Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Bacterial disinfection mechanisms“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bacterial disinfection mechanisms" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Bacterial disinfection mechanisms"
LeChevallier, Mark W., Cheryl D. Cawthon und Ramon G. Lee. „Mechanisms of Bacterial Survival in Chlorinated Drinking Water“. Water Science and Technology 20, Nr. 11-12 (01.11.1988): 145–51. http://dx.doi.org/10.2166/wst.1988.0277.
Der volle Inhalt der QuelleBichai, Françoise, Simon Léveillé und Benoit Barbeau. „Comparison of the role of attachment, aggregation and internalisation of microorganisms in UVC and UVA (solar) disinfection“. Water Science and Technology 63, Nr. 9 (01.05.2011): 1823–31. http://dx.doi.org/10.2166/wst.2011.385.
Der volle Inhalt der QuelleMecha, Achisa C., Maurice S. Onyango, Aoyi Ochieng und Maggy NB Momba. „Modelling inactivation kinetics of waterborne pathogens in municipal wastewater using ozone“. Environmental Engineering Research 25, Nr. 6 (06.12.2019): 890–97. http://dx.doi.org/10.4491/eer.2019.432.
Der volle Inhalt der QuelleCogan, N. G., Jason Brown, Kyle Darres und Katherine Petty. „Optimal Control Strategies for Disinfection of Bacterial Populations with Persister and Susceptible Dynamics“. Antimicrobial Agents and Chemotherapy 56, Nr. 9 (02.07.2012): 4816–26. http://dx.doi.org/10.1128/aac.00675-12.
Der volle Inhalt der QuelleDelebecque, Nathalie, Christel Causserand, Christine Roques und Pierre Aimar. „Membrane processes for water disinfection: investigation on bacterial transfer mechanisms“. Desalination 199, Nr. 1-3 (November 2006): 81–83. http://dx.doi.org/10.1016/j.desal.2006.03.147.
Der volle Inhalt der QuelleCunningham, J. H., C. Cunningham, B. Van Aken und L. S. Lin. „Feasibility of disinfection kinetics and minimum inhibitory concentration determination on bacterial cultures using flow cytometry“. Water Science and Technology 58, Nr. 4 (01.09.2008): 937–44. http://dx.doi.org/10.2166/wst.2008.619.
Der volle Inhalt der QuelleDias, D. F. C., R. G. Passos und M. von Sperling. „A review of bacterial indicator disinfection mechanisms in waste stabilisation ponds“. Reviews in Environmental Science and Bio/Technology 16, Nr. 3 (09.05.2017): 517–39. http://dx.doi.org/10.1007/s11157-017-9433-2.
Der volle Inhalt der QuelleRosenblueth, Mónica, und Esperanza Martínez-Romero. „Bacterial Endophytes and Their Interactions with Hosts“. Molecular Plant-Microbe Interactions® 19, Nr. 8 (August 2006): 827–37. http://dx.doi.org/10.1094/mpmi-19-0827.
Der volle Inhalt der QuelleGarcia-Segura, Sergi, Omotayo A. Arotiba und Enric Brillas. „The Pathway towards Photoelectrocatalytic Water Disinfection: Review and Prospects of a Powerful Sustainable Tool“. Catalysts 11, Nr. 8 (29.07.2021): 921. http://dx.doi.org/10.3390/catal11080921.
Der volle Inhalt der QuelleLiu, Dan, Yiqin Mao und Lijun Ding. „Carbon nanotubes as antimicrobial agents for water disinfection and pathogen control“. Journal of Water and Health 16, Nr. 2 (12.02.2018): 171–80. http://dx.doi.org/10.2166/wh.2018.228.
Der volle Inhalt der QuelleDissertationen zum Thema "Bacterial disinfection mechanisms"
Alabdullatif, Meshari. „Understanding the Resistance and Virulence Mechanisms of Staphylococcus Epidermidis Triggered During Skin Disinfection, Blood Production and Storage“. Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/38661.
Der volle Inhalt der QuelleDehghan, Abnavi Mohammadreza Dehghan. „CHLORINE DECAY AND PATHOGEN CROSS CONTAMINATION DYNAMICS IN FRESH PRODUCE WASHING PROCESS“. Cleveland State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=csu1624196282479244.
