Auswahl der wissenschaftlichen Literatur zum Thema „Bacteria“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bacteria" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Bacteria"

1

Putri, Neisya Intan Cahyaningtyas Agung, Ramadhani Ramadhani und Eddy Bagus Wasito. „Gram Negative Bacteria (Escherichia coli) Win Against Gram Positive Bacteria (Staphylococcus aureus) in The Same Media“. Biomolecular and Health Science Journal 4, Nr. 2 (30.10.2021): 113. http://dx.doi.org/10.20473/bhsj.v4i2.30177.

Der volle Inhalt der Quelle
Annotation:
Introduction: Biodiversity of the microorganism in Indonesia lead to the large amount of patient with infection. Human can get infected in two different place, with different kind of bacteria that cause the infection. This may lead to bacteremia without knowing which bacteria type whose causing it, either the Gram positive or Gram negative bacteria, whereas the treatment of this two types of bacteria are different. The aim of this study is to determine the doubling time of the Gram positive and Gram negative bacteria when they are grown in the same lesion and the kinds of bacteria that we need to eliminate first.Methods: Staphylococcus aureus and Escherichia coli bacteria were used as samples in this study. Bacterial culture in nutrient broth with 0.5 OD turbidity were mixed then incubated in incubator with 35˚C. Every one hour within 24 hour, 0.01 ml of bacterial culture was taken in serial dilutionover time, varying between 106 – 1012, . It was then planted in nutrient agar plate with droplets technique. After it had been incubated for 24 hours, we counted the Colony Forming Unit per ml (CFU/ml) to time, then the doubling time of the bacteria. The result were then compared between the Staphylococcus aureus and Escherichia coli group.Results: Two tailed t-test result of the doubling time between Staphylococcus aureus dan Escherichia coli was < 0,05 (p=0,000) wich means that there is significant difference of the doubling time between Staphylococcus aureus (24,35 ± 2,23 munites), and Escherichia coli (18,37 ± 0,50 minutes). When grown in the same media, Gram positive bacteria (Staphylococcus aureus) had slower doubling time than Gram negative bacteria (Escherichia coli) as much as 1.32 times.Conclusion: In bacteremia with two possible kinds of bacterial suspect, we need to eliminate the Gram negative bacteria first.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kaewduangduen, Warerat, Peerapat Visitchanakun, Wilasinee Saisorn, Ariya Phawadee, Charintorn Manonitnantawat, Chirapas Chutimaskul, Paweena Susantitaphong et al. „Blood Bacteria-Free DNA in Septic Mice Enhances LPS-Induced Inflammation in Mice through Macrophage Response“. International Journal of Molecular Sciences 23, Nr. 3 (08.02.2022): 1907. http://dx.doi.org/10.3390/ijms23031907.

Der volle Inhalt der Quelle
Annotation:
Although bacteria-free DNA in blood during systemic infection is mainly derived from bacterial death, translocation of the DNA from the gut into the blood circulation (gut translocation) is also possible. Hence, several mouse models with experiments on macrophages were conducted to explore the sources, influences, and impacts of bacteria-free DNA in sepsis. First, bacteria-free DNA and bacteriome in blood were demonstrated in cecal ligation and puncture (CLP) sepsis mice. Second, administration of bacterial lysate (a source of bacterial DNA) in dextran sulfate solution (DSS)-induced mucositis mice elevated blood bacteria-free DNA without bacteremia supported gut translocation of free DNA. The absence of blood bacteria-free DNA in DSS mice without bacterial lysate implies an impact of the abundance of bacterial DNA in intestinal contents on the translocation of free DNA. Third, higher serum cytokines in mice after injection of combined bacterial DNA with lipopolysaccharide (LPS), when compared to LPS injection alone, supported an influence of blood bacteria-free DNA on systemic inflammation. The synergistic effects of free DNA and LPS on macrophage pro-inflammatory responses, as indicated by supernatant cytokines (TNF-α, IL-6, and IL-10), pro-inflammatory genes (NFκB, iNOS, and IL-1β), and profound energy alteration (enhanced glycolysis with reduced mitochondrial functions), which was neutralized by TLR-9 inhibition (chloroquine), were demonstrated. In conclusion, the presence of bacteria-free DNA in sepsis mice is partly due to gut translocation of bacteria-free DNA into the systemic circulation, which would enhance sepsis severity. Inhibition of the responses against bacterial DNA by TLR-9 inhibition could attenuate LPS-DNA synergy in macrophages and might help improve sepsis hyper-inflammation in some situations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Huber, François, Hans Peter Lang, Stefanie Heller, Julia Anna Bielicki, Christoph Gerber, Ernst Meyer und Adrian Egli. „Rapid Bacteria Detection from Patients’ Blood Bypassing Classical Bacterial Culturing“. Biosensors 12, Nr. 11 (09.11.2022): 994. http://dx.doi.org/10.3390/bios12110994.

