Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Basal radial glia cells (bRG)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Basal radial glia cells (bRG)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Basal radial glia cells (bRG)"
Kullmann, Jan A., Sophie Meyer, Fabrizia Pipicelli, Christina Kyrousi, Felix Schneider, Nora Bartels, Silvia Cappello und Marco B. Rust. „Profilin1-Dependent F-Actin Assembly Controls Division of Apical Radial Glia and Neocortex Development“. Cerebral Cortex 30, Nr. 6 (20.12.2019): 3467–82. http://dx.doi.org/10.1093/cercor/bhz321.
Der volle Inhalt der QuellePenisson, Maxime, Mingyue Jin, Shengming Wang, Shinji Hirotsune, Fiona Francis und Richard Belvindrah. „Lis1 mutation prevents basal radial glia-like cell production in the mouse“. Human Molecular Genetics 31, Nr. 6 (12.10.2021): 942–57. http://dx.doi.org/10.1093/hmg/ddab295.
Der volle Inhalt der QuelleSawada, Kazuhiko. „Neurogenesis of Subventricular Zone Progenitors in the Premature Cortex of Ferrets Facilitated by Neonatal Valproic Acid Exposure“. International Journal of Molecular Sciences 23, Nr. 9 (28.04.2022): 4882. http://dx.doi.org/10.3390/ijms23094882.
Der volle Inhalt der QuelleMeyerink, Brandon L., Neeraj K. Tiwari und Louis-Jan Pilaz. „Ariadne’s Thread in the Developing Cerebral Cortex: Mechanisms Enabling the Guiding Role of the Radial Glia Basal Process during Neuron Migration“. Cells 10, Nr. 1 (22.12.2020): 3. http://dx.doi.org/10.3390/cells10010003.
Der volle Inhalt der QuellePereida-Jaramillo, Elizabeth, Gabriela B. Gómez-González, Angeles Edith Espino-Saldaña und Ataúlfo Martínez-Torres. „Calcium Signaling in the Cerebellar Radial Glia and Its Association with Morphological Changes during Zebrafish Development“. International Journal of Molecular Sciences 22, Nr. 24 (16.12.2021): 13509. http://dx.doi.org/10.3390/ijms222413509.
Der volle Inhalt der QuelleMoore, Rachel, und Paula Alexandre. „Delta-Notch Signaling: The Long and The Short of a Neuron’s Influence on Progenitor Fates“. Journal of Developmental Biology 8, Nr. 2 (26.03.2020): 8. http://dx.doi.org/10.3390/jdb8020008.
Der volle Inhalt der QuelleLi, Zhen, William A. Tyler, Ella Zeldich, Gabriel Santpere Baró, Mayumi Okamoto, Tianliuyun Gao, Mingfeng Li, Nenad Sestan und Tarik F. Haydar. „Transcriptional priming as a conserved mechanism of lineage diversification in the developing mouse and human neocortex“. Science Advances 6, Nr. 45 (November 2020): eabd2068. http://dx.doi.org/10.1126/sciadv.abd2068.
Der volle Inhalt der QuelleGolden, J. A., J. C. Zitz, K. McFadden und C. L. Cepko. „Cell migration in the developing chick diencephalon“. Development 124, Nr. 18 (15.09.1997): 3525–33. http://dx.doi.org/10.1242/dev.124.18.3525.
Der volle Inhalt der QuelleZhang, Sanguo, Huanhuan Joyce Wang, Jia Li, Xiao-Ling Hu und Qin Shen. „Radial Glial Cell-Derived VCAM1 Regulates Cortical Angiogenesis Through Distinct Enrichments in the Proximal and Distal Radial Processes“. Cerebral Cortex 30, Nr. 6 (06.01.2020): 3717–30. http://dx.doi.org/10.1093/cercor/bhz337.
Der volle Inhalt der QuelleZaidi, Donia, Kaviya Chinnappa und Fiona Francis. „Primary Cilia Influence Progenitor Function during Cortical Development“. Cells 11, Nr. 18 (16.09.2022): 2895. http://dx.doi.org/10.3390/cells11182895.
Der volle Inhalt der QuelleDissertationen zum Thema "Basal radial glia cells (bRG)"
Wimmer, Ryszard. „Migration of neural stem cells during human neocortical development“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLS016.
Der volle Inhalt der QuelleIn gyrencephalic species, and in particular in humans, the strong size increase of the neocortex is largely supported by an expanded neurogenic niche, the outer subventricular zone (oSVZ). This is largely due to the amplification of a neural stem cell population, the basal radial glial cells (bRGs, also known as oRGs). bRG cells colonize the oSVZ through an acto-myosin dependent movement called mitotic somal translocation (MST). The exact molecular mechanism of MST, whether the microtubule cytoskeleton also controls other steps of bRG cell translocation, and the contribution of these movements to bRG cell dissemination into the human developing neocortex are however unknown. Here, using live imaging of gestational week 14-21 human fetal tissue and cerebral organoids, we identify a two-step mode of translocation for bRG cells. On top MST, bRG cells undergo a microtubule-dependent movement during interphase, that we call interphasic somal translocation (IST). IST is slower than MST and controlled by the LINC complex that recruits the dynein molecular motor and its activator LIS1 to the nuclear envelope for transport. Consequently, IST is affected in LIS1 patient derived organoids. We furthermore show that MST occurs during prometaphase and is therefore a mitotic spindle translocation event. MST is controlled by the mitotic cell rounding molecular pathway, that increases the cell cortex stiffness to drive translocation. Both IST and MST are bidirectional with a net basal movement of 0,57 mm per month of human fetal gestation. We show that 85% of this movement is dependent on IST, that is both more polarized and more processive than MST. Finally, we demonstrate that IST and MST are conserved in bRG-related glioblastoma cells and occur through the same molecular pathways. Overall, our work identifies how bRG cells colonize the human fetal cortex, and how these mechanisms can be linked to pathological conditions