Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Bacterial phytase“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bacterial phytase" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Bacterial phytase"
Chuiko, N. V., A. Yu Chobotarov und I. K. Kurdish. „Growth and Phytase Activities of Bacillus subtilis IMV B-7023 During Cultivation with Sodium Phytate“. Mikrobiolohichnyi Zhurnal 83, Nr. 6 (17.12.2021): 13–19. http://dx.doi.org/10.15407/microbiolj83.06.013.
Der volle Inhalt der QuelleWilliams, P. J., und T. G. Taylor. „A comparative study of phytate hydrolysis in the gastrointestinal tract of the golden hamster (Mesocricetus auratus) and the laboratory rat“. British Journal of Nutrition 54, Nr. 2 (September 1985): 429–35. http://dx.doi.org/10.1079/bjn19850128.
Der volle Inhalt der QuelleMoss, Amy F., Sonia Yun Liu und Peter H. Selle. „Progress in comprehending the phytate–phytase axis in chicken-meat production“. Animal Production Science 58, Nr. 10 (2018): 1767. http://dx.doi.org/10.1071/an17594.
Der volle Inhalt der QuelleChuiko, N. V., A. Yu Chobotarov und I. K. Kurdish. „Abiotic Factors Influence on Bacillus subtilis IMV B-7023 Phytase Activity“. Mikrobiolohichnyi Zhurnal 84, Nr. 6 (28.02.2023): 3–9. http://dx.doi.org/10.15407/microbiolj84.06.003.
Der volle Inhalt der QuelleMenezes-Blackburn, Daniel, Nahad Al-Mahrouqi, Buthaina Al-Siyabi, Adhari Al-Kalbani, Ralf Greiner und Sergey Dobretsov. „Bacterial Communities Associated with the Cycling of Non-Starch Polysaccharides and Phytate in Aquaponics Systems“. Diversity 13, Nr. 12 (30.11.2021): 631. http://dx.doi.org/10.3390/d13120631.
Der volle Inhalt der QuelleSuleimanova, Aliya, Daria Bulmakova und Margarita Sharipova. „Heterologous Expression of Histidine Acid Phytase From Pantoea sp. 3.5.1 in Methylotrophic Yeast Pichia Pastoris“. Open Microbiology Journal 14, Nr. 1 (30.07.2020): 179–89. http://dx.doi.org/10.2174/1874285802014010179.
Der volle Inhalt der QuelleGauchan, Dhurva Prasad, Shishir Pandey, Bikash Pokhrel, Nabin Bogati, Puja Thapa, Ashesh Acharya, Bishnu Maya KC und Janardan Lamichhane. „Growth Promoting Role of Phytase Producing Bacteria Isolated from Bambusa tulda Roxb. Rhizosphere in Maize Seedlings Under Pot Conditions“. Journal of Nepal Biotechnology Association 4, Nr. 1 (22.03.2023): 17–26. http://dx.doi.org/10.3126/jnba.v4i1.53442.
Der volle Inhalt der QuelleChristensen, Trine, Yueming Dersjant-Li, Vincent Sewalt, Rie Mejldal, Svend Haaning, Sina Pricelius, Igor Nikolaev, Robin A. Sorg und Arno de Kreij. „In Vitro Characterization of a Novel Consensus Bacterial 6-Phytase and One of its Variants“. Current Biochemical Engineering 6, Nr. 3 (28.12.2020): 156–71. http://dx.doi.org/10.2174/2212711906999201020201710.
Der volle Inhalt der QuelleEspinosa, Charmaine D., Deepak E. Velayudhan, Yueming Dersjant-Li und Hans H. Stein. „60 Effect of a Novel Consensus Bacterial 6-phytase Variant on Mineral Digestibility and Bone Ash in Young Growing Pigs Fed Diets with Different Concentrations of Phytate“. Journal of Animal Science 99, Supplement_1 (01.05.2021): 45–46. http://dx.doi.org/10.1093/jas/skab054.079.