Der volle Inhalt der Quelle
Annotation:
Sepsis is a life-threatening condition mostly caused by a bacterial infection resulting in inflammatory reaction and organ dysfunction if not treated effectively. Rapid identification of the causing bacterial pathogen already in the early stage of bacteremia is therefore vital. Current technologies still rely on time-consuming procedures including bacterial culturing up to 72 h. Our approach is based on ultra-rapid and highly sensitive nanomechanical sensor arrays. In measurements we observe two clearly distinguishable distributions consisting of samples with bacteria and without bacteria respectively. Compressive surface stress indicates the presence of bacteria. For this proof-of-concept, we extracted total RNA from EDTA whole blood samples from patients with blood-culture-confirmed bacteremia, which is the reference standard in diagnostics. We determined the presence or absence of bacterial RNA in the sample through 16S-rRNA hybridization and species-specific probes using nanomechanical sensor arrays. Via both probes, we identified two clinically highly-relevant bacterial species i.e., Escherichia coli and Staphylococcus aureus down to an equivalent of 20 CFU per milliliter EDTA whole blood. The dynamic range of three orders of magnitude covers most clinical cases. We correctly identified all patient samples regarding the presence or absence of bacteria. We envision our technology as an important contribution to early and sensitive sepsis diagnosis directly from blood without requirement for cultivation. This would be a game changer in diagnostics, as no commercial PCR or POCT device currently exists who can do this.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Tovkach, F. I., und G. I. Zhuminska. „Destabilization of the Phage-Bacteria System during Bacterial Infections of Tree Plants“. Mikrobiolohichnyi Zhurnal 81, Nr. 4 (30.07.2019): 118–30. http://dx.doi.org/10.15407/microbiolj81.04.118.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yaghoubi, Atieh, Majid Khazaei, Seyed Mahdi Hasanian, Amir Avan, William C. Cho und Saman Soleimanpour. „Bacteriotherapy in Breast Cancer“. International Journal of Molecular Sciences 20, Nr. 23 (23.11.2019): 5880. http://dx.doi.org/10.3390/ijms20235880.

Der volle Inhalt der Quelle
Annotation:
Breast cancer is the second most common cause of cancer-related mortality among women around the world. Conventional treatments in the fight against breast cancer, such as chemotherapy, are being challenged regarding their effectiveness. Thus, strategies for the treatment of breast cancer need to be continuously refined to achieve a better patient outcome. We know that a number of bacteria are pathogenic and some are even associated with tumor development, however, recent studies have demonstrated interesting results suggesting some bacteria may have potential for cancer therapy. Therefore, the therapeutic role of bacteria has aroused attention in medical and pharmaceutical studies. Furthermore, genetic engineering has been used in bacterial therapy and may led to greater efficacy with few side effects. Some genetically modified non-pathogenic bacterial species are more successful due to their selectivity for cancer cells but with low toxicity for normal cells. Some live, attenuated, or genetically modified bacterias are capable to multiply in tumors and inhibit their growth. This article aims to review the role of bacteria and their products including bacterial peptides, bacteriocins, and toxins for the treatment of breast cancer.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gan, Yingying, Chengnan Li, Xinran Peng, Shuang Wu, Yuzhen Li, Jeremy P. K. Tan, Yi Yan Yang, Peiyan Yuan und Xin Ding. „Fight bacteria with bacteria: Bacterial membrane vesicles as vaccines and delivery nanocarriers against bacterial infections“. Nanomedicine: Nanotechnology, Biology and Medicine 35 (Juli 2021): 102398. http://dx.doi.org/10.1016/j.nano.2021.102398.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Susanti, S., B. E. Setiani, H. Rizqiati, D. R. Febriandi, V. P. Bintoro und B. E. Setiani. „Inhibitory Activity of Cashew Apple (Anacardium Occidentale) Extract Marinade on The Meat Total Bacteria“. Current Research in Nutrition and Food Science Journal 6, Nr. 1 (24.03.2018): 106–12. http://dx.doi.org/10.12944/crnfsj.6.1.11.

