Si particles and fracturing of the electrode film. These induces electrical disconnections upon cycling, resulting in a poor cycle life. To improve the cyclability of the Si based electrodes, it is important to better understand/quantify their mechanical degradation. Conventional post mortem analyses are insufficient for that purpose. The objective of this work is to develop and use in operando analyses techniques. Therefore, we established protocols to characterize composite electrodes by electrochemical measurements coupled with either acoustic emission (AE) or dilatometry measurements. The evolution of the acoustic activity upon cycling showed that the cracking of the micrometric Si particles and of the composite film mainly occurs during the first cycle and is initiated in the early stage of the lithiation. Very few AE signals are detected in the following cycles. The signal analysis leads to the identification of three types of signals depending to their peak frequency. High frequency signals were associated with surface micro-cracking of the Si particles at the beginning of lithiation. Medium and low frequency signals were respectively attributed to the fracturing of the electrode film and bulk macro-cracking of the Si particles at the end of lithiation. An electrode thickness expansion of 170% was measured by electrochemical dilatometry for our electrodes prepared at pH3 versus 300% for electrodes prepared at pH7. The different mechanical behavior is explained by the formation of covalent bonds between the CMC binder and Si particles at pH3, which increases the mechanical stability of electrodes. This was confirmed by the measurement of their hardness and Young’s modulus. Therefore, pH3 electrodes display a higher capacity retention. It was also demonstrated that a decrease of the Si particle size does not necessarily lead to an improvement of the electrode cycle life. Indeed, we observed a significant decrease of the electrode cycle life when the Si particle size is decreased from 230 to 85 nm. This can be explained by a lack of CMC binder in relation with the higher surface area of the smaller Si particles, leading to a lower mechanical resistance of the electrode film. Within the first cycles, Si 85 nm based electrodes suffer from important cracking and exfoliation. This was confirmed by in operando dilatometry and acoustic measurements, and post mortem SEM observations
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Falconi, Andrea. „Modélisation électrochimique du comportement d’une cellule Li-ion pour application au véhicule électrique“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI043/document.

Der volle Inhalt der Quelle
Annotation:
Le développement futur des véhicules électriques est lié à l’amélioration des performances des batteries qu’ils contiennent. Parallèlement aux recherches sur les nouveaux matériaux ayant des performances supérieures en termes d'énergie, de puissance, de durabilité et de coût, il est nécessaire développer des outils de modélisation pour : (i) simuler l'intégration de la batterie dans la chaine de traction et (ii) pour le système de gestion de la batterie, afin d'améliorer la sécurité et la durabilité. Soit de façon directe (par exemple, la prévention de surcharge ou de l’emballement thermique) soit de façon indirecte (par exemple, les indicateurs de l’état de charge). Les modèles de batterie pourraient aussi être utilisés pour comprendre les phénomènes physiques et les réactions chimiques afin d'améliorer la conception des batteries en fonction des besoins de l’utilisateur et de réduire la durée des phases de test. Dans ce manuscrit, un des modèles les plus communs décrivant les électrodes poreuses des batteries au lithium-ion est revisité. De nombreuses variantes dans la littérature s’inspirent directement du travail mené par le professeur J. Newman et son équipe de chercheurs à l’UC Berkeley. Pourtant relativement peu d’études analysent en détail les capacités prédictives de ce modèle. Dans ce travail, pour étudier ce modèle, toutes les grandeurs physiques sont définies sous une forme adimensionnelle, comme on l'utilise couramment dans la mécanique des fluides : les paramètres qui agissent de manière identique ou opposée sont regroupés et le nombre total de paramètres du modèle est considérablement réduit. Cette étude contient une description critique de la littérature incluant le référencement des paramètres du modèle développé par le groupe de Newman et les techniques utilisées pour les mesurer, ainsi que l’écriture du modèle dans un format adimensionnel pour réduire le nombre de paramètres. Une partie expérimentale décrit les modifications de protocoles mis en œuvre pour améliorer la reproductibilité des essais. Les études effectuées sur le modèle concernent d’une part l’identification des états de lithiation dans la cellule avec un attention particulière sur la précision obtenue, et enfin une prospection numérique pour examiner l’influence de chaque paramètre sur les réponses de la batterie en décharge galvanostatique puis en mode impulsion et relaxation
The future development of electric vehicles is mostly dependent of improvements in battery performances. In support of the actual research of new materials having higher performances in terms of energy, power, durability and cost, it is necessary to develop modeling tools. The models are helpful to simulate integration of the battery in the powertrain and crucial for the battery management system, to improve either direct (e.g. preventing overcharges and thermal runaway) and indirect (e.g. state of charge indicators) safety. However, the battery models could be used to understand its physical phenomena and chemical reactions to improve the battery design according with vehicles requirements and reduce the testing phases. One of the most common model describing the porous electrodes of lithium-ion batteries is revisited. Many variants available in the literature are inspired by the works of prof. J Newman and his research group from UC Berkeley. Yet, relatively few works, to the best of our knowledge, analyze in detail its predictive capability. In the present work, to investigate this model, all the physical quantities are set in a dimensionless form, as commonly used in fluid mechanics: the parameters that act in the same or the opposite ways are regrouped and the total number of simulation parameter is greatly reduced. In a second phase, the influence of the parameter is discussed, and interpreted with the support of the limit cases. The analysis of the discharge voltage and concentration gradients is based on galvanostatic and pulse/relaxation current profiles and compared with tested commercial LGC cells. The simulations are performed with the software Comsol® and the post-processing with Matlab®. Moreover, in this research, the parameters from the literatures are discussed to understand how accurate are the techniques used to parametrize and feed the inputs of the model. Then, our work shows that the electrode isotherms shapes have a significant influence on the accuracy of the evaluation of the states of charges in a complete cell. Finally, the protocols to characterizes the performance of commercial cells at different C-rates are improved to guarantee the reproducibility
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Dridi, Zrelli Yosra. „Électrochimie et spectroscopie Raman de matériaux d'électrode positive pour batteries Li-ion“. Phd thesis, Université Paris-Est, 2012. http://tel.archives-ouvertes.fr/tel-00807008.

