Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Batterie au Li“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Batterie au Li" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Batterie au Li"
Do, Dinh Vinh, Christophe Forgez, Khadija El Kadri Benkara und Guy Friedrich. „Surveillance temps réel de batterie Li-ion“. European Journal of Electrical Engineering 14, Nr. 2-3 (30.06.2011): 383–97. http://dx.doi.org/10.3166/ejee.14.383-397.
Der volle Inhalt der QuelleHörpel, G., P. Pilgram und M. Winter. „Moderne Li-Ionen-Batterie-Komponenten: Gegenwart und Zukunft“. Chemie Ingenieur Technik 80, Nr. 9 (September 2008): 1241. http://dx.doi.org/10.1002/cite.200750844.
Der volle Inhalt der QuelleZhao-Karger, Zhirong, und Maximilian Fichtner. „Exploring Battery Materials for Ca Batteries“. ECS Meeting Abstracts MA2023-02, Nr. 4 (22.12.2023): 639. http://dx.doi.org/10.1149/ma2023-024639mtgabs.
Der volle Inhalt der QuelleMathialagan, Kowsalya, Saranya T, Ammu Surendran, Ditty Dixon, Nishanthi S.T. und Aiswarya Bhaskar. „(Digital Presentation) Development of Bifunctional Oxygen Electrocatalysts for Electrically Rechargeable Zinc-Air Batteries“. ECS Meeting Abstracts MA2022-02, Nr. 4 (09.10.2022): 403. http://dx.doi.org/10.1149/ma2022-024403mtgabs.
Der volle Inhalt der QuelleHao, Shuai. „Studies on the Performance of Two Dimensional AlSi as the Anodes of Li Ion Battery“. Solid State Phenomena 324 (20.09.2021): 109–15. http://dx.doi.org/10.4028/www.scientific.net/ssp.324.109.
Der volle Inhalt der QuelleYuan, Yuan. „Comparative Studies on Monolayer and Bilayer Phosphorous as the Anodes of Li Ion Battery“. Key Engineering Materials 896 (10.08.2021): 61–66. http://dx.doi.org/10.4028/www.scientific.net/kem.896.61.
Der volle Inhalt der QuelleKotobuki, Masashi. „Recent progress of ceramic electrolytes for post Li and Na batteries“. Functional Materials Letters 14, Nr. 03 (18.02.2021): 2130003. http://dx.doi.org/10.1142/s1793604721300036.
Der volle Inhalt der QuelleMossaddek, Meriem, El Mehdi Laadissi, Chouaib Ennawaoui, Sohaib Bouzaid und Abdelowahed Hajjaji. „Enhancing battery system identification: nonlinear autoregressive modeling for Li-ion batteries“. International Journal of Electrical and Computer Engineering (IJECE) 14, Nr. 3 (01.06.2024): 2449. http://dx.doi.org/10.11591/ijece.v14i3.pp2449-2456.
Der volle Inhalt der QuelleBao, Wurigumula, und Ying Shirley Meng. „(Invited) Development and Application of Titration Gas Chromatography in Elucidating the Behavior of Anode in Lithium Batteries“. ECS Meeting Abstracts MA2023-01, Nr. 2 (28.08.2023): 633. http://dx.doi.org/10.1149/ma2023-012633mtgabs.
Der volle Inhalt der QuelleYounesi, Reza, Gabriel M. Veith, Patrik Johansson, Kristina Edström und Tejs Vegge. „Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S“. Energy & Environmental Science 8, Nr. 7 (2015): 1905–22. http://dx.doi.org/10.1039/c5ee01215e.
Der volle Inhalt der QuelleDissertationen zum Thema "Batterie au Li"
Idolo, Eugenio. „Modellazione di batterie Li-ione mediante circuiti elettrici“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Den vollen Inhalt der Quelle findenHémery, Charles-Victor. „Etudes des phénomènes thermiques dans les batteries Li-ion“. Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00968666.
Der volle Inhalt der QuelleLu, Xueyi. „Architectural Nanomembranes as Cathode Materials for Li-O2 Batteries“. Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-228120.