Der volle Inhalt der Quelle„Visible-light-driven photocatalysts for bacterial disinfection: bactericidal performances and mechanisms“. 2012. http://library.cuhk.edu.hk/record=b5549674.
Der volle Inhalt der Quelle本研究介紹三種新型可見光催化劑的殺菌性能。它們是B,Ni共摻TiO₂微米球(BNT),BiVO₄納米管(BV-NT)和CdIn₂S₄微米球(CIS)。其中一種是修飾的TiO₂催化劑,另兩種是新型的非TiO₂基催化劑。採用加入各種湮滅劑結合一種分離裝置的研究方法系統研究了三種催化劑的可見光殺菌機理。首先,研究發現當用BNT作為光催化劑的時候,可見光催化降解染料和殺菌之間存在巨大的差異。對於光催化降解染料,光催化反應主要發生在催化劑的表面,是由表面活性物質如h⁺, ・OHs和・O₂⁻參與,而細菌可以被擴散物種如・OH[subscript b]和H₂O₂,以不直接接觸催化劑表面的方式被殺死。可擴散的H₂O₂在這種殺菌過程中起了最重要的作用,而它可以在催化劑價帶以・OH[subscript b]溶液體相耦合和・OH[subscript s]催化劑表面耦合兩種方式產生。
其次,在用BV-NT作為光催化劑可見光殺滅大腸桿菌的過程中,光生空穴(h⁺)以及由空穴產生的氧化物種,如・OH[subscript s], H₂O₂和・HO₂/・O₂⁻,是主要的活性物種。但是這個殺菌過程只有很少量的H₂O₂可以擴散到溶液中,導致有效殺菌需要細菌和光催化表面直接接觸。研究還發現,細菌本身可以捕獲光生電子(e⁻)來降低空穴-電子複合率,這個作用在無氧氣參與的殺菌過程中尤為明顯。透射電鏡顯示,細菌的破壞是由細胞壁開始從外到內的被破壞。研究認為,表面羥基・OH[subscript s]比溶液體相羥基・OH[subscript b]更加重要,並且很難從BV-NT表面擴散進容易中。
最後,研究還發現CIS也具有不接觸細菌而有效可見光催化殺滅大腸桿菌的能力,這也歸結為可擴散H₂O₂,而不是・OH的作用。H₂O₂可以通過・O₂⁻從催化劑導帶和價帶同時產生。本研究提供了幾種具有應用前景的高效可見光催化殺菌催化劑,並對其光催化機理提出了新的思路,指出可見光催化殺菌機理與使用的光催化劑是密切相關的。更重要的是,本研究建立了一種簡便易行的研究方法,可用於對其他各種可見光催化殺菌系統進行深入的機理研究。
During the last few decades, there has been an increasing public concern related to the outbreak of waterborne diseases caused by pathogenic microorganisms. As a green technology, solar photocatalysis has attracted much attention for the disinfection of various microorganisms without secondary pollution. However, the most commonly used TiO₂ photocatalyst is only active under UV irradiation which accounts for only 4% of the solar spectrum. Therefore, new types of photocatalysts that can be excited by visible light (VL) are highly needed, as 45% of the solar spectrum is covered by VL. In addition, existing reports on the mechanisms of photocatalytic bacterial disinfection are rather limited and mostly based on TiO₂-UV irradiated systems, thus the mechanisms in visible-light-driven (VLD) photocatalystic disinfection systems are far from fully understandable.
