Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Bandit Contextuel“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bandit Contextuel" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Bandit Contextuel"
Gisselbrecht, Thibault, Sylvain Lamprier und Patrick Gallinari. „Collecte ciblée à partir de flux de données en ligne dans les médias sociaux. Une approche de bandit contextuel“. Document numérique 19, Nr. 2-3 (30.12.2016): 11–30. http://dx.doi.org/10.3166/dn.19.2-3.11-30.
Der volle Inhalt der QuelleDimakopoulou, Maria, Zhengyuan Zhou, Susan Athey und Guido Imbens. „Balanced Linear Contextual Bandits“. Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 3445–53. http://dx.doi.org/10.1609/aaai.v33i01.33013445.
Der volle Inhalt der QuelleTong, Ruoyi. „A survey of the application and technical improvement of the multi-armed bandit“. Applied and Computational Engineering 77, Nr. 1 (16.07.2024): 25–31. http://dx.doi.org/10.54254/2755-2721/77/20240631.
Der volle Inhalt der QuelleYang, Luting, Jianyi Yang und Shaolei Ren. „Contextual Bandits with Delayed Feedback and Semi-supervised Learning (Student Abstract)“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 18 (18.05.2021): 15943–44. http://dx.doi.org/10.1609/aaai.v35i18.17968.
Der volle Inhalt der QuelleSharaf, Amr, und Hal Daumé III. „Meta-Learning Effective Exploration Strategies for Contextual Bandits“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 11 (18.05.2021): 9541–48. http://dx.doi.org/10.1609/aaai.v35i11.17149.
Der volle Inhalt der QuelleDu, Yihan, Siwei Wang und Longbo Huang. „A One-Size-Fits-All Solution to Conservative Bandit Problems“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 8 (18.05.2021): 7254–61. http://dx.doi.org/10.1609/aaai.v35i8.16891.
Der volle Inhalt der QuelleVaratharajah, Yogatheesan, und Brent Berry. „A Contextual-Bandit-Based Approach for Informed Decision-Making in Clinical Trials“. Life 12, Nr. 8 (21.08.2022): 1277. http://dx.doi.org/10.3390/life12081277.
Der volle Inhalt der QuelleLi, Jialian, Chao Du und Jun Zhu. „A Bayesian Approach for Subset Selection in Contextual Bandits“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 9 (18.05.2021): 8384–91. http://dx.doi.org/10.1609/aaai.v35i9.17019.
Der volle Inhalt der QuelleQu, Jiaming. „Survey of dynamic pricing based on Multi-Armed Bandit algorithms“. Applied and Computational Engineering 37, Nr. 1 (22.01.2024): 160–65. http://dx.doi.org/10.54254/2755-2721/37/20230497.
Der volle Inhalt der QuelleAtsidakou, Alexia, Constantine Caramanis, Evangelia Gergatsouli, Orestis Papadigenopoulos und Christos Tzamos. „Contextual Pandora’s Box“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 10 (24.03.2024): 10944–52. http://dx.doi.org/10.1609/aaai.v38i10.28969.
Der volle Inhalt der QuelleDissertationen zum Thema "Bandit Contextuel"
Sakhi, Otmane. „Offline Contextual Bandit : Theory and Large Scale Applications“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAG011.
Der volle Inhalt der QuelleThis thesis presents contributions to the problem of learning from logged interactions using the offline contextual bandit framework. We are interested in two related topics: (1) offline policy learning with performance certificates, and (2) fast and efficient policy learning applied to large scale, real world recommendation. For (1), we first leverage results from the distributionally robust optimisation framework to construct asymptotic, variance-sensitive bounds to evaluate policies' performances. These bounds lead to new, more practical learning objectives thanks to their composite nature and straightforward calibration. We then analyse the problem from the PAC-Bayesian perspective, and provide tighter, non-asymptotic bounds on the performance of policies. Our results motivate new strategies, that offer performance certificates before deploying the policies online. The newly derived strategies rely on composite learning objectives that do not require additional tuning. For (2), we first propose a hierarchical Bayesian model, that combines different signals, to efficiently estimate the quality of recommendation. We provide proper computational tools to scale the inference to real world problems, and demonstrate empirically the benefits of the approach in multiple scenarios. We then address the question of accelerating common policy optimisation approaches, particularly focusing on recommendation problems with catalogues of millions of items. We derive optimisation routines, based on new gradient approximations, computed in logarithmic time with respect to the catalogue size. Our approach improves on common, linear time gradient computations, yielding fast optimisation with no loss on the quality of the learned policies
Huix, Tom. „Variational Inference : theory and large scale applications“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX071.
