Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Bacteria Effect of radiation on“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bacteria Effect of radiation on" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Bacteria Effect of radiation on"
Rajasekhar, E., G. Jaffer Mohiddin, M. Srinivasulu, V. Rangaswamy und R. Jeevan Kumar. „Effect of ionizing radiation on soil bacteria, fungi and germination of red gram seeds (Cajanus cajan L.)“. South Asian Journal of Experimental Biology 3, Nr. 1 (10.03.2013): 24–30. http://dx.doi.org/10.38150/sajeb.3(1).p24-30.
Der volle Inhalt der QuellePatel, Priya, Hiteshi Patel, Dhara Vekariya, Chinmayi Joshi, Pooja Patel, Steven Muskal und Vijay Kothari. „Sonic Stimulation and Low Power Microwave Radiation Can Modulate Bacterial Virulence Towards Caenorhabditis elegans“. Anti-Infective Agents 17, Nr. 2 (05.07.2019): 150–62. http://dx.doi.org/10.2174/2211352516666181102150049.
Der volle Inhalt der QuelleITO, Hitoshi. „Effect of radiation decontamination on drug-resistant bacteria“. FOOD IRRADIATION, JAPAN 41, Nr. 1-2 (2006): 9–13. http://dx.doi.org/10.5986/jrafi.41.9.
Der volle Inhalt der QuelleLin, Tao, Bo Cai und Wei Chen. „Limnoithona sinensis as refuge for bacteria: protection from UV radiation and chlorine disinfection in drinking water treatment“. Canadian Journal of Microbiology 60, Nr. 11 (November 2014): 745–52. http://dx.doi.org/10.1139/cjm-2014-0347.
Der volle Inhalt der QuelleHughes, Kevin A. „Effect of Antarctic solar radiation on sewage bacteria viability“. Water Research 39, Nr. 11 (Juni 2005): 2237–44. http://dx.doi.org/10.1016/j.watres.2005.04.011.
Der volle Inhalt der QuelleBauza-Kaszewska, Justyna, Krzysztof Skowron, Zbigniew Paluszak, Zbigniew Dobrzański und Mścisław Śrutek. „Effect of Microwave Radiation on Microorganisms in Fish Meals“. Annals of Animal Science 14, Nr. 3 (29.07.2014): 623–36. http://dx.doi.org/10.2478/aoas-2014-0020.
Der volle Inhalt der QuelleAlonso-S�ez, Laura, Josep M. Gasol, Thomas Lefort, Julia Hofer und Ruben Sommaruga. „Effect of Natural Sunlight on Bacterial Activity and Differential Sensitivity of Natural Bacterioplankton Groups in Northwestern Mediterranean Coastal Waters“. Applied and Environmental Microbiology 72, Nr. 9 (September 2006): 5806–13. http://dx.doi.org/10.1128/aem.00597-06.
Der volle Inhalt der QuelleDion, Paule, Raymond Charbonneau und Chantal Thibault. „Effect of ionizing dose rate on the radioresistance of some food pathogenic bacteria“. Canadian Journal of Microbiology 40, Nr. 5 (01.05.1994): 369–74. http://dx.doi.org/10.1139/m94-060.
Der volle Inhalt der QuelleAL.Bayatti, Khalid K. „The Effect of Ionizing Radiation on Microorganism in some spices“. Iraqi Journal of Veterinary Medicine 33, Nr. 1 (30.06.2009): 149–54. http://dx.doi.org/10.30539/iraqijvm.v33i1.728.
Der volle Inhalt der QuelleLu, Winston I., und Dominic P. Lu. „The Bacteriostatic and Bactericidal Effects of Radiation from Dental and Medical X-Rays“. Acupuncture & Electro-Therapeutics Research 45, Nr. 1 (24.08.2020): 3–14. http://dx.doi.org/10.3727/036012920x15958782196790.
Der volle Inhalt der QuelleDissertationen zum Thema "Bacteria Effect of radiation on"
Verma, Meera Mary. „On the effect of UV-irradiation on DNA replication in Escherichia coli“. Title page, contents and summary only, 1985. http://web4.library.adelaide.edu.au/theses/09PH/09phv522.pdf.