Der volle Inhalt der Quelle
Annotation:
Dans ce travail de thèse, la microspectrométrie Raman a été mise à profit pour décrire les changements structuraux induits par la réaction électrochimique d'insertion/désinsertion des ions lithium dans des composés de structure lamellaire LiCoO2 et cubique LiMn2O4 et LiNi0.4Mn1.6O4, utilisés comme électrodes positives dans les batteries Li-ion. L'étude du composé d'électrode LiCoO2 pendant le processus de charge permet de mettre en évidence une région biphasée où la phase initiale coexiste avec une nouvelle phase hexagonale caractérisée par une expansion du paramètre inter-feuillets de l'ordre de 3% et un affaiblissement de la liaison Co-O dans le plan des feuillets. Dans le cas de LiMn2O4, une nouvelle attribution du spectre Raman a pu être proposée. Pendant la charge à 4V, un mécanisme à trois phases (phase initiale LiMn2O4, phase intermédiaire, phase pauvre en lithium) est décrit par spectroscopie Raman alors que la diffraction des RX ne permet pas d'observer la phase intermédiaire dans nos conditions de mesure. L'étude de l'insertion électrochimique du lithium dans LiMn2O4 (région 3V), a permis de montrer pour la première fois par spectroscopie Raman la formation progressive d'une phase tétragonale de composition Li2Mn2O4 qui coexiste avec la phase cubique initiale et qui est pure en fin de décharge. La réversibilité de cette transition structurale a également été démontrée. Dans le cas du composé substitué au nickel, LiNi0.4Mn1.6O4, une attribution complète du spectre Raman est proposée pour la première fois. L'étude par diffraction des RX du matériau en fonction de l'état de charge et de décharge met en évidence une conservation de la structure cubique avec des variations modérées de paramètres de maille. Le spectre Raman présente quant à lui des variations très significatives qui rendent compte de la présence dans des proportions différentes des espèces redox impliquées dans le fonctionnement électrochimique (Mn4+, Mn3+, Ni2+, Ni3+, Ni4+). Une analyse spectrale par décompositions de bandes permet d'identifier et de quantifier les proportions relatives des différents couples redox du nickel. Une réversibilité complète de la signature Raman est observée en décharge. Une application concrète et originale de la spectroscopie Raman a consisté à étudier le mécanisme d'autodécharge qui est observé pour le matériau LiNi0.4Mn1.6O4 complètement chargé. L'évolution des spectres Raman permet de mettre en évidence une réduction rapide et quantitative des ions Ni4+ pendant les premières heures de séjour dans l'électrolyte, puis un processus plus lent de réduction des ions Ni3+. Enfin, pour la première fois également, l'insertion du lithium dans le composé LiNi0.4Mn1.6O4 a été explorée par microspectrométrie Raman et a permis notamment d'identifier l'empreinte Raman de la phase la plus réduite de symétrie tétragonale Li2Ni0.4Mn1.6O4. L'originalité de ce travail a été d'apporter un grand nombre de données Raman expérimentales sur des matériaux d'électrode performants fonctionnant à 4V. De nouvelles attributions ont pu être proposées pour les composés initiaux, et des données vibrationnelles inédites ont été fournies sur les composés formés en charge et en décharge. Dans certains cas, ces données ont permis, sur la base d'une analyse détaillée des spectres Raman par décompositions de bandes, de proposer un raisonnement quantitatif sur l'existence de phases ou d'espèces redox en mélange. Il conviendrait bien sûr de corroborer ces nouvelles données et attributions par des calculs théoriques ab initio capables de simuler les fréquences et les intensités des modes vibrationnels dans les structures hôtes et lithiées
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Roland, Aude. „Nanostructuration et contrôle de l'interface électrode/électrolyte appliqués à des électrodes de silicium pour batteries Li-ion“. Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS128.

Der volle Inhalt der Quelle
Annotation:
Le silicium est l’un des matériaux les plus prometteurs comme matériau actif d’électrode négative pour la prochaine génération de batteries lithium-ions (LiB). En effet, il possède une capacité spécifique 10 fois supérieure à celle du graphite actuellement commercialisé dans les batteries. Son bas potentiel de travail permet d’atteindre une forte densité d’énergie tout en limitant le risque de croissance dendritique responsable des emballements thermiques. Malgré ses avantages, ses limites intrinsèques telles que sa faible conductivité électronique et ionique et l’expansion volumique importante induite par la formation d’alliages lithiés repoussent toujours son incorporation dans les batteries commerciales. En effet, cette expansion volumique du matériau, entraîne la pulvérisation de l’électrode, isolant électriquement la matière active qui est à l’origine d’une faible rétention de capacité en cyclage. La pulvérisation du matériau actif induit également la formation de nouvelles interfaces avec l’électrolyte induisant une formation accrue de SEI, très pénalisante pour les performances. Dans ces travaux, la nanostructuration du silicium est proposée pour limiter la pulvérisation. Différentes nanostructures ont été étudiées telles que les nanoplots, les nanoparticules et les matériaux nanoporeux de silicium. Les nanoplots ont été étudiés sous forme d‘électrodes sur puce, l’optimisation de leur synthèse ainsi que les premiers tests électrochimiques en batterie ont été réalisés. Les électrodes de silicium poreux ont été préparées par gravure électrochimique d’un wafer de Si, puis étudiées sous forme d’électrodes composites en batterie. L’étude des nanoparticules a permis d’optimiser la formulation d’électrode et les conditions générales de test. Ces paramètres ont été appliqués aux électrodes à base de Si poreux pour étudier l’impact des propriétés morphologiques (modifiables par traitement thermique) sur les performances du Si en batterie Li-ion. L’étude s’est ensuite tournée vers l’interface électrode/électrolyte. Pour ce faire, la surface du Si a été modifiée par différents enrobages de carbone (carbone amorphe, graphene-like, Pitch). Après la comparaison des tests électrochimiques de l’ensemble de ces électrodes, l’étude s’est portée sur la nature et l’évolution en cyclage de la composition de la SEI de ces électrodes composites à base de Si modifié en surface. De la même manière une étude complète de l’impact du pH de formulation sur les performances a été réalisée
Silicon is one of the most promising active material for the next generation lithium-ion batteries (LiB) negative electrode. Indeed, it exhibits a 10 times higher specific capacity than graphite currently commercialized in batteries. Its low working potential achieves high energy density while limiting the dendrite growth responsible for thermal runaway. Despite its advantages, its intrinsic limits such as low electronic and ionic conductivities and the large volume expansion induced by the formation of the lithiated phases still avoid its incorporation into commercial batteries. Indeed, this active material expansion causes the electrode pulverization, leading to active material electrical isolation and so a low capacity retention in cycling. The active material spraying also induces new interfaces formation in contact with the electrolyte, which induces SEI formation and limited performance. In these work, silicon nanostructuring is proposed to limit active material spraying. Different nanostructures have been studied such as nanowires, nanoparticles and nanoporous silicon materials. On-chip nanowires have been studied, their elaboration method was optimized and their battery performance were tested. Porous silicon electrodes were prepared by electrochemical etching of a Si wafer and studied in composite electrodes. The nanoparticles study, were used to optimize the electrode formulation and the general testing conditions. These parameters were then applied to study the morphological properties (modulated by heat treatment) impact on porous Si-based electrodes performance in Li-ion battery. Afterward, the study focused on the electrode / electrolyte interface, the Si surface was modified by different carbon coatings (amorphous carbon, graphene-like, pitch). The electrochemical performance of these electrodes were compared. The SEI composition and its evolution in cycling was followed. Additionally, a complete study of the pH of the aqueous formulated electrode on the performance of that one was carried out
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Plylahan, Nareerat. „Electrodeposition of Polymer Electrolytes into Titania Nanotubes as Negative Electrode for 3D Li-ion Microbatteries“. Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4049.