Der volle Inhalt der QuelleSuleimanova, Aliya D., Astrid Beinhauer, Liia R. Valeeva, Inna B. Chastukhina, Nelly P. Balaban, Eugene V. Shakirov, Ralf Greiner und Margarita R. Sharipova. „Novel Glucose-1-Phosphatase with High Phytase Activity and Unusual Metal Ion Activation from Soil Bacterium Pantoea sp. Strain 3.5.1“. Applied and Environmental Microbiology 81, Nr. 19 (24.07.2015): 6790–99. http://dx.doi.org/10.1128/aem.01384-15.
Der volle Inhalt der QuelleDissertationen zum Thema "Bacterial phytase"
Pal, Roy Moushree. „Isolation, characterization, molecular gene cloning and expression of novel bacterial phytase from environmental samples“. Thesis, University of North Bengal, 2015. http://hdl.handle.net/123456789/2744.
Der volle Inhalt der QuelleOlstorpe, Matilda. „Feed grain improvement through biopreservation and bioprocessing : microbial diversity, energy conservation and animal nutrition aspects /“. Uppsala : Dept. of Microbiology, Swedish University of Agricultural Sciences, 2008. http://epsilon.slu.se/200877.pdf.
Der volle Inhalt der QuelleYang, Shu-Hui, und 楊舒卉. „Screening lactic acid bacteria with phytase activity from fish intestine for the phytate degradation of soybean“. Thesis, 2015. http://ndltd.ncl.edu.tw/handle/vc5u54.
Der volle Inhalt der QuelleYi, Yang Mu, und 楊慕義. „Establishment of optimal conditions for the degradation of phytate in soybean meal by lactic acid bacteria with phytase activity using a novel solid-state fermenter“. Thesis, 2016. http://ndltd.ncl.edu.tw/handle/60706240763577538750.
Der volle Inhalt der Quelle國立臺灣海洋大學
食品科學系
104
The consumption of fish meal is raising because of the booming development of aquaculture. Soybean meal with stable supplement and high protein content is the best substitute for fish meal in aquaculture feed. However, soybean contains many antinutrient factors such as phytate and saponin, which can block the nutrient absorption of the organism and cause the adverse effect on fish growth. In this study Lactobacillus plantarium FPS 2520 with phytase activity was used to degrade phytate in soybean and soybean meal using a solid-state fermentation in the flask. The effects of soybean particle size and water content of substrate on the phyate and saponin degradation were evaluated first. The phytate degradation efficacy increased with decreasing size of soybean particle, with the powder form being most favored. The best ratio of soybean powder/soybean meal to water for phytate degradation is 1:3; while the water content did not affect the saponin degradation. The residual saponin content was around 1.8 to 2.0 mg/g after FPS 2520 fermentation at 37oC for 72 h, irrespective the water content of substrate and soybean particle size. After fermentation of soybean (20.23 ± 0.26 mg/g phytate) and soybean meal (54.68 ± 0.42 mg/g phytate) by FPS 2520 with an initial inoculum of 6 log CFU/mL at 37oC for 72 hr, the phytate degradation efficacy were 57.92% and 17.06 %, respectively. The phytate degradation efficacy in soybean and soybean meal was further increased to 75 and 34.56% by using two stages of incubation temperatures of 37oC for 24 h, followed by 50oC for 24 h.Using a novel solid-state fermenter to try to increase the phytate degradation efficacy in soybean meal by implication of the systems of rotation and ventilation, and also by the strategy of two incubation temperature. Factors of rotation (0, 1, 2 rpm) and ventilation (0, 0.5, 1.0, 1.5, 2.0 vvm) on phytate degradation were evaluated first. Rotation with 2 rpm significantly increased the phytate degradation efficacy from 51.9 % to 61.3 % by FPS 2520 at 37oC for 72 h; while it did not affect saponin degradation efficacy (about 65.57%). Ventilation at 1.5 vvm did not affect bacterial growth; while phytate degradation efficacy was increased from 13.56% to 38.83%. The effects of rotation and ventilation on phytate degradation were further investigated using the stratagem of 2 incubation temperatures of 37oC and 50oC. The phytate degradation efficacy in soybean meal by FPS2520 was further increased to 97.60 % using two stages of incubation temperatures of 37oC at 2 rpm and 1.5 vvm for 24 h, followed by 50oC at 2 rpm 0.5 vvm for 24 h. After fermentation the residual phytate and saponin in soybean meal was only 1.16 ± 3.32 mg/g and 81.25 ± 7.53 mg/g.