Der volle Inhalt der QuelleManners, Vicki. „Molecular studies on the radiation-resistant bacteria Deinococcus radiodurans and Deinobacter grandis“. Thesis, University of Edinburgh, 1989. http://hdl.handle.net/1842/12557.
Der volle Inhalt der QuelleLi, Sha. „Potency of nanoparticles to amplify radiation effects revealed in radioresistant bacteria“. Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112061/document.
Der volle Inhalt der QuelleRadiation therapies are used to treat most of the cancer cases. One major limitation is the damage induced in the healthy tissues and tumor targeting is a major challenge. The addition of nanoparticles (NPs) is proposed as a novel strategy to amplify the radiations effects in the tumors (radiosensitization). The high-Z nanoparticles (platinum, gold, gadolinium) are found to be good candidates. To develop new nanoagents and improve treatment planning, a deeper knowledge of the fundamental mechanisms is required. It was found that radiosensitizers enhance the lethal effect of radiations (fast ions and gamma rays). This is attributed to a multiscale cascade of events, which includes the NPs activation and relaxation, the production of water radicals up to the biological impact in mammalian cells. It is not clear yet what from the early stage processes or from the (eukaryotic) cell response is the key stage of the radiosensitization. Hence, the challenge of my thesis was to probe the effects of radiosensitizers (gold, platinum and gadolinium based nanoparticles) on cells other than eukaryotic cells. For the first time, their effect was tested on the most radioresistant bacterium ever reported Deinoccocus radiodurans (D. radiodurans). For comparison, the nanoparticles were tested on the radiosensitive bacterium E.coli. Additional studies at molecular scale were used to understand the elementary mechanisms. In summary, this work demonstrates that the radiosensitizing nanoparticles amplify the effects of -rays in radiosensitive and also radioresistant bacteria. This is attributed to the production of radical clusters and to the inducetion of nano-size biodamages in DNA but also in repair proteins. Finally, this work proves that the radiosensitization is a “universal” phenomenon that can take place in all living organisms. In other words, it tells that elementary mechanisms play a major role compared to the biological response of the cell. A set of standardized methods for evaluating the cellular uptake and the toxicity of the potential nanodrug was established throughout this study
Alkan, Ufuk. „The effects of solar radiation, adsorption and sedimentation of the population of enteric bacteria in marine waters“. Thesis, University of Newcastle Upon Tyne, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359000.
Der volle Inhalt der QuellePEREIRA, MARCO A. dos S. „Estudo da acao da radiacao gama de sup(60)Co sobre Salmonella poona, Escherichia coli e Alicyclobacillus Acidoterrestris em polpa de manga congelada“. reponame:Repositório Institucional do IPEN, 2009. http://repositorio.ipen.br:8080/xmlui/handle/123456789/9425.
Der volle Inhalt der QuelleMade available in DSpace on 2014-10-09T14:06:23Z (GMT). No. of bitstreams: 0
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Kminek, Gerhard. „The effect of ionizing radiation on amino acids and bacterial spores in different geo- and cosmochemical environments /“. Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3090438.
Der volle Inhalt der QuelleBLAY, CLAUDIA C. „Analise comparativa da reducao bacteriana com irradiacao do laser Er:YAG ou ponta montada em alta rotacao apos remocao de tecido cariado em dentina: estudo in anima nobile“. reponame:Repositório Institucional do IPEN, 2001. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10940.
Der volle Inhalt der QuelleMade available in DSpace on 2014-10-09T14:07:49Z (GMT). No. of bitstreams: 1 07504.pdf: 5692268 bytes, checksum: 60490f409615b73fe05c25c382b94a02 (MD5)
Dissertacao (Mestrado Profissionalizante em Lasers em Odontologia)
IPEN/D-MPLO
Intituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP; Faculdade de Odontologia, Universidade de Sao Paulo
BORRELY, SUELI I. „Reducao da toxidade aguda de efluentes industriais e domesticos tratados por irradiacao com feixe de eletrons, avaliada com as especies Vibrio fischeri, Daphnia similis e Poecilia reticulata“. reponame:Repositório Institucional do IPEN, 2001. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10943.