Der volle Inhalt der QuelleFIORE, MICHELE. „Nanostructured Materials for secondary alkaline ion batteries“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/262348.
Der volle Inhalt der QuelleThanks to their superior energy and power density, lithium-ion batteries (LIBs) currently dominate the market of power sources for portable devices. The economy of scale and engineering optimizations have driven the cost of LIBs below the 200 $/KWh at the pack level. This catalyzed the market penetration of electric vehicles and made them a viable candidate for stationary energy storage. However, the rapid market expansion of LIBs raised growing concerns about the future sustainability of this technology. In particular, lithium and cobalt supplies are considered vulnerable, primarily because of the geopolitical implications of their high concentration in only a few countries. In the search for the next generation secondary batteries, known as post-lithium ion batteries, candidates that do not use rare metals have been extensively investigated in the last 10 years. Sodium-ion batteries (SIBs) attracted considerable attention thanks to the high abundance of the precursors and wide distribution of sodium on the earth's crust. As a matter of fact, as it will be pointed out during the dissertation, it is not straightforward to allocate the reduction of the price of the alkaline ion precursors to the reduction of the battery price. However, the difficulties in the supply of raw materials for LIBs, such as shortages in lithium carbonates and cobalt ores, could make lithium and cobalt-free systems, such as SIBs, attractive and cost-competitive alternatives. Compared to other, more exotic chemistries including Ca2+, Mg2+ and Al3+ batteries, SIBs are nowadays considered one as the most promising alternative to LIBs. Despite the extensive research, anode materials for SIBs still represent a serious problem for the commercial exploitation of this technology. Accordingly, the doctoral research on SIBs has been focused on anode materials. In particular, the attention was directed towards conversion oxides. Compared to intercalation materials, conversion-based ones have higher capacities but are more challenging to deal with because of the high volume variation during cycling. This challenge was addressed by material's nanostructuring and morphology control which proved to significantly reduce the pulverization of the active material. Different anode candidates have been studied during the doctoral work. Cobalt oxide nanofibers have been here explored as a first prototype for conversion materials in sodium ion batteries. The sodiation-desodiation mechanism is analyzed by means of ex situ XRD which led to a deeper understanding of the conversion reaction in SIBs. A cost-effective and environmentally benign alternative based on iron oxide is then considered. The limits of iron (III) oxide are tackled by combining the advantages of the nanostructuring and the doping with an aliovalent element. Si-doped Fe2O3 nanofibers are synthesized via an easy scalable process based on the electrospinning method. It is found that Si-addition improves the transport properties as well as induces changes in the crystal structure and morphology. In the final section of the thesis, potassium-ion batteries (KIBs) are examined as a promising alternative to sodium ion batteries. KIBs exhibit all the benefits of SIBs, with the additional advantage that graphite, can reversibly accommodate K-ions. On the positive side, Potassium manganese hexacyanoferrate (KMnHCF), has been reported to provide high operating voltages and satisfactory capacity retention. The proposed research activity presents the use of an ionic liquid based electrolyte compatible with the most promising anode and cathode for KIBs. In addition, a high-throughput optimization of the KMnHCF synthesis is reported. The selected candidates are then fully characterized, and their electrochemical properties investigated. The optimized material exhibits the highest ever reported coulombic efficiency for the KMHCF. This find, opens up the possibility of highly efficient, high energy potassium ion batteries.
Celasun, Yagmur. „Synthèse et caractérisation de nouveaux matériaux d'électrode positive pour des applications Li-ion à haute énergie“. Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALI047.
Der volle Inhalt der QuelleThis thesis focuses on the development of overlithiated disordered rocksalts for high-energy Li-ion systems. Firstly, synthesis parameters have been optimized to improve the performances of the disordered rocksalt Li2.2NiTi0.2Nb0.6O4. To examine its high irreversibility (35%) at the first cycle, in situ advanced structural and electrochemical analyses have been performed. Results show that a structural change and disordering happen during the first charge. In a second part, the disordered rocksalt Li2TiS3 has been prepared with our patented process. To improve cycling stability of the cells, Li2TiS3 has been partially substituted with selenium and new Li2TiSexS3-x compositions have been prepared. Li2TiSexS3-x cells have large discharge capacities at slightly lower potentials. Reversible sulfur redox activity is confirmed by electrochemistry and ex situ surface analyses, however further characterizations are required to elucidate the relatively complex selenium redox process
Tonin, Guillaume. „Caractérisation operando des accumulateurs Li/S par tomographie d’absorption et diffraction des rayons X, vers une meilleure compréhension des mécanismes électrochimiques“. Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI036/document.