Der volle Inhalt der Quelle
Annotation:
Des nanotubes de dioxyde de titane (TiO2nts) sont étudiés comme électrodes négatives potentielles pour des microbatteries Li-ion 3D. Ces TiO2nts lisses et hautement auto-organisés sont élaborés par anodisation du Ti dans des électrolytes organiques à base de glycérol ou d'éthylène glycol contenant des ions fluor et de l'eau en faible quantité. Les structures présentant un diamètre de 100 nm et une longueur variant de 1,5 à 14 µm sont particulièrement appropriés pour l'application visée. Les TiO2nts ont été tapissés de manière conforme par un électrolyte polymère (PMA-PEG) comportant un sel de lithium (LiTFSI) grâce à la technique d'électropolymérisation. Les études morphologiques menées par SEM et TEM ont montré que les nanotubes sont entièrement recouverts d'un film mince polymère de 10 nm d'épaisseur, ce qui permet de préserver la structure 3D de l'électrode. Les tests électrochimiques portant sur les nanotubes seuls ainsi que sur les TiO2nts tapissés d'électrolyte polymère ont été effectués en demi-cellule et en cellule complète en utilisant un électrolyte polymère à base de MA-PEG contenant du LiTFSI. En demi-cellule, les TiO2nts de 1,5 µm de long delivrent une capacité surfacique de 22 µAh cm-2 relativement stable sur 100 cycles. La performance de la demi-cellule est améliorée de 45% à une cinétique de 1C lorsque les TiO2nts sont tapissés de manière conforme par un electrolyte polymère (PMA-PEG). Cet effet résulte d'un meilleur transport de charges lié à l'augmentation de la surface de contact entre l'électrode et l'électrolyte
Titania nanotubes (TiO2nts) as potential negative electrode for 3D lithium-ion microbatteries have been reported. Smooth and highly-organized TiO2nts are fabricated by electrochemical anodization of Ti foil in glycerol or ethylene glycol electrolyte containing fluoride ions and small amount of water. As-formed TiO2nts shows the open tube diameter of 100 nm and the length from 1.5 to 14 µm which are suitable for the fabrication of the 3D microcbatteries. The deposition of PMA-PEG polymer electrolyte carrying LiTFSI salt into TiO2nts has been achieved by the electropolymerization reaction. The morphology studies by SEM and TEM reveal that the nanotubes are conformally coated with 10 nm of the polymer layer at the inner and outer walls from the bottom to the top without closing the tube opening. 1H NMR and SEC show that the electropolymerization leads to PMA-PEG that mainly consists of trimers. XPS confirms the presence of LiTFSI salt in the oligomers.The electrochemical studies of the as-formed TiO2nts and polymer-coated TiO2nts have been performed in the half-cells and full cells using MA-PEG gel electrolyte containing LiTFSI in Whatman paper as separator. The half-cell of TiO2nts (1.5 µm long) delivers a stable capacity of 22 µAh cm-2 over 100 cycles. The performance of the half-cell is improved by 45% at 1C when TiO2nts are conformally coated with the polymer electrolyte. The better performance results from the increased contact area between electrode and electrolyte, thereby improving the charge transport
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Nazer, Rouba Al. „Système de mesure d'impédance électrique embarqué, application aux batteries Li-ion“. Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENT007/document.

Der volle Inhalt der Quelle
Annotation:
La mesure d'impédance électrique en embarqué sur véhicule est un sujet clé pour améliorer les fonctions de diagnostic d'un pack batterie. On cherche en particulier à fournir ainsi des mesures supplémentaires à celles du courant pack et des tensions cellules, afin d'enrichir les indicateurs de vieillissement dans un premier temps, et d'état de santé et de charge dans un second temps. Une méthode classique de laboratoire pour obtenir des mesures d'impédance d'une batterie est la spectroscopie d'impédance électrochimique (ou EIS). Elle consiste à envoyer un signal sinusoïdal en courant (ou tension) de fréquence variable balayant une gamme de fréquences d'intérêt et mesurer ensuite la réponse en tension (ou courant) pour chaque fréquence. Une technique d'identification active basée sur l'utilisation des signaux large bande à motifs carrés est proposée. En particulier, des simulations ont permis de comparer les performances d'identification de différents signaux d'excitation fréquemment utilisés dans le domaine de l'identification et de vérifier les conditions correspondant à un comportement linéaire et invariant dans le temps de l'élément électrochimique. L'évaluation de la qualité d'estimation est effectuée en utilisant une grandeur spécifique : la cohérence. Cette grandeur statistique permet de déterminer un intervalle de confiance sur le module et la phase de l'impédance estimée. Elle permet de sélectionner la gamme de fréquence où la batterie respecte les hypothèses imposées par la méthode d'identification large bande. Afin de valider les résultats, une électronique de test a été conçue. Les résultats expérimentaux permettent de mettre en valeur l'intérêt de cette approche par motifs carrés. Un circuit de référence est utilisé afin d'évaluer les performances en métrologie des méthodes. L'étude expérimentale est ensuite poursuivie sur une batterie Li-ion soumise à un courant de polarisation et à différents états de charge. Des essais comparatifs avec l'EIS sont réalisés. Le cahier de charge établi à l'aide d'un simulateur de batterie Li-ion a permis d'évaluer les performances de la technique large bande proposée et de structurer son utilité pour l'estimation des états de vieillissement et de charge
Embedded electrical impedance measurement is a key issue to enhance battery monitoring and diagnostic in a vehicle. It provides additional measures to those of the pack's current and cell's voltage to enrich the aging's indicators in a first time, and the battery states in a second time. A classical method for battery impedance measurements is the electrochemical impedance spectroscopy (EIS). At each frequency, a sinusoidal signal current (or voltage) of a variable frequency sweeping a range of frequencies of interest is at the input of the battery and the output is the measured voltage response (or current). An active identification technique based on the use of wideband signals composed of square patterns is proposed. Particularly, simulations were used to compare the performance of different excitation signals commonly used for system identification in several domains and to verify the linear and time invariant behavior for the electrochemical element. The evaluation of the estimation performance is performed using a specific quantity: the spectral coherence. This statistical value is used to give a confidence interval for the module and the phase of the estimated impedance. It allows the selection of the frequency range where the battery respects the assumptions imposed by the non-parametric identification method. To experimentally validate the previous results, an electronic test bench was designed. Experimental results are used to evaluate the wideband frequency impedance identification. A reference circuit is first used to evaluate the performance of the used methodology. Experimentations are then done on a Li–ion battery. Comparative tests with EIS are realized. The specifications are established using a simulator of Li-ion battery. They are used to evaluate the performance of the proposed wide band identification method and fix its usefulness for the battery states estimation: the state of charge and the state of health
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Marino, Cyril. „Optimisation de nouvelles électrodes négatives énergétiques pour batteries lithium-ion : caractérisation des interfaces électrode/électrolyte“. Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20175/document.

