Auswahl der wissenschaftlichen Literatur zum Thema „Basoliths“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Inhaltsverzeichnis

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Basoliths" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Basoliths"

1

Ursueguía, David, Eva Díaz und Salvador Ordóñez. „Densification-Induced Structure Changes in Basolite MOFs: Effect on Low-Pressure CH4 Adsorption“. Nanomaterials 10, Nr. 6 (01.06.2020): 1089. http://dx.doi.org/10.3390/nano10061089.

Der volle Inhalt der Quelle
Annotation:
Metal-organic frameworks’ (MOFs) adsorption potential is significantly reduced by turning the original powder into pellets or granules, a mandatory step for their use at industrial scale. Pelletization is commonly performed by mechanical compression, which often induces the amorphization or pressure-induced phase transformations. The objective of this work is the rigorous study of the impact of mechanical pressure (55.9, 111.8 and 186.3 MPa) onto three commercial materials (Basolite C300, F300 and A100). Phase transformations were determined by powder X-ray diffraction analysis, whereas morphological changes were followed by nitrogen physisorption. Methane adsorption was studied in an atmospheric fixed bed. Significant crystallinity losses were observed, even at low applied pressures (up to 69.9% for Basolite C300), whereas a structural change occurred to Basolite A100 from orthorhombic to monoclinic phases, with a high cell volume reduction (13.7%). Consequently, adsorption capacities for both methane and nitrogen were largely reduced (up to 53.6% for Basolite C300), being related to morphological changes (surface area losses). Likewise, the high concentration of metallic active centers (Basolite C300), the structural breathing (Basolite A100) and the mesopore-induced formation (Basolite F300) smooth the dramatic loss of capacity of these materials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Fdez-Sanromán, Antía, Marta Pazos und Angeles Sanroman. „Peroxymonosulphate Activation by Basolite® F-300 for Escherichia coli Disinfection and Antipyrine Degradation“. International Journal of Environmental Research and Public Health 19, Nr. 11 (03.06.2022): 6852. http://dx.doi.org/10.3390/ijerph19116852.

Der volle Inhalt der Quelle
Annotation:
In this study, the removal of persistent emerging and dangerous pollutants (pharmaceuticals and pathogens) in synthetic wastewater was evaluated by the application of heterogeneous Advanced Oxidation Processes. To do that, a Metal-Organic Framework (MOF), Basolite® F-300 was selected as a catalyst and combined with peroxymonosulfate (PMS) as oxidants in order to generate sulphate radicals. Several key parameters such as the PMS and Basolite® F-300 concentration were evaluated and optimized using a Central Composite Experimental Design for response surface methodology for the inactivation of Escherichia coli. The assessment of the degradation of an analgesic and antipyretic pharmaceutical, antipyrine, revealed that is necessary to increase the concentration of PMS and amount of Basolite® F-300, in order to diminish the treatment time. Finally, the PMS-Basolite® F-300 system can be used for at least four cycles without a reduction in its ability to disinfect and degrade persistent emerging and dangerous pollutants such as pharmaceuticals and pathogens.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kumar, Pawan, Parveen Kumar, Akash Deep und Lalit M. Bharadwaj. „Doped Zinc-Organic Framework for Sensing of Pesticide“. Advanced Materials Research 488-489 (März 2012): 1543–46. http://dx.doi.org/10.4028/www.scientific.net/amr.488-489.1543.

Der volle Inhalt der Quelle
Annotation:
Basolite Z-1200 is one of the most popular commercially available MOF for the gas storage applications. Pristine Basolite Z-1200 is an electrically non-conducting material. This research focuses to tap the potential of Basolite Z-1200’s unique porous structure for the adsorption and sensing of a pesticide. For this, the above said MOF has been treated with mineral acids (HCl) to make it electrically active. The protonated MOF solutions have been used to form conducting thin films on glass slides. Electrical measurements have indicated that the proton doping reduces the overall resistance of the MOF. Prepared thin films have been used to sense Mecoprop some in sample solutions. Conducting MOF thin films may find applications in environmental sensors, pre-concentration, solid phase extraction, electronic devices etc.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hu, Xiaoshi, Xiaobing Lou, Chao Li, Yanqun Ning, Yuxing Liao, Qun Chen, Eugène S. Mananga, Ming Shen und Bingwen Hu. „Facile synthesis of the Basolite F300-like nanoscale Fe-BTC framework and its lithium storage properties“. RSC Advances 6, Nr. 115 (2016): 114483–90. http://dx.doi.org/10.1039/c6ra22738d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Grinnell, Cole, und Alexander Samokhvalov. „Exploring the electronic structure of aluminum metal–organic framework Basolite A100: solid-state synchronous fluorescence spectroscopy reveals new charge excitation/relaxation pathways“. Physical Chemistry Chemical Physics 20, Nr. 42 (2018): 26947–56. http://dx.doi.org/10.1039/c8cp04988b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jia, Chunmei, Bart Bueken, Francisco G. Cirujano, Kevin M. Van Geem und Dirk De Vos. „Phenolics isolation from bio-oil using the metal–organic framework MIL-53(Al) as a highly selective adsorbent“. Chemical Communications 55, Nr. 44 (2019): 6245–48. http://dx.doi.org/10.1039/c9cc02177a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yati, Indri, Muhammad Ridwan, Franco Padella und Marzia Pentimalli. „The Effect of Solvent on the Characteristics of FeBTC MOF as a Potential Heterogenous Catalyst Prepared via Green Mechanochemical Process“. Bulletin of Chemical Reaction Engineering & Catalysis 19, Nr. 1 (08.02.2024): 118–25. http://dx.doi.org/10.9767/bcrec.20115.

