Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Bacterial near-surface motion“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bacterial near-surface motion" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Bacterial near-surface motion"
Li, G., L. K. Tam und J. X. Tang. „Amplified effect of Brownian motion in bacterial near-surface swimming“. Proceedings of the National Academy of Sciences 105, Nr. 47 (17.11.2008): 18355–59. http://dx.doi.org/10.1073/pnas.0807305105.
Der volle Inhalt der QuelleIshimoto, Kenta. „Bacterial spinning top“. Journal of Fluid Mechanics 880 (10.10.2019): 620–52. http://dx.doi.org/10.1017/jfm.2019.714.
Der volle Inhalt der QuelleShum, H., E. A. Gaffney und D. J. Smith. „Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, Nr. 2118 (13.01.2010): 1725–48. http://dx.doi.org/10.1098/rspa.2009.0520.
Der volle Inhalt der QuelleLee, Calvin K., Jaime de Anda, Amy E. Baker, Rachel R. Bennett, Yun Luo, Ernest Y. Lee, Joshua A. Keefe et al. „Multigenerational memory and adaptive adhesion in early bacterial biofilm communities“. Proceedings of the National Academy of Sciences 115, Nr. 17 (20.03.2018): 4471–76. http://dx.doi.org/10.1073/pnas.1720071115.
Der volle Inhalt der QuelleShrivastava, Abhishek, und Howard C. Berg. „A molecular rack and pinion actuates a cell-surface adhesin and enables bacterial gliding motility“. Science Advances 6, Nr. 10 (März 2020): eaay6616. http://dx.doi.org/10.1126/sciadv.aay6616.
Der volle Inhalt der QuelleKlebba, Phillip E. „ROSET Model of TonB Action in Gram-Negative Bacterial Iron Acquisition“. Journal of Bacteriology 198, Nr. 7 (19.01.2016): 1013–21. http://dx.doi.org/10.1128/jb.00823-15.
Der volle Inhalt der QuelleShum, Henry. „Microswimmer Propulsion by Two Steadily Rotating Helical Flagella“. Micromachines 10, Nr. 1 (18.01.2019): 65. http://dx.doi.org/10.3390/mi10010065.
Der volle Inhalt der QuelleKinde, Monica N., Vasyl Bondarenko, Daniele Granata, Weiming Bu, Kimberly C. Grasty, Patrick J. Loll, Vincenzo Carnevale et al. „Fluorine-19 NMR and computational quantification of isoflurane binding to the voltage-gated sodium channel NaChBac“. Proceedings of the National Academy of Sciences 113, Nr. 48 (15.11.2016): 13762–67. http://dx.doi.org/10.1073/pnas.1609939113.
Der volle Inhalt der QuellePeng, Qingmei, Xin Zhou, Zhi Wang, Qingyi Xie, Chunfeng Ma, Guangzhao Zhang und Xiangjun Gong. „Three-Dimensional Bacterial Motions near a Surface Investigated by Digital Holographic Microscopy: Effect of Surface Stiffness“. Langmuir 35, Nr. 37 (18.08.2019): 12257–63. http://dx.doi.org/10.1021/acs.langmuir.9b02103.
Der volle Inhalt der QuelleAsghar, Z., und N. Ali. „A mathematical model of the locomotion of bacteria near an inclined solid substrate: effects of different waveforms and rheological properties of couple-stress slime“. Canadian Journal of Physics 97, Nr. 5 (Mai 2019): 537–47. http://dx.doi.org/10.1139/cjp-2017-0906.
Der volle Inhalt der QuelleDissertationen zum Thema "Bacterial near-surface motion"
Wang, Yiying. „Effect of Aligned Nanoscale Surface Structures on Microbial Adhesion“. Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/104040.
Der volle Inhalt der QuelleMaster of Science
Many microbes in nature live in adherent communities called biofilm. Biofilms contain individual microbes inside polymeric matrix which protect them from environmental stressors such as antibiotics. Biofilms are a significant contributor to the infection of implantable medical devices, which leads to additional healthcare costs of billions of dollars annually in the U.S. alone. Studies have found that sub-micron scale surface topography can significantly promote or hinder biofilm formation; however, the exact mechanism remains poorly understood. To further understand this process, the effect of aligned nanoscale surface structures on microbial adhesion was studied. The formation of microbial biofilm starts with swimming bacteria sensing the liquid-solid interface and attaching to the surface. Microbes are more likely to settle on a surface if a surface is favorable to attach. However, the decision-making process has not been fully understood. Our experimental results showed that the bacterial attachment and near-surface motion can be greatly influenced by surface topography. Furthermore, the finding was applied to ureteral stents, which is a type of medical implants used to maintain the flow of urine in the urinary tract. Ureteral stents serve great for medical purposes, but as foreign bodies, they also lead to urinary tract infection. The results showed that some types of aligned fiber coating increased microbial attachment density, while other types of aligned fiber coating reduced the bacterial surface coverage by up to 80%, which provides directions for future studies.
Konferenzberichte zum Thema "Bacterial near-surface motion"
Khalil, Islam S. M., Ahmet Fatih Tabak, Tijmen Hageman, Mohamed Ewis, Marc Pichel, Mohamed E. Mitwally, Nermeen Serag El-Din, Leon Abelmann und Metin Sitti. „Near-surface effects on the controlled motion of magnetotactic bacteria“. In 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017. http://dx.doi.org/10.1109/icra.2017.7989705.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Bacterial near-surface motion"
Frymier, P. D. Jr. Bacterial migration and motion in a fluid phase and near a solid surface. Office of Scientific and Technical Information (OSTI), Januar 1995. http://dx.doi.org/10.2172/573237.
Der volle Inhalt der Quelle