Der volle Inhalt der Quelle
Annotation:
Ce mémoire est consacré à l'étude de deux matériaux d'électrodes négatives pour batteries Li-ion : NiSb2 et TiSnSb. Ces matériaux de conversion possèdent des capacités presque deux fois supérieures à celle du graphite, actuellement utilisé, mais ils souffrent i) d'une faible cyclabilité causée par les variations volumiques caractéristiques de ce type d'électrode et ii) d'une grande perte de lithium irréversible lors de la 1ère insertion due à la réactivité de surface avec l'électrolyte. Les mécanismes réactionnels avec le lithium ont été étudiés en profondeur par diffraction des rayons X, spectrométrie Mössbauer (119Sn et 121Sb). Les études in situ et ex situ en spectroscopie d'absorption X ont permis d'identifier la formation de nanoparticules de métal de transition très réactives et dont l'instabilité est probablement à l'origine des phénomènes de relaxation observés dans l'électrode à l'état déchargé. L'amélioration des performances a été réalisée grâce à l'élaboration d'électrodes composites contenant des fibres de carbone et de la CMC. Cette formulation d'électrodes permet d'atteindre une cyclabilité de 250 cycles pour TiSnSb à régimes variables entre 4C et C. L'ajout de FEC dans l'électrolyte apparait également comme une solution pour augmenter la durée de vie des électrodes.L'interface électrode/électrolyte a été analysée par Résonance Magnétique Nucléaire, Spectroscopie Photoéletronique à rayonnement X et spectroscopie infrarouge. Li2CO3 est l'espèce majoritairement formée lors de la réduction de l'électrolyte en 1ère décharge (lié à la création de nouvelles surfaces lors de la réaction et à expansion volumique). Lors de la charge, une restructuration (ou fragmentation) de la SEI (couche de passivation) est probable à cause de la contraction de l'électrode. L'épaisseur de la couche de SEI à l'interface continue de croitre après 15 cycles
The thesis is devoted to the study of two negative electrode materials for Li-ion batteries: NiSb2 and TiSnSb. These conversion type materials have high capacities greater than graphite electrode used in current devices. However, these compounds suffer from i) a low cyclability caused by volumetric variations which are characteristic of this type of electrode, and ii) a loss of lithium (irreversible process) during the 1st insertion due to the reduction of the liquid electrolyte on the surface of active material.The mechanisms have been studied by X-Ray Diffraction, Mössbauer Spectroscopy (119Sn and 121Sb). The in situ and ex situ X-ray Absorption Spectroscopy analysis have allowed identifying both the formation of highly reactive Ti and Ni nanoparticles and a relaxation effect in the discharged electrode at 0V. The improvement of performances is based on the composite electrodes formulation using carbon fibers as conductive additive and Carboxymethyl cellulose CMC as binder. A cyclability of 250 cycles at C and 4C rate is reached for TiSnSb electrodes. The addition of Fluoro Ethylene Carbonate (FEC) in the electrolyte is another way to increase the life span of electrodes.The electrode/electrolyte interface has been analyzed by Nuclear Magnetic Resonance, X-ray Photoelectron Spectroscopy and Infrared Spectroscopy. During the discharge, among the species produced from the reduction of electrolyte Li2CO3 is in the majority because new surfaces are created (volumetric expansion). On charge, a fragmentation of the Solid Electrolyte Interphase (SEI) deposited on the surface of the active material grains is observed. Moreover, first XPS investigations have shown that the SEI thickness continuously increases on cycling
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Leveau, Lucie. „Etude de nanofils de silicium comme matériau d'électrode négative de batterie lithium-ion“. Palaiseau, Ecole polytechnique, 2015. https://theses.hal.science/tel-01234963v2/document.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Nadeau, Jonathan. „Effets du vieillissement de la batterie Li-ion sur les performances d'un véhicule récréatif hybride branchable à trois roues“. Mémoire, Université de Sherbrooke, 2013. http://hdl.handle.net/11143/6197.

Der volle Inhalt der Quelle
Annotation:
La prédiction de l'évolution du vieillissement de la batterie lithium-ion est source d'un grand défi, dans les applications liées aux véhicules électriques et hybrides. Sa méconnaissance est un risque considérable compromettant la viabilité d'un tel système. Invoquant les coûts substantiels de la densité d'énergie, liée à la dégradation considérable des performances de la batterie au cours de sa durée de vie, il devient important d'en tenir compte dès le processus de conception. La dépendance de la stratégie de contrôle du véhicule aux paramètres de la batterie justifie aussi la nécessité d'une telle prédiction. Il est connu que le vieillissement, sensible aux facteurs tels que le courant, la température et la profondeur de décharge, a un impact considérable sur la perte de capacité de la batterie ainsi que sur l'augmentation de la résistance interne. Le premier est directement lié à l'autonomie électrique du véhicule, alors que le second mène à une surchauffe de la batterie, à une augmentation des pertes en puissance qui se manifeste par une diminution de la tension de bus. À cet égard, impliqué dans la conception d'un véhicule récréatif hybride branchable à trois roues, le Centre de Technologies Avancées s'intéresse à l'étude du vieillissement de la batterie Li-ion pour une telle application. Pour ce faire, au contraire de la plupart des estimations empiriques de la durée de vie, basées sur des profils de décharge à courant constant, un profil de courant plus approprié pour l'application donnée, basé sur un cycle de vitesse représentatif de la conduite d'une motocyclette, a été utilisé. Par le biais d'un simulateur complet du véhicule, le cycle de courant a été extrait du cycle de vitesse. Ainsi, les travaux menés impliquent l'analyse expérimentale de la décharge cyclique de quatre cellules LiFePO 4 . Pendant plus de 1400 cycles, un banc d'essai complet a permis l'acquisition de la capacité, de la résistance interne, du courant, de la tension ainsi que de la température de surface. [symboles non conformes]
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Xiong, Bao Kou. „Quantification des gaz générés lors du fonctionnement d'une batterie Li-ion : effet des conditions opératoires et rôle de l'électrolyte“. Thesis, Tours, 2018. http://www.theses.fr/2018TOUR4003/document.