Der volle Inhalt der Quelle
Annotation:
In this study, the synthesis of FeBTC (BTC = 1,3,5-benzenetricarboxylate) also known as MIL-100 (Fe) metal organic framework (MOF) has been carried out successfully using green mechanochemical method (neat grinding and liquid assisted grinding). The effect of solvent used in the synthesis was investigated for the first time to elucidate the physicochemical properties of FeBTC including crystal structure, thermal stability, pore size and specific surface area. The physicochemical properties of all FeBTC obtained in this study were compared to commercial FeBTC (Basolite F-300), characterized using powder X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and nitrogen physisorption isotherms. All Fe-BTC MOF synthesized in this study showed improved textural properties compared to commercial Basolite F-300 such as higher crystallinity, higher surface area and larger pore size. It was found that the best synthesis method was by using the mixture of ethanol and water with equal volume ratio as solvent. The highest BET surface area of FeBTC synthesized using this method was 972 m2/g for FeBTC-EtOH/H2O. This value is 2.3 times higher than the surface area of commercial Basolite F-300 (418 m2/g). FeBTC with higher surface area is expected to have higher catalytic activity which makes this FeBTC an excellent candidate as a heterogenous catalyst for many reactions such as aldol condensation or esterification reaction. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fisher, Taylor Mackenzie, Alexsandro J. dos Santos und Sergi Garcia-Segura. „Metal–Organic Framework Fe-BTC as Heterogeneous Catalyst for Electro-Fenton Treatment of Tetracycline“. Catalysts 14, Nr. 5 (10.05.2024): 314. http://dx.doi.org/10.3390/catal14050314.

Der volle Inhalt der Quelle
Annotation:
This study explores the use of the iron-containing metal–organic framework (MOF), Basolite®F300, as a heterogeneous catalyst for electrochemically-driven Fenton processes. Electrochemical advanced oxidation processes (EAOPs) have shown promise on the abatement of recalcitrant organic pollutants such as pharmaceuticals. Tetracyclines (TC) are a frequently used class of antibiotics that are now polluting surface water and groundwater sources worldwide. Acknowledging the fast capability of EAOPs to treat persistent pharmaceutical pollutants, we propose an electrochemical Fenton treatment process that is catalyzed by the use of a commercially available MOF material to degrade TC. The efficiency of H2O2 generation in the IrO2/carbon felt setup is highlighted. However, electrochemical oxidation with H2O2 production (ECO-H2O2) alone is not enough to achieve complete TC removal, attributed to the formation of weak oxidant species. Incorporating Basolite®F300 in the heterogeneous electro-Fenton (HEF) process results in complete TC removal within 40 min, showcasing its efficacy. Additionally, this study explores the effect of varying MOF concentrations, indicating optimal removal rates at 100 mg L−1 due to a balance of kinetics and limitation of active sites of the catalysts. Furthermore, the impact of the applied current on TC removal is investigated, revealing a proportional relationship between current and removal rates. The analysis of energy efficiency emphasizes 50 mA as the optimal current, however, balancing removal efficiency with electrical energy consumption. This work highlights the potential of Basolite®F300 as an effective catalyst in the HEF process for pollutant abatement, providing valuable insights into optimizing electrified water treatment applications with MOF nanomaterials to treat organic pollutants.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Furasova, A. D., G. Hix, S. V. Makarov und A. Di Carlo. „Mesoporous perovskite solar cells with Al- and Zn-based metal-organic frameworks“. Journal of Physics: Conference Series 2015, Nr. 1 (01.11.2021): 012042. http://dx.doi.org/10.1088/1742-6596/2015/1/012042.

Der volle Inhalt der Quelle
Annotation:
Abstract The improvement of lead halide perovskites solar cells (PSC) by hydrophobic metal-organic frameworks (MOF) is one of the promising tools for modern photovoltaic technology to achieve stable and efficient thin-film devices. To show the MOF applicability for PSC, we incorporate two types of MOF: NH2-MIL-53(Al) and basolite Z1200 in n-i-p mesoporous MAPbI3 based solar cells that can add 2.2% efficiency by increasing main photovoltaic parameters. The simplicity of the proposed MOF’s integration allows to use and adopt this approach to incorporate other frameworks for thin-film perovskite devices.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ursueguía, David, Eva Díaz und Salvador Ordóñez. „Adsorption of methane and nitrogen on Basolite MOFs: Equilibrium and kinetic studies“. Microporous and Mesoporous Materials 298 (Mai 2020): 110048. http://dx.doi.org/10.1016/j.micromeso.2020.110048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie