Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Baouendi-Grushin operator“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Baouendi-Grushin operator" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Baouendi-Grushin operator"
Laptev, Ari, Michael Ruzhansky und Nurgissa Yessirkegenov. „Hardy inequalities for Landau Hamiltonian and for Baouendi-Grushin operator with Aharonov-Bohm type magnetic field. Part I“. MATHEMATICA SCANDINAVICA 125, Nr. 2 (19.10.2019): 239–69. http://dx.doi.org/10.7146/math.scand.a-114892.
Der volle Inhalt der QuelleBanerjee, Agnid, und Ramesh Manna. „Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation“. Discrete & Continuous Dynamical Systems 41, Nr. 11 (2021): 5105. http://dx.doi.org/10.3934/dcds.2021070.
Der volle Inhalt der QuelleBahrouni, Anouar, Vicenţiu D. Rădulescu und Dušan D. Repovš. „Nonvariational and singular double phase problems for the Baouendi-Grushin operator“. Journal of Differential Equations 303 (Dezember 2021): 645–66. http://dx.doi.org/10.1016/j.jde.2021.09.033.
Der volle Inhalt der QuelleBahrouni, Anouar, und Vicenţiu D. Rădulescu. „Singular double-phase systems with variable growth for the Baouendi-Grushin operator“. Discrete & Continuous Dynamical Systems 41, Nr. 9 (2021): 4283. http://dx.doi.org/10.3934/dcds.2021036.
Der volle Inhalt der QuelleMihăilescu, Mihai, Denisa Stancu-Dumitru und Csaba Varga. „On the spectrum of a Baouendi–Grushin type operator: an Orlicz–Sobolev space setting approach“. Nonlinear Differential Equations and Applications NoDEA 22, Nr. 5 (08.03.2015): 1067–87. http://dx.doi.org/10.1007/s00030-015-0314-5.
Der volle Inhalt der QuelleMarkasheva, V. A., und A. F. Tedeev. „Local and global estimates of the solutions of the Cauchy problem for quasilinear parabolic equations with a nonlinear operator of Baouendi-Grushin type“. Mathematical Notes 85, Nr. 3-4 (April 2009): 385–96. http://dx.doi.org/10.1134/s0001434609030092.
Der volle Inhalt der QuelleMetafune, Giorgio, Luigi Negro und Chiara Spina. „Lp estimates for Baouendi–Grushin operators“. Pure and Applied Analysis 2, Nr. 3 (17.11.2020): 603–25. http://dx.doi.org/10.2140/paa.2020.2.603.
Der volle Inhalt der QuelleJia, Xiaobiao, und Shanshan Ma. „Holder estimates and asymptotic behavior for degenerate elliptic equations in the half space“. Electronic Journal of Differential Equations 2023, Nr. 01-37 (05.04.2023): 33. http://dx.doi.org/10.58997/ejde.2023.33.
Der volle Inhalt der QuelleKombe, Ismail. „Nonlinear degenerate parabolic equations for Baouendi–Grushin operators“. Mathematische Nachrichten 279, Nr. 7 (Mai 2006): 756–73. http://dx.doi.org/10.1002/mana.200310391.
Der volle Inhalt der QuelleGarofalo, Nicola, und Dimiter Vassilev. „Strong Unique Continuation Properties of Generalized Baouendi–Grushin Operators“. Communications in Partial Differential Equations 32, Nr. 4 (11.04.2007): 643–63. http://dx.doi.org/10.1080/03605300500532905.
Der volle Inhalt der QuelleDissertationen zum Thema "Baouendi-Grushin operator"
Tamekue, Cyprien. „Controllability, Visual Illusions and Perception“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPAST105.
Der volle Inhalt der QuelleThis thesis explores two distinct control theory applications in different scientific domains: physics and neuroscience. The first application focuses on the null controllability of the parabolic, spherical Baouendi-Grushin equation. In contrast, the second application involves the mathematical description of the MacKay-type visual illusions, focusing on the MacKay effect and Billock and Tsou's psychophysical experiments by controlling the one-layer Amari-type neural fields equation. Additionally, intending to study input-to-state stability and robust stabilization, the thesis investigates the existence of equilibrium in a multi-layer neural fields population model of Wilson-Cowan, specifically when the sensory input is a proportional feedback acting only on the system's state of the populations of excitatory neurons.In the first part, we investigate the null controllability properties of the parabolic equation associated with the Baouendi-Grushin operator defined by the canonical almost-Riemannian structure on the 2-dimensional sphere. It presents a degeneracy at the equator of the sphere. We provide some null controllability properties of this equation to this curved setting, which generalize that of the parabolic Baouendi-Grushin equation defined on the plane.Regarding neuroscience, initially, the focus lies on the description of visual illusions for which the tools of bifurcation theory and even multiscale analysis appear unsuitable. In our study, we use the neural fields equation of Amari-type in which the sensory input is interpreted as a cortical representation of the visual stimulus used in each experiment. It contains a localised distributed control function that models the stimulus's specificity, e.g., the redundant information in the centre of MacKay's funnel pattern (``MacKay rays'') or the fact that visual stimuli in Billock and Tsou's experiments are localized in the visual field.Always within the framework of neurosciences, we investigate the existence of equilibrium in a multi-layers neural fields population model of Wilson-Cowan when the sensory input is a proportional feedback that acts only on the system's state of the population of excitatory neurons. There, we provide a mild condition on the response functions under which such an equilibrium exists. The interest of this work lies in its application in studying the disruption of pathological brain oscillations associated with Parkinson's disease when stimulating and measuring only the population of excitatory neurons
Konferenzberichte zum Thema "Baouendi-Grushin operator"
Garofalo, Nicola, und Dimiter Vassilev. „Strong Unique Continuation for Generalized Baouendi-Grushin Operators“. In Proceedings of the 4th International ISAAC Congress. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701732_0021.
Der volle Inhalt der Quelle