In this study, three different kinds of VLD photocatalysts were discovered for the photocatalytic bacterial disinfection. They were B-Ni-codoped TiO₂ microsphere (BNT), bismuth vanadate nanotube (BV-NT), and cadmium indium sulfide (CIS). One was modified TiO₂-based photocatalyst, and the other two were new types of non-TiO₂ based photocatalyst. The mechanisms of VLD photocatalytic disinfection were investigated by multiple scavenging studies combined with a partition system. Firstly, significant differences between VLD photocatalytic dye decolorization and bacterial disinfection were found in the case of BNT as the photocatalyst. For photocatalytic dye decolorization, the reaction mainly occurred on the photocatalyst surface with the aid of surface-bounded reactive species (h⁺, ・OH[subscript s] and ・O₂⁻), while bacterial cell could be inactivated by diffusing reactive oxidative species such as ・OH[subscript b] and H₂O₂ without the direct contact with the photocatalyst. The diffusing H₂O₂ played the most important role in the photocatalytic disinfection, which could be produced both by the coupling of ・OH[subscript b] in bulk solution and ・OH[subscript s] on the surface of photocatalyst at the valence band.
Secondly, when using BV-NT as the photocatalyst for Escherichia coli K-12 inactivation, the photogenerated h⁺ and reactive oxidative species derived from h⁺, such as ・OH[subscript s], H₂O₂ and ・HO₂/・O₂⁻, were the major reactive species. However, the inactivation requires close contact between the BV-NT and bacterial cells, as only a limited amount of H₂O₂ can diffuse into the solution to cause the inactivation. The bacterial cells can trap e⁻ in order to minimize e⁻-h⁺ recombination, especially under anaerobic condition. Transmission electron microscopic study indicated the destruction process of bacterial cell began from the cell wall to other cellular components. The ・OH[subscript s] was postulated to be more important than ・OH[subscript b] and was not supposed to be released very easily from BV-NT surface.
Finally, it was found that E. coli cells could be effectively inactivated without the direct contact with CIS, which was attributed to the function of diffusing H₂O₂ rather than ・OH. H₂O₂ was produced from both conduction and valance bands with the involvement of ・O₂⁻, which were detected by ESR spin-trap with DMPO trapping technology. While this study provided promising candidates of efficient VLD photocatalysts for water disinfection as well as deep insights into the disinfection mechanisms, it was notable that the photocatalytic disinfection mechanisms were quite dependent on the selected photocatalysts. Nevertheless, the research methodology established in this study was proved to be facile and versatile for the in-depth investigation of mechanisms in different VLD photocatalyst systems.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Wang, Wanjun.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2012.
Includes bibliographical references (leaves 140-170).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstract also in Chinese.
Acknowledgements --- p.i
Abstract --- p.vi
List of Figures --- p.xvi
List of Plates --- p.xxiii
List of Tables --- p.xxiv
List of Equations --- p.xxv
Abbreviations --- p.xxvii
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Water disinfection --- p.1
Chapter 1.2 --- Traditional water disinfection methods --- p.2
Chapter 1.2.1 --- Chlorination --- p.2
Chapter 1.2.2 --- Ozonation --- p.3
Chapter 1.2.3 --- UV irradiation --- p.4
Chapter 1.3 --- Advanced oxidation process --- p.5
Chapter 1.4 --- Photocatalysis --- p.6
Chapter 1.4.1 --- Fundamental mechanism for TiO₂ photocatalysis --- p.7
Chapter 1.4.2 --- Photocatalytic water disinfection --- p.12
Chapter 1.5 --- Visible-light-driven photocatalysts for water disinfection --- p.16