Der volle Inhalt der QuelleMade available in DSpace on 2014-10-09T14:05:37Z (GMT). No. of bitstreams: 1 07546.pdf: 6655959 bytes, checksum: d53d0f4431174f96fa71e1f77ae4a138 (MD5)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
BOIANI, NATHALIA F. „Remoção da toxicidade do fármaco propranolol e de sua mistura com cloridrato de fluoxetina em solução aquosa empregando irradiação com feixe de elétrons“. reponame:Repositório Institucional do IPEN, 2016. http://repositorio.ipen.br:8080/xmlui/handle/123456789/27140.
Der volle Inhalt der QuelleMade available in DSpace on 2017-03-10T16:49:56Z (GMT). No. of bitstreams: 0
A saúde do meio ambiente vem sendo comprometida devido ao descarte incorreto de produtos e seus subprodutos. Dentre os contaminantes emergentes encontram-se os fármacos, causadores de problemas ambientais por serem descartados no meio ambiente através dos efluentes. As técnicas convencionais de tratamento são insuficientes na remoção de diversos fármacos, por apresentarem resíduos resistentes e baixa biodegradabilidade. Sendo assim os processos oxidativos avançados vêm sendo estudados como alternativa para o tratamento de diferentes tipos de efluentes. O objetivo desse trabalho foi aplicar o processo de irradiação com feixe de elétrons para reduzir os efeitos tóxicos do propranolol, e de sua mistura com cloridrato de fluoxetina, em solução aquosa. Foram realizados ensaios ecotoxicológicos com o fármaco propranolol, e de sua mistura com o cloridrato de fluoxetina, utilizando como organismos-teste o microcrustáceo Daphnia similis, e a bactéria Vibrio fischeri. Observamos que o organismo D. similis mostrou-se mais sensível as amostras de fármacos quando comparado à bactéria V.fischeri. Após serem submetidas ao tratamento com radiação ionizante, todas as doses aplicadas para o propranolol e a mistura, mostraram significativa redução de toxicidade, tendo como organismo-teste D. similis. Para a bactéria V. fischeri apenas na dose de 5,0 kGy foi verificada a redução da toxicidade para o fármaco propranolol. Quanto à mistura dos fármacos, apenas as doses de 2,5 e 5,0 kGy apresentaram eficiência de remoção da toxicidade. A dose 5,0 kGy mostrou-se a melhor, apresentando redução de 79,94% para D. similis, e 15,64% para V. fischeri, quando expostas ao fármaco propranolol. Quanto à mistura, apresentou 81,59% e 26,93%, para D.similis e V.fischeri, respectivamente.
Dissertação (Mestrado em Tecnologia Nuclear)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Almeida, Ana Rita Marques. „Combined effects of ultraviolet radiation and xenobiotics on zebrafish“. Master's thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/12624.
Der volle Inhalt der QuelleNowadays, climate changes are an imperative problem and multiple measurements made in the last years showed an increase of all wavelengths of solar radiance, specially the Ultraviolet radiation. In their natural environment organisms are not only affected by biotic and environmental factors, but also by abiotic factors such as xenobiotics. Besides, these both stressors can interact with each other being their combined effect unpredictable (producing additive, synergistic or antagonistic effect). This work aims to studying the combined effect of UV radiation and three xenobiotics: triclosan, potassium dichromate and prochloraz on zebrafish embryos (Danio rerio). Effects were assessed at two levels: i) effects on embryos mortality and ii) effects in the natural bacterial communities of zebrafish embryos. The organisms were exposed to concentrations of each chemical combined with several UV doses. Embryo’ mortality, were observed daily for 96 hours post fertilization (hpf) and natural bacterial communities’ evaluation was performed at 48 hpf. Results showed that different combined effect may occur compromising organism’s survival. Combined exposure of UV radiation with TCS revealed a synergism pattern when the UV radiation is the dominant stressor while PD and PCZ revealed antagonism at low dose levels or when the UV radiation is dominant in the mixture. Zebrafish natural bacterial communities were also affected by UV radiation and chemicals with the change of their structure; however, conclusions about interactive effects were difficult to be drawn because effects were not always translated into changes in the diversity indexes.