Der volle Inhalt der QuelleThe main objective was to identify the degradations phenomena and the limiting processes occurring while cycling Li/S accumulators to therefore put in relation the electrode morphology, the cell design, the electrochemical performances and the degradations phenomena. A new design of operando cell has been developed to be suitable with ESRF experiments. Operando Absorption and X-ray Diffraction tomography technics were performed. Thanks to both technics, the morphological changes and transport limitation kinetics along the 3D positive electrode have been evidenced. In addition, the lithium electrode/electrolyte interface has been characterized and heterogeneous stripping/plating has been evidenced, leading to low electrochemical performances while cycling
Marchal, Laureline. „Développement d'une nouvelle technologie Li-ion fonctionnant en solution aqueuse“. Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00728179.
Der volle Inhalt der QuelleBertasi, Federico. „Advanced Materials for High-Performance Secondary Li and Mg Batteries“. Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3424613.
Der volle Inhalt der QuelleAl fine di ottenere sistemi di accumulo di energia elettrica sempre più performanti, l'attività di ricerca qui descritta, è focalizzata sullo studio di elettroliti e materiali catodici per applicazioni in batterie al litio e magnesio. I materiali vengono sintetizzati attraverso sintesi in atmosfera inerte e caratterizzati con diverse tecniche quali: analisi termogravimetrica (TGA), calorimetria a scansione differenziale (DSC), spettroscopie vibrazionali (FT-MIR, FT-FIR, Raman), NMR di stato solido, diverse tecniche elettrochimiche (voltammetria ciclica, cronoamperometria, impedenza elettrochimica) e spettroscopia elettrica a banda larga. I risultati sono utilizzati per studiare l'interazione tra la struttura e il meccanismo di conduzione di questi materiali. I materiali più promettenti sono testati in batterie a bottone prototipo tipo CR2032 per valutare la loro ciclabilità e stabilità su lungo periodo. Come procedura generale, gli elettroliti vengono sintetizzati con differenti concentrazioni di portatori di carica tipo Mg2+ o Li+ per valutare l'effetto della concentrazione di cationi sulle proprietà termiche e sulla conducibilità dei materiali. Inoltre, la complessazione dei cationi e il suo effetto sul trasferimento di carica a lungo raggio sono studiati accuratamente tramite spettroscopia infrarossa e Raman. Nel caso dei materiali catodici la struttura e la composizione chimica di questi sistemi è modulata al fine di studiare il loro effetto sul processo di intercalazione/deinteracalazione dello ione litio, sull’efficienza e le prestastazioni dei prototipi di batteria a bottone tipo CR2032. I materiali studiati comprendono: a) un conduttore inorganico di stato solido a singolo catione di litio basato su di un ossido di titanio fluorurato; b) una nuova classe di elettroliti nanocompositi polimerici per batterie al litio; e c) due elettroliti per batterie al magnesio basati su liquidi ionici e un sale innovativo di Mg. Inoltre, al fine di evidenziare le correlazioni esistenti tra le dinamiche dei rilassamenti molecolari degli elettroliti e i processi di trasferimento di carica a lungo raggio, sono stati effettuati due studi sui meccanismi di rilassamento dielettrico di: a) elettroliti polimerici al Mg; e b) elettroliti polimerici solidi a base di alluminio silicati (SPE). Infine viene proposta una nuova promettente famiglia di materiali catodici di cui si studiano le correlazioni tra struttura, morfologia e prestazioni in batterie secondare prototipo a bottone. La tesi inizia con un’ introduzione generale sullo stato dell'arte degli elettroliti e dei catodi. Particolare attenzione è rivolta sugli svantaggi e sulle possibili future soluzioni. In secondo luogo, vengono descritti I n dettaglio la sintesi e caratterizzazione di ciascuna classe di materiali qui proposti. Quindi, si conclude evidenziando I risultati più salient ottenuti sui vari sistemi proposti.