Der volle Inhalt der QuelleThis thesis explores Variational Inference methods for high-dimensional Bayesian learning. In Machine Learning, the Bayesian approach allows one to deal with epistemic uncertainty and provides and a better uncertainty quantification, which is necessary in many machine learning applications. However, Bayesian inference is often not feasible because the posterior distribution of the model parameters is generally untractable. Variational Inference (VI) allows to overcome this problem by approximating the posterior distribution with a simpler distribution called the variational distribution.In the first part of this thesis, we worked on the theoretical guarantees of Variational Inference. First, we studied VI when the Variational distribution is a Gaussian and in the overparameterized regime, i.e., when the models are high dimensional. Finally, we explore the Gaussian mixtures Variational distributions, as it is a more expressive distribution. We studied both the optimization error and the approximation error of this method.In the second part of the thesis, we studied the theoretical guarantees for contextual bandit problems using a Bayesian approach called Thompson Sampling. First, we explored the use of Variational Inference for Thompson Sampling algorithm. We notably showed that in the linear framework, this approach allows us to obtain the same theoretical guarantees as if we had access to the true posterior distribution. Finally, we consider a variant of Thompson Sampling called Feel-Good Thompson Sampling (FG-TS). This method allows to provide better theoretical guarantees than the classical algorithm. We then studied the use of a Monte Carlo Markov Chain method to approximate the posterior distribution. Specifically, we incorporated into FG-TS a Langevin Monte Carlo algorithm and a Metropolized Langevin Monte Carlo algorithm. Moreover, we obtained the same theoretical guarantees as for FG-TS when the posterior distribution is known
Bouneffouf, Djallel. „DRARS, A Dynamic Risk-Aware Recommender System“. Phd thesis, Institut National des Télécommunications, 2013. http://tel.archives-ouvertes.fr/tel-01026136.
Der volle Inhalt der QuelleChia, John. „Non-linear contextual bandits“. Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/42191.
Der volle Inhalt der QuelleGalichet, Nicolas. „Contributions to Multi-Armed Bandits : Risk-Awareness and Sub-Sampling for Linear Contextual Bandits“. Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112242/document.
Der volle Inhalt der QuelleThis thesis focuses on sequential decision making in unknown environment, and more particularly on the Multi-Armed Bandit (MAB) setting, defined by Lai and Robbins in the 50s. During the last decade, many theoretical and algorithmic studies have been aimed at cthe exploration vs exploitation tradeoff at the core of MABs, where Exploitation is biased toward the best options visited so far while Exploration is biased toward options rarely visited, to enforce the discovery of the the true best choices. MAB applications range from medicine (the elicitation of the best prescriptions) to e-commerce (recommendations, advertisements) and optimal policies (e.g., in the energy domain). The contributions presented in this dissertation tackle the exploration vs exploitation dilemma under two angles. The first contribution is centered on risk avoidance. Exploration in unknown environments often has adverse effects: for instance exploratory trajectories of a robot can entail physical damages for the robot or its environment. We thus define the exploration vs exploitation vs safety (EES) tradeoff, and propose three new algorithms addressing the EES dilemma. Firstly and under strong assumptions, the MIN algorithm provides a robust behavior with guarantees of logarithmic regret, matching the state of the art with a high robustness w.r.t. hyper-parameter setting (as opposed to, e.g. UCB (Auer 2002)). Secondly, the MARAB algorithm aims at optimizing the cumulative 'Conditional Value at Risk' (CVar) rewards, originated from the economics domain, with excellent empirical performances compared to (Sani et al. 2012), though without any theoretical guarantees. Finally, the MARABOUT algorithm modifies the CVar estimation and yields both theoretical guarantees and a good empirical behavior. The second contribution concerns the contextual bandit setting, where additional informations are provided to support the decision making, such as the user details in the ontent recommendation domain, or the patient history in the medical domain. The study focuses on how to make a choice between two arms with different numbers of samples. Traditionally, a confidence region is derived for each arm based on the associated samples, and the 'Optimism in front of the unknown' principle implements the choice of the arm with maximal upper confidence bound. An alternative, pioneered by (Baransi et al. 2014), and called BESA, proceeds instead by subsampling without replacement the larger sample set. In this framework, we designed a contextual bandit algorithm based on sub-sampling without replacement, relaxing the (unrealistic) assumption that all arm reward distributions rely on the same parameter. The CL-BESA algorithm yields both theoretical guarantees of logarithmic regret and good empirical behavior
Nicol, Olivier. „Data-driven evaluation of contextual bandit algorithms and applications to dynamic recommendation“. Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10211/document.