Hoje em dia, as alterações climáticas são um problema imperativo e múltiplas medições feitas nos últimos anos mostram um aumento de toda a radiação solar, especialmente a radiação Ultravioleta que chega á superfície da terra afetando todos os organismos expostos. No seu ambiente natural, os organismos não estão apenas sujeitos a fatores bióticos, mas também a fatores ambientais e abióticos como por exemplo os xenobióticos. Além disso, ambos os stressores podem interagir uns com os outros produzindo efeitos imprevisíveis nos organismos (efeitos sinergísticos ou antagonísticos). O presente trabalho tem como objetivo a avaliação dos efeitos combinados da radiação UV e três xenobioticos (triclosan, dicromato de potássio e procloraz) em embriões de peixe zebra (Danio rerio). A avaliação foi feita a dois níveis: i) efeitos na mortalidade de embriões e ii) efeitos a nível das comunidades bacterianas naturais dos embriões. Os organismos foram expostos a várias concentrações de cada químico, combinadas com várias doses de UV. A mortalidade foi registada diariamente durante 96 horas e as comunidades bacterianas naturais foram avaliadas às 48 horas pós fertilização (hpf). Os resultados mostram que diferentes efeitos combinados foram observados, alterando a ecotoxicidade esperada. A exposição combinada da radiação UV com o TCS revelou um patrão sinergístico quando a radiação UV é o stressor dominante, enquanto que, na combinação UV com PD e PCZ observou-se antagonismo a doses baixas ou quando a radiação UV era dominante na mistura. As comunidades bacterianas naturais do peixe zebra também foram afetadas pela radiação UV e químicos, com alterações na sua estrutura. No entanto, foi difícil tirar conclusões relativamente a possíveis interações entre stressors visto que os efeitos observados nem sempre se traduziam em variações no índice de diversidade.
Bücher zum Thema "Bacteria Effect of radiation on"
Rados, Bill. Primer on radiation. [Rockville, MD] (5600 Fishers Lane, Rockville 20857): [Dept. of Health and Human Services, Public Health Service, Food and Drug Administration, Office of Public Affairs, 1993.
Den vollen Inhalt der Quelle findenRados, Bill. Primer on radiation. [Rockville, MD] (5600 Fishers Lane, Rockville 20857): [Dept. of Health and Human Services, Public Health Service, Food and Drug Administration, Office of Public Affairs, 1993.
Den vollen Inhalt der Quelle findenMoss, K. J. Radiation around us. Richland, Wash: Westinghouse Hanford Co., 1990.
Den vollen Inhalt der Quelle findenDavid, Sumner. Radiation risks: An evaluation. 3. Aufl. Glasgow: Tarragon, 1991.
Den vollen Inhalt der Quelle findenSumner, David. Radiation risks: An evaluation. 4. Aufl. Whithorn: Tarragon, 1994.
Den vollen Inhalt der Quelle findenSumner, David. Radiation risks: An evaluation. Glasgow: Tarragon, 1988.
Den vollen Inhalt der Quelle findenDavid, Sumner. Radiation risks: An evaluation. 2. Aufl. Glascow: Tarragon Press, 1988.
Den vollen Inhalt der Quelle findenSumner, David. Radiation risks: An evaluation. 3. Aufl. Glasgow: Tarragon, 1991.
Den vollen Inhalt der Quelle findenRadiation risks: An evaluation. Glasgow: Tarragon, 1987.
Den vollen Inhalt der Quelle findenBrustad, T. Radiation and cancer risk. New York: Hemisphere, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Bacteria Effect of radiation on"
Jacobs, L. Janette, und George W. Sundin. „Analysis of the Effect of Ultraviolet-B Radiation on the Culturable Bacterial Community of Peanut“. In Plant Pathogenic Bacteria, 379–82. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0003-1_85.
Der volle Inhalt der QuelleDžinić, M., und O. Nanušević. „Effects of Laser Radiation on Bacteria“. In Laser/Optoelectronics in Medicine/Laser/Optoelektronik in der Medizin, 184–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70850-3_38.
Der volle Inhalt der QuelleWeber, P. K. H., H. D. Menningmann und J. M. Greenberg. „Effect of High-Vacuum, Deep Temperatures and VUV Irradiation on Bacterial Spores“. In Terrestrial Space Radiation and Its Biological Effects, 383–91. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1567-4_29.