Der volle Inhalt der Quelle
Annotation:
Le fonctionnement des batteries lithium-ion, qu’il soit normal ou dans des conditions abusives, est accompagné d’une génération de gaz en particulier lors des premiers cycles. Celle-ci est intrinsèque au dispositif et est soumise à de nombreux paramètres tels que les matériaux d’électrodes utilisés, l’électrolyte ou encore les conditions opératoires. Cette génération de gaz est délétère : elle conduit à l’augmentation de la pression interne des batteries et pose donc des problèmes de sécurité. Cette étude vise à quantifier les volumes de gaz générés et à comprendre les mécanismes liés à la surpression dans les batteries. A cet effet, le format de batterie « pouch cell » a été adopté tout au long de ce travail de thèse. L’électrolyte choisi est le mélange EC:PC:3DMC + 1 mol.L-1 LiPF6. La première partie de ce travail est dédiée à la mise au point d’un protocole expérimental basé sur (i) l’analyse des matériaux d’électrodes (NMC, LFP, Gr, et LTO), (ii) la solubilité de gaz (O2, H2) comparées à (CO2, CH4) par PVT, et (iii) la quantification des volumes de gaz générés durant le cyclage en pouch cell, corrélée aux performances électrochimiques. Une analyse préalable en demi-piles et en dispositifs complets Gr//NMC et LTO//LFP a également été réalisée afin d’anticiper les performances attendues en pouch cells. Une analyse critique des données (de la littérature et de nos mesures) a permis de définir une procédure optimisée pour obtenir des résultats reproductibles et comparables lors des mesures de volume en pouch cells. La seconde partie de cette thèse consiste en la quantification du volume de gaz produit au cours du cyclage des pouch cells Gr//NMC, Gr//LFP, LTO//LFP et LTO//NMC. Ainsi, les tensions de fin de charge, l’effet du sel et de la température ont été discutés pour dégager les paramètres déterminants dans la génération de gaz en particulier lors de la formation de la SEI. Enfin, une analyse de la composition du gaz récupéré a été effectué par GC-MS et FTIR. A partir de résultats obtenus, des mécanismes ont été proposés et discutés
The functioning of lithium-ion batteries, may it be under normal use or under abusive conditions, is accompanied by gas generation, especially during the first cycles. This extent of gas generation is dependent on the choice of electrode materials, the electrolyte, and the operating conditions. This gas generation is detrimental: the build-up of pressure leads to the over-pressure in the battery, raising serious concerns. This study is aimed at understanding the fundamental mechanisms governing these reactions. To do so, the « pouch cell » configuration was adopted throughout this thesis. The electrolyte we worked on is the mixture EC:PC:3DMC + 1 mol.L-1 LiPF6. The first chapter of this work is dedicated to development of an experimental protocol based on (i) the analysis of the electrodes materials (NMC, LFP, Gr and LTO), (ii) the gas solubilities (O2, H2) compared to (CO2, CH4) by PVT method, and (iii) the quantification of the volume of generated gases during the cycling of pouch cells which was correlated to the electrochemical performances. A preliminary analysis of half-cells and full cells Gr//NMC and LTO//LFP were also conducted to foresee the performances of the pouch cells. A critical analysis of data taken from the literature and from our own experiments enabled the optimization of a proper procedure to get reproducible and comparable results. The second part of this thesis consists in the quantification of the volume of gases generated during the cycling of Gr//NMC, Gr//LFP, LTO//LFP and LTO//NMC pouch cells. In that respect, the voltages of the end of charge and the effect of salt and of temperature were discussed to figure out the essential parameters in the gas generation and in particular during the formation of SEI. Lastly, a compositional analysis of gases was performed using GC-MS and FTIR. Based on those results, a mechanism is proposed and discussed herein
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Soulmi, Nadia. „Mise au point de nouveaux procédés d'élaboration en milieu liquide ionique de nanomatériaux à base d'étain en vue de leur utilisation comme électrode négative de batterie Li-ion“. Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066520/document.

Der volle Inhalt der Quelle
Annotation:
L’étain est une alternative privilégiée en remplacement du carbone graphite comme matériau d’électrode négative dans les batteries Li-ion en raison de son importante capacité théorique spécifique massique de 993 mAh.g-1. Toutefois son expansion volumique lors sa lithiation conduit à sa dégradation au cours du cyclage, diminuant la durée de vie du matériau. Pour pallier à sa pulvérisation, l’utilisation de l’espace inter-granulaire via la nanostructuration du matériau est complétée par l’adjonction d’une matrice carbonée ou d’un autre élément inactif vis-à-vis de la lithiation (utilisation d’alliages intermétalliques). L’objectif de ce travail porte sur l’élaboration de nouveaux procédés de synthèse de nanoparticules d’étain et d’alliage étain-cuivre en milieu liquide ionique. Des nanoparticules de Sn de taille variant de 7 à 45 nm, selon la combinaison cation-anion du liquide ionique et à partir de différents sels métalliques, ont été synthétisées, ainsi qu’un nano-alliage, le composé Cu6Sn5. La taille des nanoparticules est liée à la nature de l’anion bien que le cation présente une interaction privilégiée avec la surface métallique des nanoparticules. Isolées du liquide ionique, les nanoparticules de Sn et Cu6Sn5 montrent une architecture de type cœur-coquille avec un cœur cristallin métallique ou intermétallique et une coquille amorphe d’oxydes d’étain. Les nanoparticules de type Sn@SnOx présentent une capacité spécifique élevée supérieure à 950 mAh.g-1, mettant en lumière un mécanisme de conversion réversible du SnOx surfacique, et celle du nano-alliage Sn-Cu@SnOx est proche de la capacité attendue pour un mécanisme d’alliage, à plus de 530 mAh.g-1
Tin is a promising alternative to replace graphite carbon as a negative electrode material in Li-ion batteries due to its high specific theoretical mass capacity of 993 mAh.g-1. However, change in volume during lithiation leads to its mechanical degradation during the cycling, and consequently very short life of the material. To overcome this issue, the use of the intergranular space via the nanostructuration of the material combined by the addition of a carbon matrix or other inactive element vs. lithium (intermetallic alloys), which buffers drastically the volume expansion during the lithium alloying process, is employed. The aim of this work is to develop new processes for the synthesis of tin nanoparticles and tin-copper alloys in ionic liquid medium. Sn nanoparticles varying in size from 7 to 45 nm were synthesized, according to the cation-anion combination of the ionic liquid and from different metallic salts, as well as a nano-alloy compound, Cu6Sn5. The size of the nanoparticles is directly related to the nature of the anion although the cation has a privileged interaction with the metal surface of the nanoparticles. Once isolated from the ionic liquid, Sn and Cu6Sn5 nanoparticles have a core-shell architecture with a metallic or intermetallic crystalline core and an amorphous shell of tin oxides. A reversible conversion mechanism of the SnOx from the shell is highlighted for Sn@SnOx nanoparticles, with a high specific capacity of approximately 950 mAh.g-1. Sn-Cu@SnOx nano-alloys have a capacity close to the theoretical for an alloy mechanism at more than 530 mAh.g-1
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Brazier, Adrien. „Premiers pas vers l'observation in situ dans un Microscope Electronique en Transmission d'une batterie en cours de cyclage électronique“. Amiens, 2009. http://www.theses.fr/2009AMIE0123.