Perez, Arnaud. „Energy storage properties of iridium oxides : model materials for the study of anionic redox“. Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066323/document.
Der volle Inhalt der QuelleImproving energy storage stands as a key challenge to facilitate the transition to electric vehicles and renewable energy sources in the next years. Li-ion batteries, which have already conquered the portable electronic market, will be the leading technology to achieve this goal and are therefore the focus of intense research activities to improve their performances, especially in terms of capacity. Among the most promising strategies to obtain high capacity cathode materials, the preparation of Li-rich materials combining the redox activity of cations (transition metals) and anions (oxygen) attracts considerable interest. However, activation of anionic redox in these high capacity materials comes with several issues that need to be solved prior their implementation in the energy storage market. Deep fundamental understanding of anionic redox is therefore required to go forward. Using model systems based on iridium, this work explores how the oxygen local environment can play a role on the activation of anionic redox. The electrochemical properties of Na2IrO3 and Na(Li1/3Ir2/3)O2 phases are studied to understand the impact of the alkali nature. The influence of the Li/M ratio in rocksalt oxides is investigated with the synthesis of a new material Li3IrO4, which presents the highest reversible capacity among intercalation cathode materials. The rich electrochemical properties of this family of iridate materials are finally extended by preparing proton-based materials through a simple ion-exchange reaction and the electrochemical properties of a new H3+xIrO4 material are presented, with high rate capability performances
Ahouari, Hania. „Exploration de nouveaux matériaux d'électrodes positives à base de polyanions carboxylates (oxalates, malonates et carbonates) et de métaux de transition“. Thesis, Amiens, 2015. http://www.theses.fr/2015AMIE0027/document.
Der volle Inhalt der QuelleThis thesis has focused on the exploration of new compounds based on 3d-metal and carboxylate polyanions (oxalates, malonates and carbonates) prepared through different sustainable synthetic approaches. In the first part, we report a new synthetic route to prepare the iron (III) oxalate compound (Fe2(C2O4)3·4H2O) and solve its crystal structure through combined X-ray and neutron powder diffraction. The compound crystallizes within a triclinic cell (P-1) and exhibits attractive electrochemical properties (98 mAh/g at 3.35 V vs. Li+/Li0). Motivated by this finding we pursued our quest for new positive electrode materials. We prepared by hydrothermal synthesis single crystals of sodium 3d-metal oxalates Na2M2(C2O4)3·2H2O, which are widely investigated in the literature for their magnetic properties. Unfortunately, these phases are electrochemically inactive versus lithium. Thereafter, we extended the synthesis towards the malonate family and we reported for the first time several members (Na2M(H2C3O4)2·nH2O (n= 0, 2), M= Mn, Fe, Co, Ni, Zn et Mg). These systems present rich crystal chemistry together with interesting antiferromagnetic properties but as in the case of the oxalates, they are not electrochemically active versus lithium. Finally, we synthesized two members of fluorocarbonates compounds KMCO3F (M= Ca and Mn) using solid state process. We succeeded in the preparation of the calcium member, already reported in the literature and we identified for the first time a phase transition at 320°C. The crystal structure of the high temperature phase (KCaCO3F-HT) was solved using neutron powder diffraction. A new manganese phase (KMnCO3F) was synthesized using the same technique and its crystal structure was solved by combining TEM, XR and neutrons powder diffraction techniques. This compound crystallizes within a hexagonal unit cell (P -6 c 2)
Bücher zum Thema "Batterie au Li"
Dian dong qi che yong li li zi er ci dian chi. 2. Aufl. Beijing: Ke xue chu ban she, 2013.
Den vollen Inhalt der Quelle findenDong li dian chi. Beijing Shi: Ji xie gong ye chu ban she, 2009.