Der volle Inhalt der QuelleWang, Yingzhao, und Yongxin Pan. „Ultraviolet-B Radiation Effects on the Community, Physiology, and Mineralization of Magnetotactic Bacteria“. In Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, 532–44. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119004813.ch50.
Der volle Inhalt der QuelleHerndl, G. J., und I. Obernosterer. „UV Radiation and Pelagic Bacteria“. In Ecological Studies, 245–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56075-0_12.
Der volle Inhalt der QuelleKnowlton, Christin A., Michelle Kolton Mackay, Tod W. Speer, Robyn B. Vera, Douglas W. Arthur, David E. Wazer, Rachelle Lanciano et al. „Crossfire Effect“. In Encyclopedia of Radiation Oncology, 146. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_671.
Der volle Inhalt der QuelleDžinić, M., N. Nanušević und O. Nanušević. „Effects of Low Dose Laser Radiation on Bacterial Growth“. In LASER Optoelectronics in Medicine, 681–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-72870-9_170.
Der volle Inhalt der QuelleSmith, M. D., C. I. Masters und B. E. B. Moseley. „Molecular biology of radiation-resistant bacteria“. In Molecular Biology and Biotechnology of Extremophiles, 258–80. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2274-0_9.
Der volle Inhalt der QuelleKucharz, Eugene J. „Effect of Ionizing Radiation“. In The Collagens: Biochemistry and Pathophysiology, 283–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76197-3_23.
Der volle Inhalt der QuelleSilva, Milena Fernandes da, Meire dos Santos Falcão de Lima und Attilio Converti. „Effect of Short-Chain Fatty Acids Produced by Probiotics“. In Lactic Acid Bacteria, 124–41. Boca Raton : CRC Press, Taylor & Francis Group, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429422591-8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Bacteria Effect of radiation on"
Sosnin, Edward A., Evgenia A. Kuznetsova, Sergei A. Avdeev, Larisa V. Lavrent'eva, Michael V. Erofeev, Alexei I. Suslov, Victor F. Tarasenko und Eva Stoffels. „A comparative study of atmospheric plasma and narrowband UV radiation effect on bacteria“. In SPIE Proceedings, herausgegeben von Victor F. Tarasenko, Georgy Mayer und Gueorgii G. Petrash. SPIE, 2006. http://dx.doi.org/10.1117/12.677458.
Der volle Inhalt der QuelleJelinkova, Helena, Tatjana Dostalova, Jana Duskova, Mitsunobu Miyagi, Shigeru Shoji, Jan Sulc und Michal Nemec. „Er:YAG and alexandrite laser radiation propagation in the root canal and its effect on bacteria“. In BiOS '99 International Biomedical Optics Symposium, herausgegeben von John D. B. Featherstone, Peter Rechmann und Daniel Fried. SPIE, 1999. http://dx.doi.org/10.1117/12.348345.
Der volle Inhalt der QuelleRodrigues, F. T., R. C. Duarte, G. B. Fanaro und A. L. C. H. Villavicencio. „Gamma radiation effects on bacteria and fungi in coffee (Coffea arabica L.)“. In Proceedings of the International Conference on Antimicrobial Research (ICAR2010). WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814354868_0045.
Der volle Inhalt der QuelleUshakova, Olga V., Anna V. Egorova, Grigory E. Brill, Irina O. Bugaeva, Dmitry E. Postnov und Andrey G. Melnikov. „Influence UHF radiation on the process of self-assembly and lethal effect of bacterial lipopolysaccharide“. In Saratov Fall Meeting 2017: Fifth International Symposium on Optics and Biophotonics: Optical Technologies in Biophysics & Medicine XIX, herausgegeben von Valery V. Tuchin, Dmitry E. Postnov, Elina A. Genina und Vladimir L. Derbov. SPIE, 2018. http://dx.doi.org/10.1117/12.2313310.
Der volle Inhalt der QuelleAshfaq, Mohammad Yousaf, Mohammad Al-Ghouti, Nabil Zouari und Hazim Qiblawey. „Development of Polymer Modified Graphene Oxide Nanocomposite Membranes to Reduce both Scaling and Biofouling“. In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0064.