Der volle Inhalt der Quelle
Annotation:
Les batteries Li-ion sont devenues des vecteurs de stockage de l'énergie particulièrement adaptés à l'avènement des très nombreuses applications portables. Dans le but d'améliorer et de rendre plus sûrs ces vecteurs, il est impératif de pouvoir comprendre et caractériser de la manière la plus précise les matériaux les constituant et les interfaces les séparant. Pour cela, l'utilisation d'outils puissants et adaptés, comme la Microscopie Electronique en Transmission (MET), est essentielle, notamment depuis l'apparition de matériaux ayant une architecture à l'échelle nanométrique. Fort de ce constat, nous avons tenté de réaliser la première observation in situ dans un MET d'une batterie en cours de cyclage électrochimique. La première partie de ce manuscrit est dédiée à la présentation de la stratégie utilisée. En effet, les nombreuses difficultés liées à la fois à l'environnement du MET et à la nature même d'une batterie, nous ont forcé à faire des choix, comme l'utilisation d'une microbatterie Li-ion tout solide. Le deuxième chapitre est lui consacré au procédé de fabrication de ces microbatteries tout solide, avec notamment la synthèse et la caractérisation de chacun des matériaux actifs constitutifs. La troisième partie décrit les résultats de la première observation ex situ par MET d’une "nanobatteries" obtenue par découpe d'une microbatterie à l'aide d'un faisceau d'ions focalisés (FIB) dans un MEB à double faisceaux. Les analyses par MET entre des coupes de batteries après dépôt et ayant subi un cyclage électrochimique ont permis de mettre en évidence, pour la première fois, de nombreux dommages ou des mécanismes de détérioration des interfaces. Les premiers essais n'ayant pas permis de réaliser les premiers tests de cyclage in situ dans un MET, plusieurs modifications ont dû être opérées, qui sont présentées dans le dernier chapitre. Ce nouveau design a permis d'expérimenter un cyclage in situ et de mettre en lumière les derniers challenges à relever
Li-ion batteries are energy storage devices that are suitable for portable applications and support the need of using intrinsically diffuse/intermittent renewable energy sources. In order to improve such devices and make them safer, it is crucial to understand and characterize in the most accurate way the constitutive materials and their interfaces. To do so the use of powerful tools, like Transmission Electron Microscope (TEM), is essential especially since nano-architectured materials have been developed. On this basis our project relates to the in situ study of an electrochemical system under operation within a TEM. The first part of this manuscript is devoted to the strategy of the study. Indeed, the technological issues inherent to both the TEM technique and the battery forced us to make some choices like the use of an all solid-state microbattery. The fabrication process of a microbattery, including the synthesis and the study of each active material, is detailed in the second chapter. The third part describes the solutions suggested to solve some of the technological issues encountered. We thus demonstrated the first ex situ TEM observation of "nanobatteries" obtained by cross-sectioning a microbattery using focus ion beam (FIB) in a dual beam SEM. Then, TEM analyses between pristine, cycled, and faulted all solid-state batteries have revealed drastic changes, damages or deterioration mechanisms, never highlighted previously. Since it was not possible during the previous experiments to achieve an in situ TEM observation of "nanobatteries" cycled within the microscope, we describe in the last chapter all the configuration modifications made. The new design of the samples allowed us to experiment live in situ TEM cycling and to reveal the last challenges that have to be faced
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Li, Wei. „Sol-gel synthesis of TiO2 anatase in a fluorinated medium and its applications as negative electrode for Li+ and Na+ batteries“. Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066238/document.

Der volle Inhalt der Quelle
Annotation:
Le dioxyde de titane (TiO2) est un matériau polyvalent qui présente des propriétés intéressantes allant de la catalyse au stockage et conversion d'énergie. Afin d'améliorer ses propriétés physico-chimiques, plusieurs approches ont été appliquées telles que, la réduction de la taille des particules, modification de la morphologie, le dopage par d'autres éléments. Dans cette thèse, une nouvelle méthode de synthèse basée sur la chimie de sol-gel est développée en milieu fluoré. Les anions divalents de O2- dans TiO2 anatase sont substitués par anions monovalents de F- et OH-, le déficit de charge négative est compensée par la création simultanée de lacunes cationiques dont la concentration peut être réglés par la température de réaction. La nouvelle famille de matériaux polyanioniques a la composition générale de Ti1-x-y•x+yO2-4(x+y)F4x(OH)4y avec de lacune cationique jusqu’à 22 %. Le matériau considérablement dopé maintient son réseau cristallin original et montre une structure locale unique. Son mécanisme de formation est étudié à l'échelle atomique. Les effets des paramètres de synthèse sur la structure, la morphologie et la composition chimique de la phase obtenue sont étudiés en détail. Lorsqu'il est utilisé comme anode pour batteries aux ions lithium, l'anatase fluorée lacunaire montre des performances supérieures pour le stockage de lithium, surtout à haute régime de charge/décharge. La présence de lacune modifie le mécanisme d'insertion du lithium par rapport à TiO2 anatase stœchiométrique: une réaction de solution solide a été trouvé à la place une réaction diphasique, soulignant l'impact de la modification de la structure sur les propriétés électrochimiques vis-à-vis au Li+. Enfin, le mécanisme d'insertion de sodium dans anatase stœchiométrique et lacunaire est étudié. Des aperçus sans précédent sont acquis pour la réaction d’insertion de Na+
Titanium dioxide (TiO2) is a multifunctional material and presents promising properties ranging from catalysis to energy storage and conversion. In order to obtain enhanced physico-chemical properties, several approaches were applied such as, reducing particle sizes, modifying morphology, doping with other elements. In this thesis, a new synthesis method based on sol-gel chemistry is developed in fluorinated medium. The divalent O2- in TiO2 anatase is substituted by monovalent F- and OH- anions, the deficiency of negative charge is counterbalanced by the simultaneous formation of cationic Ti4+ vacancies (•) which can be tuned by the reaction temperature. The new family of polyanionic materials has the general composition of Ti1-x-y•x+yO2-4(x+y)F4x(OH)4y with up to 22 % of cationic vacancies. The drastically doped material keeps its original crystalline network and shows unique local structure. Its formation mechanism is investigated at atomic scale. The effects of synthesis parameters on structure, morphology and chemical composition of the resulting phase are studied in details. When used as anode for lithium-ion batteries, the cation-defected fluorinated anatase shows superior lithium storage performance, especially at high charge/discharge rate. The presence of vacancy modifies lithium insertion mechanism compared to stoichiometric TiO2 anatase: a solid solution reaction was found instead a well-known two-phase reaction, highlighting the impact of structure modification on the electrochemical properties vs. Li+. Sodium insertion mechanism into stoichiometric and defective anatase are studied at the last. Unprecedented insights into Na+ insertion reaction are gained
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Lepoivre, Florent. „Study and improvement of non-aqueous Lithium-Air batteries via the development of a silicon-based anode“. Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066326/document.