CHEN, CHI-CHUN, und 陳智群. „The Selection and Application of Phytase Producing Lactic Acid Bacteria“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/r5559c.
Der volle Inhalt der Quelle國立澎湖科技大學
食品科學系碩士班
107
127 strains of lactic acid bacteria with phytase activity were screened from 614 strains of lactic acid bacteria isolated from the algae in Penghu keeping in our laboratory. Among them, 7 strains of the highest activity lactic acid bacteria were identified as 3 strains of Lactobacillus plantarum (5-1, 1.2U/mL; 20-4-1, 1.7U/mL; 62-3, 1.72U/mL) , 1 strain of Lactobacillus brevis (12-5, 1.88 U/mL), 1 strain of Lactobacillus rhamnosus (128-1, 1.24 U/mL) and 2 strains of Lactobacillus fermentum (62-6, 0.91 U/mL; 366-1, 1.37 U/mL). After fermenting with phytase producing LAB, phytic acid in brown rice pulp, shelled wheat pulp, and whole soy milk medium can be degraded effectively. The pH was significantly reduced to 5 after 12 hours of fermentation. The number of bacteria in the fermentation for 24 hours reached a maximum. The phytic acid degradation gradually slowed down after 48 hours of fermentation. Comparing the number of viable bacteria and the amount of phytic acid degradation, Lactobacillus plantarum 20-4-1 is the best strain which can be used in grain fermentation, the phytic acid residue after fermentation for 72 hours were 13.76 mg/g (36%) of whole soybeans, 2.56 mg/g of brown rice (28%), and 5.63 mg / g (50.0%) of the shelled wheat.
Buchteile zum Thema "Bacterial phytase"
Bianchi, Thomas S., und Elizabeth A. Canuel. „Lipids: Hydrocarbons“. In Chemical Biomarkers in Aquatic Ecosystems. Princeton University Press, 2011. http://dx.doi.org/10.23943/princeton/9780691134147.003.0010.
Der volle Inhalt der QuelleSharma, Neha. „Role of phytases from lactic acid bacterial species in level upgradation of bioavailable micronutrients in food applications“. In Lactic Acid Bacteria as Cell Factories, 219–37. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-91930-2.00011-0.
Der volle Inhalt der QuelleKumar, Vikas, Md Sakhawat Hossain, Janice A. Ragaza und Marina Rubio Benito. „The Potential Impacts of Soy Protein on Fish Gut Health“. In Soybean for Human Consumption and Animal Feed. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92695.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Bacterial phytase"
„Phytase Activity of Four Endophytes Bacteria from Zea Mays L.“ In April 17-18, 2018 Kyoto (Japan). International Institute of Chemical, Biological and Environmental Engineering, 2018. http://dx.doi.org/10.17758/iicbe1.c0418153.
Der volle Inhalt der QuelleDamayanti, Ema, Febiyani Ndaru Ratisiwi, Lusty Istiqomah, Langkah Sembiring und Andi Febrisiantosa. „Phytate degrading activities of lactic acid bacteria isolated from traditional fermented food“. In PROCEEDINGS FROM THE 14TH INTERNATIONAL SYMPOSIUM ON THERAPEUTIC ULTRASOUND. Author(s), 2017. http://dx.doi.org/10.1063/1.4978126.
Der volle Inhalt der QuelleKumar Puri, Adarsh, Johnson Zininga, Kugenthiren Permaul und Suren Singh. „A thermo-acid-stable and protease-resistant phytase from a newly isolated thermophilic bacterium, Bacillus ginsengihumi“. In Annual International Conference on Advances in Biotechnology. Global Science & Technology Forum (GSTF), 2015. http://dx.doi.org/10.5176/2251-2489_biotech15.68.
Der volle Inhalt der Quelle