Der volle Inhalt der QuelleSuponkina, Anna, Michael Zhukovsky, Anna Krivonogova, Kseniya Shcherbakova und Kseniya Moiseeva. „RADIATION SENSITIVITY OF BACTERIA CONTAMINATING FOOD“. In RAD Conference. RAD Association, 2016. http://dx.doi.org/10.21175/radproc.2016.01.
Der volle Inhalt der QuelleShibai, Atsushi, Saburo Tsuru, Bei-Wen Ying, Daisuke Motooka, Kazuyoshi Gotoh, Shota Nakamura und Tetsuya Yomo. „Mutation Accumulation in Bacteria Exposed to UV Radiation“. In Artificial Life 14: International Conference on the Synthesis and Simulation of Living Systems. The MIT Press, 2014. http://dx.doi.org/10.7551/978-0-262-32621-6-ch121.
Der volle Inhalt der QuelleRam, Gopi, P. Chakravorty, Durbadal Mandal, Rajib Kar, Sakti Prasad Ghoshal und S. Banerjee. „Radiation pattern synthesis of TMCAA using bacteria foraging optimization“. In 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). IEEE, 2015. http://dx.doi.org/10.1109/wiecon-ece.2015.7443948.
Der volle Inhalt der QuelleSnevajsova, P., J. Vytrasova und J. Remesova. „Effect of oxidized cellulose on probiotic bacteria“. In Proceedings of the III International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2009). WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814322119_0068.
Der volle Inhalt der QuelleKASHEFIPOUR, SEYED M., B. LIN und R. A. FALCONER. „DYNAMIC MODELLING OF BACTERIAL CONCENTRATIONS IN COASTAL WATERS: EFFECTS OF SOLAR RADIATION ON DECAY“. In Proceedings of the 13th IAHRߝ;APD Congress. World Scientific Publishing Company, 2002. http://dx.doi.org/10.1142/9789812776969_0183.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Bacteria Effect of radiation on"
Kincaid, B. M. Long wavelength end-effect undulator radiation (Transition Undulator Radiation). Office of Scientific and Technical Information (OSTI), Januar 1996. http://dx.doi.org/10.2172/210925.
Der volle Inhalt der QuelleDunifon, R. E., und T. C. Hazen. The effect of vacuum pump oil on the chemotactic behavior of soil bacteria. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/6423307.
Der volle Inhalt der QuelleRaubenheimer, T. Coherent Synchrotron Radiation effect in damping rings. Office of Scientific and Technical Information (OSTI), Januar 2004. http://dx.doi.org/10.2172/826687.
Der volle Inhalt der QuelleWilde, E. W., J. C. Radway, T. C. Hazen und P. Hermann. Immobilization of degradative bacteria in polyurethane-based foams: embedding efficiency and effect on bacterial activity. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/565240.
Der volle Inhalt der QuelleRees, Brian G. Ship Effect- Issues with Radiation Detection Aboard Ships. Office of Scientific and Technical Information (OSTI), Januar 2018. http://dx.doi.org/10.2172/1418784.
Der volle Inhalt der QuelleS. Utsunomiya und R.C. Ewing. THE EFFECT OF IONIZING RADIATION ON U6+ -PHASES. Office of Scientific and Technical Information (OSTI), Juli 2005. http://dx.doi.org/10.2172/859403.
Der volle Inhalt der QuelleThurston, Alison, Zoe Courville, Lauren Farnsworth, Ross Lieblappen, Shelby Rosten, John Fegyveresi, Stacy Doherty, Robert Jones und Robyn Barbato. Microscale dynamics between dust and microorganisms in alpine snowpack. Engineer Research and Development Center (U.S.), März 2021. http://dx.doi.org/10.21079/11681/40079.
Der volle Inhalt der QuelleCramer, S. N., B. L. Kirk und J. Broadway. The effect of coherent scattering in photon radiation transport calculations. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/6281410.
Der volle Inhalt der QuelleHayward, Jason P. Glasses for Detection of Penetrating Radiation via the Cherenkov Effect. Fort Belvoir, VA: Defense Technical Information Center, Juli 2015. http://dx.doi.org/10.21236/ada623523.
Der volle Inhalt der QuelleOona, H., D. L. Peterson und J. H. Goforth. Instabilities in foil implosions and the effect of radiation output. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/100185.
Der volle Inhalt der Quelle