Der volle Inhalt der Quelle
Annotation:
Face aux défis du XXIème siècle concernant l'approvisionnement mondial en énergie et le réchauffement climatique, il est capital de développer des systèmes de stockage d'énergie efficaces et compétitifs. Parmi eux, la technologie Lithium-Air fait l'objet de nombreuses recherches car elle présente une densité d'énergie théorique dix fois supérieure à celle des batteries Li-ion actuellement utilisées, mais la complexité des réactions chimiques mises en jeu la cantonne au stade de la recherche. Afin d'étudier de manière fiable et reproductible les batteries Li-Air, une nouvelle cellule de test électrochimique intégrant un capteur de pression a été développée. Elle permet d'estimer la quantité de réactions parasites associées à une configuration de batterie lors du cyclage à court et long terme (> 1000 h). Une étude comparative des différents électrolytes les plus utilisés a été réalisée, révélant la différence de comportement entre ces différentes espèces ainsi que l'instabilité de l'anode composée de lithium métallique. Nous avons donc abordé le remplacement de l'anode de lithium par une électrode de silicium pré-lithié. En étudiant l'influence de différentes techniques de pré-lithiation sur des électrodes contenant des particules de Si oxydées en surface, un phénomène de réduction de SiO2 en Si a été mis en évidence, apportant ainsi un gain substantiel en capacité. Les électrodes " activées " ont ensuite été utilisées en tant qu'anode dans les cellules complètes LixSi-O2. Après optimisation, la durée de vie obtenue est supérieure à 400 h (> 30 cycles), ce qui est comparable à la littérature actuelle mais toutefois limité par la présence de réactions parasites
Supplying the world energy demand while reducing the greenhouse gases emissions is one of the biggest challenges of the 21st century; this requires the development of efficient energy storage devices enabling the utilization of renewable energies. Among them, Lithium-Air batteries are very attractive due to their high theoretical energy density – 10 times that of the current Li-ion batteries – but their development is hindered by the complexity of the chemistry at play. In order to understand such chemistry, we designed a new electrochemical test cell that integrates a pressure sensor, thereby enabling an accurate in operando monitoring of the pressure changes during charge/discharge with high reproducibility and sensitivity. Its use is demonstrated by quantifying the parasitic reactions in Li-O2 cells for various electrolytes frequently encountered in the literature. Through this comparative study, we are able to observe the phenomena currently limiting the performances of Li-O2 batteries after a long cycling (> 1000 h), such as parasitic reactions and the instability of the Li anode. To address the later issue, Li was replaced by a prelithiated silicon electrode made of Si particles oxidized in surface. We demonstrated the feasibility of enhancing both their capacity and cycle life via a pre-formatting treatment that triggers the reduction of their SiO2 coating by liberating pure Si metal. The full LixSi-O2 cells using such treated electrodes exhibit performances competing with the best analogous systems reported in the literature (> 30 cycles; more than 400 h of cycling), but the development of practical prototypes still requires to improve the cycle-life
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Pagot, G. „Electrode and electrolyte materials for the development of high voltage lithium-ion batteries and secondary batteries based on alkali and alkaline-earth ions“. Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3426843.

Der volle Inhalt der Quelle
Annotation:
The research activity described in this thesis has been focused on the development and study of novel electrolyte and electrode materials for application in Lithium and Magnesium secondary batteries. The proposed materials belong to the “beyond Li-ion” class of compounds, where systems exceeding the energy density values of classic Li-ion batteries or completely innovative chemistries are presented. Three different classes of electrolytes have been prepared and studied. A solid polymer electrolyte has been obtained by a lithium functionalization of a poly(vinyl alcohol-co-vinyl acetate), forming lithium alkoxide functional groups. In this way, the counter anion of Li+ was the overall polymer chain, giving rise to a single lithium ion conductivity. However, the room-temperature conductivity value observed for this material was quite low (4.6·10-10 S·cm-1). By ionic liquid (IL) doping of the solid polymer electrolyte, we have obtained a double effect: i) lithium cations have been exchanged by the cations of IL, enhancing the mobility of the active species; and ii) the flexibility of polymer chains has been increased by the plasticizing effect of the IL. Thus, a room temperature conductivity of 1.3·10-5 S·cm-1 has been reached, maintaining a high value of Li transference number (0.59). By reacting glycerol with different quantities of lithium hydride, a new family of lithium-ion conducting electrolytes has been synthetized. In these electrolytes the lithium glycerolate component acts as a large and flexible macro-anion which is able to provide a singleion conductivity to the material (2.0∙10-4 at 30 °C and 1.6∙10-2 S∙cm-1 at 150 °C). In the last class of electrolytes, ionic liquid-based materials for magnesium batteries, the cation and anion replacement effect on the structure, conductivity mechanism, and electrochemical performances has been studied. The proposed materials have exhibited a conductivity value between 10-3 and 10-4 S∙cm-1, an overpotential in the magnesium deposition lower than 50 mV vs. Mg/Mg2+, an anodic stability up to +2.35 V vs. Mg/Mg2+, and a coulombic efficiency up to 99.94 %. In the second part of this Ph.D. project, the improvement of the electrochemical features of various cathode materials has been studied. In the first case, it has been found that, by adding CuCO3 to the precursors, segregated CuO particles have been formed. The presence of these particles has improved the charge-transfer kinetics during the charge/discharge processes of the cathode material. On the other hand, graphite addition to the precursors has been found to improve the elasticity of the 3D structure of the cathode backbone. Thus, an increased structural flexibility that facilitates the percolation of lithium ions along the 1D channels of the cathode material has been observed. In the second approach, the improvement of the electron conductivity of a high-voltage cathode has been gauged by V, Nb, or Ta insertion within its olivine structure. This approach has allowed for an improved kinetic and reversibility of Li+ insertion reaction. The specific capacity reached by these cathodes was equal to 149 mAh∙g-1. The last cathode material has been implemented in a magnesium secondary battery device. A graphene oxide surface functionalization of vanadium-based nanoparticles has been obtained thanks to electrostatic interactions through ammonium bridges. This functionalization has allowed for the obtaining of a material able to: a) sustain extremely high current rates (1000 mA∙g-1, 1700 mW∙g-1 of specific power); and b) give reasonable specific capacity values (72 mAh∙g-1).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Bodenes, Lucille. „Etude du vieillissement de batteries lithium-ion fonctionnant à haute température par Spectroscopie Photoélectronique à rayonnement X (XPS)“. Thesis, Pau, 2012. http://www.theses.fr/2012PAUU3050/document.