Chapter 1.5.1 --- Modified TiO₂ photocatalysts --- p.16
Chapter 1.5.1.1 --- Surface modication of TiO₂ by noble metals --- p.16
Chapter 1.5.1.2 --- Ion doped TiO₂ --- p.18
Chapter 1.5.1.3 --- Dye-sensitized TiO₂ --- p.19
Chapter 1.5.1.4 --- Composite TiO₂ --- p.20
Chapter 1.5.2 --- Non-TiO₂ based photocatalysts --- p.22
Chapter 1.5.2.1 --- Metal oxides --- p.22
Chapter 1.5.2.2 --- Metal sulfides --- p.24
Chapter 1.5.2.3 --- Bismuth metallates --- p.25
Chapter 1.6 --- Photocatalystic disinfection mechanisms --- p.27
Chapter 2 --- Objectives --- p.30
Chapter 3 --- Comparative Study of Visible-light-driven Photocatalytic Mechanisms of Dye Decolorization and Bacterial Disinfection by B-Ni-codoped TiO₂ Microspheres --- p.32
Chapter 3.1 --- Introduction --- p.32
Chapter 3.2 --- Experimental --- p.35
Chapter 3.2.1 --- Materials --- p.35
Chapter 3.2.2 --- Characterizations --- p.36
Chapter 3.2.3 --- Photocatalytic decolorization of RhB --- p.36
Chapter 3.2.4 --- Photocatalytic disinfection of E. coli K-12 --- p.37
Chapter 3.2.5 --- Partition system --- p.40
Chapter 3.2.6 --- Scavenging study --- p.41
Chapter 3.2.7 --- Analysis of ・OH and ・O₂⁻ --- p.42
Chapter 3.2.8 --- Analysis of H₂O₂ --- p.43
Chapter 3.3 --- Results and Discussion --- p.44
Chapter 3.3.1 --- XRD and SEM images --- p.44
Chapter 3.3.2 --- Photocatalytic decolorization of RhB --- p.46
Chapter 3.3.2.1 --- Role of reactive species --- p.46
Chapter 3.3.2.2 --- Partition system for dye decolorization --- p.49
Chapter 3.3.3 --- Photocatalytic bacterial disinfection --- p.51
Chapter 3.3.3.1 --- Role of reactive species --- p.51
Chapter 3.3.3.2 --- Partition system for bacterial disinfection --- p.54
Chapter 3.3.3.3 --- pH effects --- p.58
Chapter 3.3.3.4 --- Role of H₂O₂ --- p.60
Chapter 3.3.4 --- Role of ・O₂⁻ in RhB decolorization and bacterial disinfection --- p.67
Chapter 3.4 --- Conclusions --- p.75
Chapter 4. --- Visible-light-driven Photocatalytic Inactivation of E. coli K-12 by Bismuth Vanadate Nanotubes: Bactericidal Performance and Mechanism --- p.76
Chapter 4.1 --- Introduction --- p.76
Chapter 4.2 --- Experimental --- p.78
Chapter 4.2.1 --- Materials --- p.78
Chapter 4.2.2 --- Photocatalytic bacterial inactivation --- p.80
Chapter 4.2.3 --- Bacterial regrowth ability test --- p.82
Chapter 4.2.4 --- Analysis of reactive species --- p.82
Chapter 4.2.5 --- Preparation procedure for bacterial TEM study --- p.83
Chapter 4.2.6 --- Analysis of bacterial catalase activity --- p.84
Chapter 4.2.7 --- Analysis of potassium ion leakage --- p.84
Chapter 4.3 --- Results and Discussion --- p.85
Chapter 4.3.1 --- Photocatalytic bacterial inactivation --- p.85
Chapter 4.3.2 --- Mechanism of photocatalytic inactivation --- p.87
Chapter 4.3.2.1 --- Role of primary reactive species --- p.87
Chapter 4.3.2.2 --- Role of direct contact effect --- p.96
Chapter 4.3.3 --- Destruction model of bacterial cells --- p.98
Chapter 4.3.4 --- Analysis of radical production --- p.104
Chapter 4.4 --- Conclusions --- p.109
Chapter 5 --- CdIn₂S₄ Microsphere as an Efficient Visible-light-driven Photocatalyst for Bacterial Inactivation: Synthesis, Characterizations and Photocatalytic Inactivation Mechanisms --- p.111
Chapter 5.1 --- Introduction --- p.111
Chapter 5.2 --- Experimental --- p.113
Chapter 5.2.1 --- Synthesis --- p.113
Chapter 5.2.2 --- Characterizations --- p.114
Chapter 5.2.3 --- Photocatalytic bacterial inactivation --- p.116
Chapter 5.3 --- Results and Discussion --- p.117
Chapter 5.3.1 --- Characterizations of Photocatalyst --- p.117
Chapter 5.3.2 --- Photocatalytic bacterial inactivation and mechanism --- p.121
Chapter 5.3.3 --- Destruction process of bacterial cell --- p.128
Chapter 5.3.4 --- Analysis of radical generation --- p.131
Chapter 5.4 --- Conclusions --- p.133
Chapter 6 --- General Conclusions --- p.135
Chapter 7 --- References --- p.140