Der volle Inhalt der QuelleThe context of this thesis work is dynamic recommendation. Recommendation is the action, for an intelligent system, to supply a user of an application with personalized content so as to enhance what is refered to as "user experience" e.g. recommending a product on a merchant website or even an article on a blog. Recommendation is considered dynamic when the content to recommend or user tastes evolve rapidly e.g. news recommendation. Many applications that are of interest to us generates a tremendous amount of data through the millions of online users they have. Nevertheless, using this data to evaluate a new recommendation technique or even compare two dynamic recommendation algorithms is far from trivial. This is the problem we consider here. Some approaches have already been proposed. Nonetheless they were not studied very thoroughly both from a theoretical point of view (unquantified bias, loose convergence bounds...) and from an empirical one (experiments on private data only). In this work we start by filling many blanks within the theoretical analysis. Then we comment on the result of an experiment of unprecedented scale in this area: a public challenge we organized. This challenge along with a some complementary experiments revealed a unexpected source of a huge bias: time acceleration. The rest of this work tackles this issue. We show that a bootstrap-based approach allows to significantly reduce this bias and more importantly to control it
May, Benedict C. „Bayesian sampling in contextual-bandit problems with extensions to unknown normal-form games“. Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627937.
Der volle Inhalt der QuelleJu, Weiyu. „Mobile Deep Neural Network Inference in Edge Computing with Resource Restrictions“. Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25038.
Der volle Inhalt der QuelleBrégère, Margaux. „Stochastic bandit algorithms for demand side management Simulating Tariff Impact in Electrical Energy Consumption Profiles with Conditional Variational Autoencoders Online Hierarchical Forecasting for Power Consumption Data Target Tracking for Contextual Bandits : Application to Demand Side Management“. Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASM022.
Der volle Inhalt der QuelleAs electricity is hard to store, the balance between production and consumption must be strictly maintained. With the integration of intermittent renewable energies into the production mix, the management of the balance becomes complex. At the same time, the deployment of smart meters suggests demand response. More precisely, sending signals - such as changes in the price of electricity - would encourage users to modulate their consumption according to the production of electricity. The algorithms used to choose these signals have to learn consumer reactions and, in the same time, to optimize them (exploration-exploration trade-off). Our approach is based on bandit theory and formalizes this sequential learning problem. We propose a first algorithm to control the electrical demand of a homogeneous population of consumers and offer T⅔ upper bound on its regret. Experiments on a real data set in which price incentives were offered illustrate these theoretical results. As a “full information” dataset is required to test bandit algorithms, a consumption data generator based on variational autoencoders is built. In order to drop the assumption of the population homogeneity, we propose an approach to cluster households according to their consumption profile. These different works are finally combined to propose and test a bandit algorithm for personalized demand side management
Wan, Hao. „Tutoring Students with Adaptive Strategies“. Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-dissertations/36.
Der volle Inhalt der QuelleBücher zum Thema "Bandit Contextuel"
Pijnenburg, Huub, Jo Hermanns, Tom van Yperen, Giel Hutschemaekers und Adri van Montfoort. Zorgen dat het werkt: Werkzame factoren in de zorg voor jeugd. 2. Aufl. Uitgeverij SWP, 2011. http://dx.doi.org/10.36254/978-90-8850-131-9.
Der volle Inhalt der QuelleBuchteile zum Thema "Bandit Contextuel"
Nguyen, Le Minh Duc, Fuhua Lin und Maiga Chang. „Generating Learning Sequences Using Contextual Bandit Algorithms“. In Generative Intelligence and Intelligent Tutoring Systems, 320–29. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63028-6_26.
Der volle Inhalt der QuelleTavakol, Maryam, Sebastian Mair und Katharina Morik. „HyperUCB: Hyperparameter Optimization Using Contextual Bandits“. In Machine Learning and Knowledge Discovery in Databases, 44–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43823-4_4.
Der volle Inhalt der QuelleMa, Yuzhe, Kwang-Sung Jun, Lihong Li und Xiaojin Zhu. „Data Poisoning Attacks in Contextual Bandits“. In Lecture Notes in Computer Science, 186–204. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01554-1_11.
Der volle Inhalt der QuelleLabille, Kevin, Wen Huang und Xintao Wu. „Transferable Contextual Bandits with Prior Observations“. In Advances in Knowledge Discovery and Data Mining, 398–410. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75765-6_32.
Der volle Inhalt der QuelleShirey, Heather. „19. Art in the Streets“. In Play in a Covid Frame, 427–40. Cambridge, UK: Open Book Publishers, 2023. http://dx.doi.org/10.11647/obp.0326.19.
Der volle Inhalt der QuelleLiu, Weiwen, Shuai Li und Shengyu Zhang. „Contextual Dependent Click Bandit Algorithm for Web Recommendation“. In Lecture Notes in Computer Science, 39–50. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94776-1_4.
Der volle Inhalt der QuelleBouneffouf, Djallel, Romain Laroche, Tanguy Urvoy, Raphael Feraud und Robin Allesiardo. „Contextual Bandit for Active Learning: Active Thompson Sampling“. In Neural Information Processing, 405–12. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12637-1_51.
Der volle Inhalt der QuelleBouneffouf, Djallel, Amel Bouzeghoub und Alda Lopes Gançarski. „Contextual Bandits for Context-Based Information Retrieval“. In Neural Information Processing, 35–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-42042-9_5.
Der volle Inhalt der QuelleDelande, David, Patricia Stolf, Raphaël Feraud, Jean-Marc Pierson und André Bottaro. „Horizontal Scaling in Cloud Using Contextual Bandits“. In Euro-Par 2021: Parallel Processing, 285–300. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85665-6_18.
Der volle Inhalt der QuelleGampa, Phanideep, und Sumio Fujita. „BanditRank: Learning to Rank Using Contextual Bandits“. In Advances in Knowledge Discovery and Data Mining, 259–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75768-7_21.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Bandit Contextuel"
Chen, Zhaoxin. „Enhancing Recommendation Systems Through Contextual Bandit Models“. In International Conference on Engineering Management, Information Technology and Intelligence, 622–27. SCITEPRESS - Science and Technology Publications, 2024. http://dx.doi.org/10.5220/0012960800004508.
Der volle Inhalt der QuelleLiu, Fangzhou, Zehua Pei, Ziyang Yu, Haisheng Zheng, Zhuolun He, Tinghuan Chen und Bei Yu. „CBTune: Contextual Bandit Tuning for Logic Synthesis“. In 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), 1–6. IEEE, 2024. http://dx.doi.org/10.23919/date58400.2024.10546766.
Der volle Inhalt der QuelleZhang, Yufan, Honglin Wen und Qiuwei Wu. „A Contextual Bandit Approach for Value-oriented Prediction Interval Forecasting“. In 2024 IEEE Power & Energy Society General Meeting (PESGM), 1. IEEE, 2024. http://dx.doi.org/10.1109/pesgm51994.2024.10688595.
Der volle Inhalt der QuelleLi, Haowei, Mufeng Wang, Jiarui Zhang, Tianyu Shi und Alaa Khamis. „A Contextual Multi-armed Bandit Approach to Personalized Trip Itinerary Planning“. In 2024 IEEE International Conference on Smart Mobility (SM), 55–60. IEEE, 2024. http://dx.doi.org/10.1109/sm63044.2024.10733530.
Der volle Inhalt der QuelleBouneffouf, Djallel, Irina Rish, Guillermo Cecchi und Raphaël Féraud. „Context Attentive Bandits: Contextual Bandit with Restricted Context“. In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/203.
Der volle Inhalt der QuellePase, Francesco, Deniz Gunduz und Michele Zorzi. „Remote Contextual Bandits“. In 2022 IEEE International Symposium on Information Theory (ISIT). IEEE, 2022. http://dx.doi.org/10.1109/isit50566.2022.9834399.
Der volle Inhalt der QuelleLin, Baihan, Djallel Bouneffouf, Guillermo A. Cecchi und Irina Rish. „Contextual Bandit with Adaptive Feature Extraction“. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2018. http://dx.doi.org/10.1109/icdmw.2018.00136.
Der volle Inhalt der QuellePeng, Yi, Miao Xie, Jiahao Liu, Xuying Meng, Nan Li, Cheng Yang, Tao Yao und Rong Jin. „A Practical Semi-Parametric Contextual Bandit“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/450.
Der volle Inhalt der QuelleZhang, Xiaoying, Hong Xie, Hang Li und John C.S. Lui. „Conversational Contextual Bandit: Algorithm and Application“. In WWW '20: The Web Conference 2020. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3366423.3380148.
Der volle Inhalt der QuelleBan, Yikun, Jingrui He und Curtiss B. Cook. „Multi-facet Contextual Bandits“. In KDD '21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3447548.3467299.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Bandit Contextuel"
Yun, Seyoung, Jun Hyun Nam, Sangwoo Mo und Jinwoo Shin. Contextual Multi-armed Bandits under Feature Uncertainty. Office of Scientific and Technical Information (OSTI), März 2017. http://dx.doi.org/10.2172/1345927.
Der volle Inhalt der Quelle