Den vollen Inhalt der Quelle findenMonconduit, Laure, Laurence Croguennec und Rémi Dedryvère. Electrodes for Li-Ion Batteries. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119007364.
Der volle Inhalt der QuelleDian dong qi che yong li li zi er ci dian chi. Beijing: Ke xue chu ban she, 2010.
Den vollen Inhalt der Quelle findenLi li zi dian chi yong lin suan tie li zheng ji cai liao: LiFePO4 Cathode Material Used for Li-ion Battery. Beijing Shi: Ke xue chu ban she, 2013.
Den vollen Inhalt der Quelle findenZhang, Huamin, Xianfeng Li und Hongzhang Zhang. Li-S and Li-O2 Batteries with High Specific Energy. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-0746-0.
Der volle Inhalt der QuelleFei jiu jin shu, dian chi, cui hua ji hui shou li yong shi li. Beijing: Zhongguo fang zhi chu ban she, 2010.
Den vollen Inhalt der Quelle findenLi, Biao. Studies on Anionic Redox in Li-Rich Cathode Materials of Li-Ion Batteries. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2847-3.
Der volle Inhalt der QuelleDong li dian chi ji shu yu ying yong. 2. Aufl. Beijing Shi: Hua xue gong ye chu ban she, 2013.
Den vollen Inhalt der Quelle findenKeyser, Matt. Development of a novel test method for on-demand internal short circuit in a li-ion cell. Golden, CO: National Renewable Energy Laboratory, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Batterie au Li"
Liu, Kailong, Yujie Wang und Xin Lai. „Introduction to Battery Full-Lifespan Management“. In Data Science-Based Full-Lifespan Management of Lithium-Ion Battery, 1–25. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01340-9_1.
Der volle Inhalt der QuelleTsurumaki, Akiko, Sergio Brutti, Giorgia Greco und Maria Assunta Navarra. „Closed Battery Systems“. In The Materials Research Society Series, 173–211. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-48359-2_10.
Der volle Inhalt der QuelleSakaebe, Hikari, und Hajime Matsumoto. „Li Batteries“. In Electrochemical Aspects of Ionic Liquids, 203–20. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118003350.ch14.
Der volle Inhalt der QuelleHayashi, Akitoshi. „Li Negative Electrode“. In Next Generation Batteries, 137–42. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6668-8_13.
Der volle Inhalt der QuelleJulien, Christian, Alain Mauger, Ashok Vijh und Karim Zaghib. „Anodes for Li-Ion Batteries“. In Lithium Batteries, 323–429. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19108-9_10.
Der volle Inhalt der QuelleLiu, Kailong, Yujie Wang und Xin Lai. „The Ways Ahead“. In Data Science-Based Full-Lifespan Management of Lithium-Ion Battery, 245–58. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01340-9_7.
Der volle Inhalt der QuelleChang, Zhiwen, und Xin-bo Zhang. „Li-Air Battery: Electrocatalysts“. In Metal-Air Batteries, 125–49. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807666.ch6.
Der volle Inhalt der QuelleGarnier, L., J. Dauchy, D. Chatroux, D. Gevet und G. Despesse. „14 Système batterie et gestion associée - BMS“. In Batteries Li-ion, 329–54. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2410-6-015.
Der volle Inhalt der QuelleGarnier, L., J. Dauchy, D. Chatroux, D. Gevet und G. Despesse. „14 Système batterie et gestion associée - BMS“. In Batteries Li-ion, 329–54. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2410-6.c015.
Der volle Inhalt der QuelleGenies, S., A. Boulineau, A. Benayad, C. Chabrol, J. F. Martin, D. Brun-Buisson, X. Fleury et al. „12 Caractérisation microstructurale et physico-chimique des matériaux de batterie“. In Batteries Li-ion, 293–310. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2410-6-013.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Batterie au Li"
Yersak, Tom. „Sulfide Glass Solid-State Electrolyte Separators for Semi-Solid Li-S Batteries“. In TechBlick - Battery Materials and Solid-State Batteries. US DOE, 2023. http://dx.doi.org/10.2172/2326225.