Der volle Inhalt der Quelle
Annotation:
Les accumulateurs lithium-ion occupent aujourd’hui une place prédominante dans le domaine du stockage de l’énergie. Leur fonctionnement et les phénomènes impliqués dans leur vieillissement sont relativement bien connus, aux températures d’utilisation proches de la température ambiante. Cependant, leur utilisation dans le cadre d’applications dites « haute température », telles que le forage pétrolier, la stérilisation « in situ » ou la géolocalisation, nécessite la levée de certains verrous techniques : la stabilité de l’électrolyte et des liants d’électrodes, la compatibilité électrolyte/séparateur, le vieillissement des matériaux et l’évolution des interfaces. Les accumulateurs sélectionnés pour ces travaux de thèse sont constitués d’un matériau lamellaire de type Li(Ni,Mn,Co)O2 pour l’électrode positive, et de graphite pour l’électrode négative. Afin de décrire les phénomènes de vieillissement associés à une telle utilisation, des analyses de surface ont été menées par Spectroscopie Photoélectronique à rayonnement X sur les électrodes issues d’accumulateurs cyclés à haute température. Ces analyses ont permis de mettre en évidence la dégradation du liant de l’électrode positive et l’évolution des interfaces électrodes/électrolyte à 85 et 120°C, et d’améliorer le choix des composants des batteries pour de meilleures performances à haute température
Nowadays, lithium-ion batteries occupy a prominent place in the field of energy storage. Phenomena involved in their aging mechanisms are quite well known for operating temperatures close to room temperature. However, their use at high temperatures for applications such as oil drilling, "in situ" sterilization or freight tracking requires some technical issues to be improved: stability of the electrolyte and electrode binders, compatibility electrolyte / separator, aging of active materials and changes of the interfaces. The batteries selected for this thesis consist of a Li(Ni,Mn,Co)O2 lamellar material at the positive electrode and graphite at the negative electrode. To describe aging phenomena related to high temperature, surface analyzes were carried out by X-ray Photoelectron Spectroscopy on the electrodes of batteries cycled at 85 and 120°C. These analyzes reveal the degradation of the positive electrode’s binder, and the changes of electrodes/electrolyte’s interfaces at high temperature compared to ambient temperature
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Maillard, Florian. „Méthodologie de diagnostic des batteries Li-ion par la mesure des bruits électrochimiques“. Thesis, Poitiers, 2015. http://www.theses.fr/2015POIT2302.

Der volle Inhalt der Quelle
Annotation:
Ce travail concerne les fluctuations électrochimiques de tension des batteries Li-ion, communément appelées bruit électrochimique.L'idée est d'utiliser la mesure de bruit électrochimique en fonctionnement pour générer, via du traitement de signal, des descripteurs statistiques permettant de caractériser le SOH (état de santé). L'objectif consiste à développer une méthode innovante de diagnostic non intrusif permettant de compléter les méthodes traditionnelles (impédancemétrie,...).DCNS St-Tropez a participé et compte développer cette approche dans le cadre d'une application d'alimentation d'armes sous-marines, qui nécessite un très haut niveau de sécurité et de fiabilité. La mesure de bruit des batteries Li-ion est difficile à cause des très bas niveaux du signal et nécessite des appareils performants. Nous avons installé une chaîne de mesure permettant d'acquérir les fluctuations de tension en décharge. Puis nous avons extrait le bruit grâce à une méthode numérique robuste. La tension de décharge est non-stationnaire, ce qui nécessite un traitement spécifique. L'analyse à court-terme par les moments d'ordre 2, 3 et 4 montre qu'il y a trois zones dans lesquelles les bruits sont complètement différents. Le milieu de la décharge présente une répartition uniforme caractérisé par une forme en V (minimum à SOC = 55%), des structures cohérentes tempo-fréquentielles sur les bords révélées par l'analyse en ondelettes. Notre modèle permet de trouver les sources de bruit prépondérantes et d'identifier les paramètres responsables du bruit électrochimique. Les applications futures concernent la caractérisation du vieillissement et la qualité de fabrication des batteries
This work concerns the electrochemical voltage fluctuations Li-ion batteries, commonly known as electrochemical noise. The idea is to use the electrochemical measurement noise in operation to generate, via signal processing, statistical descriptors to characterize the SOH (health). The objective is to develop an innovative method noninvasive diagnostic to complement traditional methods (impedance,...). DCNS St Tropez has participated and intends to develop this approach in the context of an arms supply subsea application, which requires a very high level of security and reliability. The measurement of Li-ion batteries is difficult because of very low signal levels and requires efficient appliances. We installed a measurement system for acquiring voltage fluctuations landfill. Then we extracted noise due to robust numerical method. The discharge voltage is non-stationary, which requires a specific treatment. The short-term analysis by moments of order 2, 3 and 4 shows that there are three areas in which the noises are completely different. The middle of the discharge has a uniform distribution characterized by a V-shape (minimum to SOC = 55 %), tempo-frequency coherent structures on the edges revealed by wavelet analysis. Our model allows to find the predominant noise sources and identify the parameters responsible for the electrochemical noise. Future applications include the characterization of aging and quality of manufacture of batteries
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie