Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Bacterial surface“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bacterial surface" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Bacterial surface"
Absolom, Darryl R. „The role of bacterial hydrophobicity in infection: bacterial adhesion and phagocytic ingestion“. Canadian Journal of Microbiology 34, Nr. 3 (01.03.1988): 287–98. http://dx.doi.org/10.1139/m88-054.
Der volle Inhalt der QuelleEvans, Adele, Anthony J. Slate, Millie Tobin, Stephen Lynch, Joels Wilson Nieuwenhuis, Joanna Verran, Peter Kelly und Kathryn A. Whitehead. „Multifractal Analysis to Determine the Effect of Surface Topography on the Distribution, Density, Dispersion and Clustering of Differently Organised Coccal-Shaped Bacteria“. Antibiotics 11, Nr. 5 (21.04.2022): 551. http://dx.doi.org/10.3390/antibiotics11050551.
Der volle Inhalt der QuelleVadillo-Rodríguez, Virginia, Henk J. Busscher, Willem Norde, Joop de Vries, René J. B. Dijkstra, Ietse Stokroos und Henny C. van der Mei. „Comparison of Atomic Force Microscopy Interaction Forces between Bacteria and Silicon Nitride Substrata for Three Commonly Used Immobilization Methods“. Applied and Environmental Microbiology 70, Nr. 9 (September 2004): 5441–46. http://dx.doi.org/10.1128/aem.70.9.5441-5446.2004.
Der volle Inhalt der QuelleHogan, Kayla, Sai Paul, Guanyou Lin, Jay Fuerte-Stone, Evgeni V. Sokurenko und Wendy E. Thomas. „Effect of Gravity on Bacterial Adhesion to Heterogeneous Surfaces“. Pathogens 12, Nr. 7 (15.07.2023): 941. http://dx.doi.org/10.3390/pathogens12070941.
Der volle Inhalt der QuellePatel, Nirav, Ryan Guillemette, Ratnesh Lal und Farooq Azam. „Bacterial surface interactions with organic colloidal particles: Nanoscale hotspots of organic matter in the ocean“. PLOS ONE 17, Nr. 8 (25.08.2022): e0272329. http://dx.doi.org/10.1371/journal.pone.0272329.
Der volle Inhalt der QuelleSejati, Bramasto Purbo, Tetiana Haniastuti, Ahmad Kusumaatmaja und Maria Goreti Widyastuti. „The Influence of Surface Damage on Miniplates: A Study of Bacterial Attachment Across Various Strains“. F1000Research 14 (04.02.2025): 158. https://doi.org/10.12688/f1000research.159954.1.
Der volle Inhalt der QuelleDang, Hongyue, Tiegang Li, Mingna Chen und Guiqiao Huang. „Cross-Ocean Distribution of Rhodobacterales Bacteria as Primary Surface Colonizers in Temperate Coastal Marine Waters“. Applied and Environmental Microbiology 74, Nr. 1 (26.10.2007): 52–60. http://dx.doi.org/10.1128/aem.01400-07.
Der volle Inhalt der QuelleDu, Cezhi, Chengyong Wang, Tao Zhang, Xin Yi, Jianyi Liang und Hongjian Wang. „Reduced bacterial adhesion on zirconium-based bulk metallic glasses by femtosecond laser nanostructuring“. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 234, Nr. 4 (30.12.2019): 387–97. http://dx.doi.org/10.1177/0954411919898011.
Der volle Inhalt der QuelleMüller, Rainer, Gerhard Gröger, Karl-Anton Hiller, Gottfried Schmalz und Stefan Ruhl. „Fluorescence-Based Bacterial Overlay Method for Simultaneous In Situ Quantification of Surface-Attached Bacteria“. Applied and Environmental Microbiology 73, Nr. 8 (16.02.2007): 2653–60. http://dx.doi.org/10.1128/aem.02884-06.
Der volle Inhalt der QuelleCorcionivoschi, Nicolae, Igori Balta, Eugenia Butucel, David McCleery, Ioan Pet, Maria Iamandei, Lavinia Stef und Sorin Morariu. „Natural Antimicrobial Mixtures Disrupt Attachment and Survival of E. coli and C. jejuni to Non-Organic and Organic Surfaces“. Foods 12, Nr. 20 (21.10.2023): 3863. http://dx.doi.org/10.3390/foods12203863.
Der volle Inhalt der QuelleDissertationen zum Thema "Bacterial surface"
Château, Maarten de. „Functional, structural and evolutionary studies on a family of bacterial surface proteins“. Lund : Dept. of Cell and Molecular Biology, Lund University, 1996. http://catalog.hathitrust.org/api/volumes/oclc/38947242.html.
Der volle Inhalt der QuelleLloyd, Diarmuid Padraig. „Microscopic studies of surface growing bacterial populations“. Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10509.
Der volle Inhalt der QuellePetkova, Petya Stoyanova. „Surface nano-structured materials to control bacterial contamination“. Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/398122.
Der volle Inhalt der QuelleLa propagación de bacterias e infecciones, inicialmente limitada a infecciones adquiridas en el hospital, se ha extendido al resto de la sociedad causando enfermedades muy graves y más difíciles de tratar. Además, muchas de estas enfermedades son provocadas por bacterias que se han hecho resistentes a los antibióticos convencionales. Por lo tanto, limitar la capacidad de estas bacterias para desarrollar resistencia puede potencialmente reducir la alta incidencia de estas infecciones y evitar miles de muertes cada año. Las partículas de escala nanométrica son unas candidatas prometedoras para combatir las bacterias, ya que su mecanismo de acción las hace disminuir las probabilidades en el desarrollo de resistencia. Las nanopartículas (NPs) se pueden incorporar en matrices poliméricas para diseñar una amplia variedad de materiales nanocompuestos. Estas nanoestructuras consisten en NPs orgánicas/inorgánicas e inorgánicas representando una nueva clase de materiales con una amplia gama de aplicaciones. Esta tesis trata sobre el desarrollo de materiales antibacterianos con estructura nanométrica dirigidos a prevenir la propagación de bacterias. Para lograr esto, dos herramientas fisicoquímicas y biotecnológicas versátiles tales como sonoquímica y biocatálisis, se combinaron de manera innovadora. La irradiación por ultrasonido se ha utilizado para la generación de nanoestructuras diversas y su combinación con biocatalizadores (enzimas) abre nuevas perspectivas en el tratamiento de materiales, aquí ilustrados por la producción de textiles médicos recubiertos con NPs, membranas de tratamiento de agua y apósitos para heridas crónicas. La primera parte de la tesis tiene como objetivo el desarrollo de textiles médicos antibacterianos para prevenir la transmisión y proliferación de bacterias utilizando dos estrategias "de un solo paso" para el recubrimiento antibacteriano de estos textiles con NPs. En el primer enfoque NPs antibacterianas de óxido de zinc (ZnO NPs) y quitosano (CS) fueron depositadas simultáneamente sobre tejido de algodón por irradiación de ultrasonido. Los recubrimientos híbridos de NPs obtenidos demostraron propiedades antibacterianas duraderas después de varios lavados exhaustivos. Por otra parte, la presencia de biopolímeros en las NPs híbridas mejoraba la biocompatibilidad del material en comparación con el recubrimiento de solamente de ZnO NPs. En la segunda parte de la tesis, híbridos antibacterianos hechos de biopolímeros y NPs de plata y matrices de corcho, fueron ensamblados enzimáticamente en un material antimicrobiano para su utilización en la remediación de aguas. Biopolímeros antibacterianos aminofuncionalizados (CS y aminocelulosa) se utilizaron como agentes dopantes para estabilizar las dispersiones coloidales de plata (Ag NPs). Además, estas partículas presentan todas las funciones necesarias para su inmovilización covalente en el corcho proporcionando un efecto antibacteriano duradero. Estos biopolímeros aumentaron la eficacia antibacteriana de estos nanocompuestos en condiciones que simulan una situación real en humedales construidos. En la tercera parte de la tesis, se desarrolló un hidrogel nanocompuesto bioactivo para el tratamiento de heridas crónicas. Nanoesferas de galato de epigalocatequina (EGCG NSs) fueron sintetizadas a través de sonoquimica y se incorporaron y simultáneamente reticularon enzimáticamente en un hidrogel de quitosano tiolado. El potencial del material generado para el tratamiento de heridas crónicas fue evaluado por sus propiedades antibacterianas y su efecto inhibidor sobre biomarcadores producidos en heridas crónicas infectadas (mieloperoxidasa y colagenasa). También se consiguió la liberación sostenida de EGCG NSs por parte de la matriz generada, que junto con su buena biocompatibilidad, demostraba su potencial para el tratamiento de heridas crónicas.
Haynie, Teron D. „Synthesis of Bacterial Surface Glycans for Conjugate Vaccines“. BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8669.
Der volle Inhalt der QuelleRamos, Isabel Cristina Santos Silva de Faria. „Culturable bacterial community of the estuarine surface microlayer“. Master's thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/849.
Der volle Inhalt der QuelleA camada superficial aquática (1-1000 μm) é um ecossistema único, definido como a interface entre a hidrosfera e a atmosfera. É uma camada exposta a altas intensidades de radiação solar Ultra-Violeta, sendo enriquecida com compostos orgânicos e poluentes antropogénicos. Além disso, está sujeita a condições instáveis de temperatura e salinidade. Assim sendo, é razoável colocar-se a hipótese de que esta camada é habitada por comunidades bacterianas distintas e especializadas. Apenas alguns estudos sobre este tema foram publicados e os resultados foram frequentemente divergentes. Apesar do já reconhecido enviesamento introduzido pelas metodologias dependentes do cultivo, tais técnicas permanecem essenciais para a compreensão da fisiologia e ecologia da comunidade bacteriana. Os estuários são ambientes confinados e frequentemente muito poluídos, o que provavelmente favorece a formação de camadas superficiais claramente distintas das águas subjacentes. Portanto, o objectivo deste trabalho foi comparar as comunidades bacterianas cultiváveis da camada superficial aquática e da coluna de água. Foram escolhidos três locais ao longo do estuário Ria de Aveiro atendendo a diferentes parâmetros ambientais e exposição a poluentes. A amostragem foi realizada utilizando o método 'Glass- Plate'. As amostras foram obtidas em maré baixa, durante o dia e noite, em cinco campanhas, tendo em vista a quantificação das unidades formadoras de colónias e subsequente isolamento para caracterização filogenética. Para estes fins, usámos dois meios de cultura: GSP (Pseudomonas Aeromonas Selective Agar Base) e EA (Estuarine Agar). A quantificação das UFC indica que o número de bactérias provenientes da camada superficial (bacterioneuston) é cerca de três vezes mais abundante do que o proveniente da coluna de água (bacterioplâncton). Verifica-se uma diminuição da abundância de bacterioneuston de dia para noite, ao contrário do bacterioplâncton, que tende a aumentar durante o mesmo período. Dos isolados obtidos, o rDNA 16S foi e digerido com a enzima HaeIII. A partir de 402 isolados, foram identificados 72 perfis diferentes. Desses, 21 perfis foram exclusivos da camada superficial e 28 foram exclusivos da coluna de água. Representantes dos diferentes perfis foram analisados por sequenciação e bactérias pertencentes a 5 Filos: Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes e Deinococci-Thermus; e 9 Classes: Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Actinobacteria, Flavobacteria, Sphingobacteria, Deinococci e Bacilli foram identificadas. Os isolados afiliaram com sequências provenientes de ambientes aquáticos bem como de áreas altamente contaminadas. Os resultados apontam para uma comunidade cultivável distinta/particular na microcamada superficial estuarina. ABSTRACT: The sea surface microlayer (SML) is an unique ecosystem, defined as the interfacial film (uppermost 1–1000 μm) between the atmosphere and the ocean. Thereby, it is exposed to high intensities of solar radiation, and is enriched with organic compounds and pollutants from anthropogenic inputs. Also it is subjected to unstable temperature and salinity conditions. Thus, it is proper to hypothesize that the SML is inhabited by distinct and specialized microbial communities. Only a few studies on this topic were published and results wee frequently divergent. Despite the previously recognized biases introduced by culture-dependent methodologies, such techniques remain essential to understand bacterial population’s physiology and ecology. Estuaries are confined and frequently highly polluted environments, which probably favor the formation of distinct surface layers clearly distinct from underlying waters. Therefore, our goal was to compare the culturable bacterial communities occurring in SML and underlying waters (UW). Our work concerned three sampling sites in the estuary Ria de Aveiro, corresponding to different environmental parameters and exposure to pollutants. Sampling was conducted using the so-called ‘Glass-Plate’ method. The UW samples were collected directly into a sterilized glass bottle from a depth of approximately 0.4 m. Samples were obtained at low-tide, during day and night, in five campaigns, regarding the CFU (Colony Forming Units) quantification and subsequent recovery of bacterial isolates. For these purposes we used two culture media: GSP (Pseudomonas Aeromonas Selective Agar Base) and EA (Estuarine Agar). CFU quantification indicates that bacterioneuston is about three times more abundant than bacterioplankton. Generally bacterioneuston abundance decreases from day to night while bacterioplankton usually increases during the same period. From all the obtained isolates the 16S rDNA was amplified using universal primers and digested with the enzyme HaeIII. The profiles were analyzed using the software GelCompar and representatives of each pattern were selected for sequencing. From 402 isolates, 72 different profiles were identified. From those 21 profiles were exclusive from SML samples and 28 were exclusive from UW samples. Sequencing results allowed identifying bacteria belonging to 5 different Phyla: Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes and Deinococci-Thermus; and 9 Classes: Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Actinobacteria, Flavobacteria, Sphingobacteria, Deinococci e Bacilli. Isolates affiliated with sequences from aquatic environments as well as highly contaminated areas. The results point to a distinct/particular culturable community within the SML of this estuarine environment.
Auditto, Sanjana. „Synthesis of organic conductive polymers to struggle bacterial infections“. Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0179.
Der volle Inhalt der QuelleBacterial biofilms are in the background of many industrial, health and domestic adverse effects with economic losses leading to intensive research to design solutions to combat their formation and development. Two routes are commonly used to solve these issues, one aiming at preventing the adhesion of bacteria and the other at inhibiting and killing adhered microorganisms. Recent work has been done in that direction with the use of polymer-based antifouling or antibacterial surfaces acting either by contact effect or continuous release of bacterial substances. Besides, responsive surfaces to various stimuli (microenvironment, light, acoustic waves, etc.) have been developed to release biocides in a controlled way. In addition, the use of an electrical potential (bioelectric effect) has aroused interest to disrupt biofilms but remains underexploited. The present work focuses on the development of biocompatible electrostimulable surfaces based on either (i) self-assembled monolayers (SAMs) deposited on titanium or gold electrodes, or (ii) functionalized conductive polymers (CPs), to prevent adhesion and/or kill bacteria. Phosphonium-based SAMs have demonstrated interesting antibacterial properties, without release of biocidal agent, against Gram positive and negative strains (S. aureus, K. pneumoniae). In addition, thin films of homo- and copolymers of phosphonium-based pyrrole CPs were obtained by electropolymerization, and analyzed by modifying and applying a set of parameters and tested as antibacterial coatings. Lastly, hydrophilic phosphoniums have been synthesized and preliminary studies have highlighted their potential use as nanocarriers for drug delivery
Mitik-Dineva, Natasa. „Bacterial attachment to micro- and nano- structured surfaces“. Swinburne Research Bank, 2009. http://hdl.handle.net/1959.3/48547.
Der volle Inhalt der QuelleYe, Zhou. „Effect of Nanoscale Surface Structures on Microbe-Surface Interactions“. Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/85387.
Der volle Inhalt der QuellePh. D.
Panhorst, Kimberly A. „Estimating Bacterial Loadings to Surface Waters from Agricultural Watersheds“. Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/36433.
Der volle Inhalt der QuelleThe bacterial model simulates die-off, bacterial partitioning between soil and water, and bacterial transport to surface waters in free (in solution) and sediment-adsorbed forms. Bacterial die-off was modeled using Chick's Law, bacterial partitioning was modeled with a linear isotherm equation, and bacterial transport was modeled using continuity and flow equations. The bacterial model was incorporated into the ANSWERS-2000 model, a continuous, distributed, nonpoint source pollution model. The model was tested using data from two plot studies. Calibration was required to improve runoff and sediment predictions. Bacterial model predictions underpredicted bacterial concentrations in runoff with a maximum underprediction error of 92.9%, but predictions were within an order of magnitude in all cases. Further model evaluation, on a larger watershed with predominantly overland flow, over a longer time period, is recommended, but such data were not available at the time of this assessment. The overall conclusions of this research were 1) FC and EC die-off or diminution under the examined field conditions followed Chick's Law, 2) measured die-off rate constants in the field were much less than those cited in literature for laboratory experiments, and 3) for the conditions simulated for two plot studies, the bacterial model predicted bacterial concentrations in runoff within an order of magnitude.
Master of Science
Redford, Amanda J. „Interspecies and temporal variation in bacterial leaf surface communities“. Connect to online resource, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1456691.
Der volle Inhalt der QuelleBücher zum Thema "Bacterial surface"
Ian, Hancock, und Poxton Ian, Hrsg. Bacterial cell surface techniques. Chichester [West Sussex]: Wiley, 1988.
Den vollen Inhalt der Quelle findenB, Sleytr Uwe, Hrsg. Crystalline bacterial cell surface proteins. Austin, TX: R.G. Landes Co., 1996.
Den vollen Inhalt der Quelle findenSleytr, Uwe B., Paul Messner, Dietmar Pum und Margit Sára, Hrsg. Crystalline Bacterial Cell Surface Layers. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73537-0.
Der volle Inhalt der QuelleB, Sleytr U., Hrsg. Crystalline bacterial cell surface layers. Berlin: Springer-Verlag, 1988.
Den vollen Inhalt der Quelle findenSaeid, Abdolkabir M. Bacterial surface modification of pyrite. Birmingham: University of Birmingham, 1994.
Den vollen Inhalt der Quelle findenBeveridge, Terry J., und Susan F. Koval, Hrsg. Advances in Bacterial Paracrystalline Surface Layers. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4757-9032-0.
Der volle Inhalt der QuelleJ, Beveridge Terrance, Koval Susan F und NATO Advanced Research Workshop on Advances in Bacterial Paracrystalline Surface Layers (1992 : London, Ont.), Hrsg. Advances in bacterial paracrystalline surface layers. New York: Plenum Press, 1993.
Den vollen Inhalt der Quelle findenK, Korhonen Timo, Dawes Edwin A, Mäkelä P. Helena, Federation of European Microbiological Societies. und Societas Biochemica, Biophysica, et Microbiologica Fenniae., Hrsg. Enterobacterial surface antigens: Methods for molecular characterisation. Amsterdam: Elsevier, 1985.
Den vollen Inhalt der Quelle findenPaul, Actor, und American Society for Microbiology, Hrsg. Antibiotic inhibition of bacterial cell surface assembly and function. Washington, D.C: American Society for Microbiology, 1988.
Den vollen Inhalt der Quelle findenNava, Mozes, Hrsg. Microbial cell surface analysis: Structural and physicochemical methods. New York: VCH, 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Bacterial surface"
Ofek, Itzhak, Halina Lis und Nathan Sharon. „Animal Cell Surface Membranes“. In Bacterial Adhesion, 71–88. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4615-6514-7_3.
Der volle Inhalt der QuelleIsticato, Rachele, und Ezio Ricca. „Spore Surface Display“. In The Bacterial Spore, 349–66. Washington, DC, USA: ASM Press, 2016. http://dx.doi.org/10.1128/9781555819323.ch17.
Der volle Inhalt der QuelleCerone, Antonio, und Enrico Marsili. „A Formal Model for the Simulation and Analysis of Early Biofilm Formation“. In From Data to Models and Back, 134–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70650-0_9.
Der volle Inhalt der QuelleRozgonyi, Ferenc, Åsa Ljungh, Wubshet Mamo, Stellan Hjertén und Torkel Wadström. „Bacterial Cell-Surface Hydrophobicity“. In Pathogenesis of Wound and Biomaterial-Associated Infections, 233–44. London: Springer London, 1990. http://dx.doi.org/10.1007/978-1-4471-3454-1_28.
Der volle Inhalt der QuelleReps, A. „Bacterial Surface-Ripened Cheeses“. In Cheese: Chemistry, Physics and Microbiology, 137–72. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2648-3_5.
Der volle Inhalt der QuelleReps, A. „Bacterial Surface-Ripened Cheeses“. In Cheese: Chemistry, Physics and Microbiology, 137–72. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-2800-5_5.
Der volle Inhalt der QuelleParwin, Shabnam, Sashi Kalan und Preeti Srivastava. „Bacterial Cell Surface Display“. In ACS Symposium Series, 81–108. Washington, DC: American Chemical Society, 2019. http://dx.doi.org/10.1021/bk-2019-1329.ch005.
Der volle Inhalt der QuelleDing, Aihao, und Carl Nathan. „Regulation of Cell Surface Receptor Expression by LPS“. In Bacterial Endotoxic Lipopolysaccharides, 373–86. Boca Raton: CRC Press, 2024. https://doi.org/10.1201/9781003574859-18.
Der volle Inhalt der QuelleKoch, Arthur L. „Stresses on the Surface Stress Theory“. In Bacterial Growth and Lysis, 427–42. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4757-9359-8_50.
Der volle Inhalt der QuelleArdö, Ylva, Françoise Berthier, Katja Hartmann, Elisabeth Eugster-Meier, Marie-Therese Fröhlich-Wyder, Ernst Jakob und Daniel Wechsler. „Bacterial Surface-Ripened (Smear) Cheeses“. In Global Cheesemaking Technology, 397–414. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119046165.ch10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Bacterial surface"
Madugula, Sita Sirisha, Blythe Dumerer, Ruben Millan-Solsona, Checa Nualart Marti, Liam Collins, Rama K. Vasudevan, Retterer Scott, Lance Zhang, Spencer Cox und Jennifer L. Morrell-Falvey. „Image Segmentation of Bacterial Biofilms to Study Pathogen-Surface Interactions“. In 2024 IEEE International Conference on Big Data (BigData), 4939–40. IEEE, 2024. https://doi.org/10.1109/bigdata62323.2024.10826045.
Der volle Inhalt der QuelleDurand, Hippolyte, Loïc Laplatine, Ali Kheir-Aldine, Caroline Fontelaye, Doriane Eyvrard, Anne-Gaëlle Bourdat, Malika Amdaoud, Guillaume Nonglaton und Thomas Alava. „Surface Biofunctionalization of Silicon Photonic Mach-Zehnder Interferometers for Bacterial Biosensor Development“. In 2024 IEEE BioSensors Conference (BioSensors), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/biosensors61405.2024.10712725.
Der volle Inhalt der QuelleIbrahim, Mohd Danial, Alyssa Asong Ananthan, Dayang Salyani Abang Mahmod, Awang Ahmad Sallehin Awang Husaini, Ngieng Ngui Sing, Shunsuke Nakano, Yuta Sunami und Pierre Barroy. „Antibacterial Properties of Snakeskin Inspired PDMS Surfaces Layered With Poly-DL-lactic Acid Nanosheet“. In ASME 2023 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/smasis2023-111176.
Der volle Inhalt der QuelleKrebsbach, Meaghen A., und Karim H. Muci-Ku¨chler. „Effect of Initial Surface Concentration on Bacterial Distribution in a Surrogate Ballistic Wound“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64243.
Der volle Inhalt der QuellePark, Eun-Jung, Myoung-Ock Cho und Jung Kyung Kim. „Growth Responses of Swarming and Gliding Bacteria on Substrates With Different Levels of Stiffness“. In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13154.
Der volle Inhalt der QuelleTzeng, Tzuen-Rong J., Yunyan R. Cheng, Reza Saeidpourazar, Siddharth Sanjeev Aphale und Nader Jalili. „Adhesin-Specific Nanomechnical Cantilever Biosensors for Detection of Microorganisms“. In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18487.
Der volle Inhalt der QuelleBunpot - Sirinutsomboon, Michael J Delwiche und Glenn M Young. „Effect of Surface Microstructure on Bacterial Attachment“. In 2010 Pittsburgh, Pennsylvania, June 20 - June 23, 2010. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2010. http://dx.doi.org/10.13031/2013.30009.
Der volle Inhalt der QuelleLitvinenko, V. V., E. V. Vasilieva, M. A. Abdulkadieva, E. V. Sysolyatina und S. A. Ermolaeva. „THE USE OF BACTERIAL MOTILITY CHARACTERISTICS FOR RAPID ASSESSMENT OF ANTIBIOTIC SENSITIVITY“. In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-193.
Der volle Inhalt der QuelleZheng, Zhouyuan, Parth Bansal und Yumeng Li. „Numerical Study on Antibacterial Effects of Bio-Inspired Nanostructured Surface“. In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23594.
Der volle Inhalt der QuelleSteager, Edward, M. Selman Sakar, U. Kei Cheang, David Casale, Vijay Kumar, George J. Pappas und Min Jun Kim. „Galvanotactic Control of Self-Powered Microstructures“. In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66647.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Bacterial surface"
Apte, Shruti, Smita Bhutda, Sourav Ghosh und Anirban Banerjee. Ubiquitination of bacterial surface proteins act as novel innate pathogen sensing strategy. Peeref, Juni 2023. http://dx.doi.org/10.54985/peeref.2306p5609776.
Der volle Inhalt der QuelleAlvarez, Rene, Alexander J. Burdette, Xiaomeng Wu, Christian Kotanen, Yiping Zhao und Ralph A. Tripp. Rapid Identification of Bacterial Pathogens of Military Interest Using Surface-Enhanced Raman Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, Juni 2014. http://dx.doi.org/10.21236/ada605244.
Der volle Inhalt der QuelleFrymier, P. D. Jr. Bacterial migration and motion in a fluid phase and near a solid surface. Office of Scientific and Technical Information (OSTI), Januar 1995. http://dx.doi.org/10.2172/573237.
Der volle Inhalt der QuelleBranch, Darren W., Dale L. Huber, Susan Marie Brozik und Thayne L. Edwards. Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection. Office of Scientific and Technical Information (OSTI), Oktober 2008. http://dx.doi.org/10.2172/1028915.
Der volle Inhalt der QuelleLindow, Steven, Isaac Barash und Shulamit Manulis. Relationship of Genes Conferring Epiphytic Fitness and Internal Multiplication in Plants in Erwinia herbicola. United States Department of Agriculture, Juli 2000. http://dx.doi.org/10.32747/2000.7573065.bard.
Der volle Inhalt der QuelleKozlowski, Mark, Joshua Orlicki, Randall Hughes und Randi Pullen. Peptide and Hydrophobin Interactions with Polymeric Substrates Screened by a Bacterial Surface Display Method. Aberdeen Proving Ground, MD: DEVCOM Army Research Laboratory, September 2021. http://dx.doi.org/10.21236/ad1150281.
Der volle Inhalt der QuellePhisalaphong, Muenduen, und Neeracha Sanchavanakit. Development of bacterial cellulose for temporary skin substitute. Chulalongkorn University, 2006. https://doi.org/10.58837/chula.res.2006.74.
Der volle Inhalt der QuelleGottlieb, Yuval, Bradley Mullens und Richard Stouthamer. investigation of the role of bacterial symbionts in regulating the biology and vector competence of Culicoides vectors of animal viruses. United States Department of Agriculture, Juni 2015. http://dx.doi.org/10.32747/2015.7699865.bard.
Der volle Inhalt der QuelleChoudhary, Ruplal, Victor Rodov, Punit Kohli, Elena Poverenov, John Haddock und Moshe Shemesh. Antimicrobial functionalized nanoparticles for enhancing food safety and quality. United States Department of Agriculture, Januar 2013. http://dx.doi.org/10.32747/2013.7598156.bard.
Der volle Inhalt der QuelleSplitter, Gary, und Menachem Banai. Microarray Analysis of Brucella melitensis Pathogenesis. United States Department of Agriculture, 2006. http://dx.doi.org/10.32747/2006.7709884.bard.
Der volle Inhalt der Quelle