Der volle Inhalt der QuelleWang, Chongye, Yong Wang, Lin Li, Hua Shao und Changxu Wu. „Modeling of Multi-Cell Lithium-Ion Battery Packs for Electric Vehicles Considering Effects of Manufacturing Processes“. In ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/msec2013-1120.
Der volle Inhalt der QuelleZandigohar, Mehrdad, und Nima Lotfi. „An Investigation of Temperature Measurement Granularity Towards Improving Li-Ion Battery Management System Design“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11874.
Der volle Inhalt der QuelleWang, Xiuling. „Numerical Investigation of Thermal Properties for Li-Ion Battery“. In ASME 2020 Heat Transfer Summer Conference collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ht2020-9108.
Der volle Inhalt der QuelleAlavi-Soltani, S. R., T. S. Ravigururajan und Mary Rezac. „Thermal Issues in Lithium-Ion Batteries“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15106.
Der volle Inhalt der QuelleDurganjali, C. Santhi, Harini Raghavan und Sudha Radhika. „Modelling and Performance Analysis of Different Types of Li-Ion Battery“. In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24404.
Der volle Inhalt der QuelleBaviskar, Shreyas, Dipankar Chatterjee, Kiran Chandrakant Jawale und A. Rammohan. „Battery Thermal Management of Lithium Prismatic Cell Battery by Using Different Coolants“. In Automotive Technical Papers. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-5059.
Der volle Inhalt der QuelleLi, Yifei, Mohammad Kazem Sadoughi, Zhixiong Li und Chao Hu. „An Ensemble Bias-Correction Method With Adaptive Weights for Dynamic Modeling of Lithium-Ion Batteries“. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68416.
Der volle Inhalt der QuelleChatterjee, Krishnashis, Pradip Majumdar, David Schroeder und S. Rao Kilaparti. „Analysis of Li-Ion Battery Characteristics and Thermal Behavior“. In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17815.
Der volle Inhalt der QuelleHu, Chao, Gaurav Jain, Craig Schmidt, Carrie Strief und Melani Sullivan. „Online Estimation of Lithium-Ion Battery Capacity Using Sparse Bayesian Learning“. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46964.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Batterie au Li"
Kolodziejczyk, Bart. Emerging Automotive Battery Chemistries: Hedging Market Bets. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, April 2023. http://dx.doi.org/10.4271/epr2023008.
Der volle Inhalt der QuelleLee, Sehee. Solid State Li-ion Batteries. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2013. http://dx.doi.org/10.21236/ada589846.
Der volle Inhalt der QuelleVisco, Steven J. Advanced Lithium Anodes for Li/Air and Li/Water Batteries. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2005. http://dx.doi.org/10.21236/ada441240.
Der volle Inhalt der QuelleGaribay, Claudia. Characterization of Li-air batteries: Lithium Peroxide Formation in Li-air Electrodes. Portland State University Library, Juni 2014. http://dx.doi.org/10.15760/trec.78.
Der volle Inhalt der QuelleLake, Carla. High performance anode for advanced Li batteries. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1224711.
Der volle Inhalt der QuelleXing, Yangchuan. High Performance Cathodes for Li-Air Batteries. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1092965.
Der volle Inhalt der QuelleJohnson, Erik B. Li-Ion Batteries for Forensic Neutron Dosimetry. Fort Belvoir, VA: Defense Technical Information Center, März 2016. http://dx.doi.org/10.21236/ad1005451.
Der volle Inhalt der QuelleB. Fultz. Anode Materials for Rechargeable Li-Ion Batteries. Office of Scientific and Technical Information (OSTI), Januar 2001. http://dx.doi.org/10.2172/773359.
Der volle Inhalt der QuelleXu, Kang, und Arthur v. Cresce. Electrolytes in Support of 5V Li-ion Batteries. Fort Belvoir, VA: Defense Technical Information Center, November 2010. http://dx.doi.org/10.21236/ad1000143.
Der volle Inhalt der QuelleDoo, Johnny. The Use of eVTOL Aircraft for First Responder, Police, and Medical Transport Applications. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, September 2023. http://dx.doi.org/10.4271/epr2023020.
Der volle Inhalt der Quelle