Der volle Inhalt der Quelle
Annotation:
Microbial activities cause physical and functional alteration, which can decrease the quality and shelf life of meat. Inhibiting the bacterial growth becomes a crucial effort to prevent spoilage of meat. Previous studies reported that human pathogen bacterias could be inhibited by using cashew apple juice. It was interested to explore the utilization of cashew apple as marinade solution to suppress the meat bacteria. Current study was aimed to get more insight the effectiveness of cashew apple extract marinade (CAM) as growth inhibitor for spoilage bacteria on beefs and chickens. Results indicated that inhibition zone of 20% CAM were significant higher than 0% CAM on the medium of E. coli, and S. aureus. The pretty high polyphenols content in CAM was considered as an active compound responsible for antibacterial activity. Furthermore, total bacterial count assay showed that 10 to 30% CAM significantly reduced the beef total bacteria in comparison to 0% while 15 % CAM significantly decreased the chicken total bacteria. It was suggested the range of effective level of CAM to reduce the meats bacteria is 10 to 30%. Thus, cashew apple can be a promising natural food preservative in the future, especially for extending the shelf life of meat.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sara Kouara, Wiame Ghammad, Selma Berrada, Mustapha Mahmoud und Mustapha Mahmoud. „Epidemiological profile of multi-drug resistant bacteria in pediatric intensive care unit“. International Journal of Life Science Research Archive 4, Nr. 2 (30.04.2023): 057–62. http://dx.doi.org/10.53771/ijlsra.2023.4.2.0058.

Der volle Inhalt der Quelle
Annotation:
Multidrug-resistant bacteria are currently a major health problem in our hospitals and a current medical issue due to the morbidity and mortality it causes, especially in intensive care units. The objective of this study is to describe the epidemiological profile, frequency, and resistance status of multidrug-resistant bacteria in pediatric and neonatal intensive care units. We conducted a retrospective study at the microbiology laboratory of the Hassan II University Hospital in Fez in 2022, where we collected bacterial samples from these two units that identified a multidrug-resistant bacteria (MDR). We collected 1216 bacterial samples, of which 28% were positive, and among them, we found 148 samples that contained multidrug-resistant bacteria. Gram-negative bacteria (GNB) dominated, with only 4 resistant gram-positive cocci samples, and Acinetobacter baumannii was the most prevalent, followed by Klebsiella pneumoniae. A high rate of extended-spectrum beta-lactamase (ESBL) was found in infants, estimated at 40% of all samples collected in neonatal intensive care, as well as a high rate of highly resistant isolates of Acinetobacter baumannii in pediatric intensive care. Multidrug-resistant nosocomial bacterial infections are dominated by bacteremia in neonatology and pneumonia in pediatric intensive care, and both are mainly caused by gram-negative bacilli. Knowledge of the bacteriological profiles and antibiotic resistance rates of such bacteria will allow for more tailored and targeted management in each hospital setting.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Gasol, Josep M., Ulla Li Zweifel, Francesc Peters, Jed A. Fuhrman und Åke Hagström. „Significance of Size and Nucleic Acid Content Heterogeneity as Measured by Flow Cytometry in Natural Planktonic Bacteria“. Applied and Environmental Microbiology 65, Nr. 10 (01.10.1999): 4475–83. http://dx.doi.org/10.1128/aem.65.10.4475-4483.1999.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT Total bacterial abundances estimated with different epifluorescence microscopy methods (4′,6-diamidino-2-phenylindole [DAPI], SYBR Green, and Live/Dead) and with flow cytometry (Syto13) showed good correspondence throughout two microcosm experiments with coastal Mediterranean water. In the Syto13-stained samples we could differentiate bacteria with apparent high DNA (HDNA) content and bacteria with apparent low DNA (LDNA) content. HDNA bacteria, “live” bacteria (determined as such with the Molecular Probes Live/Dead BacLight bacterial viability kit), and nucleoid-containing bacteria (NuCC) comprised similar fractions of the total bacterial community. Similarly, LDNA bacteria and “dead” bacteria (determined with the kit) comprised a similar fraction of the total bacterial community in one of the experiments. The rates of change of each type of bacteria during the microcosm experiments were also positively correlated between methods. In various experiments where predator pressure on bacteria had been reduced, we detected growth of the HDNA bacteria without concomitant growth of the LDNA bacteria, such that the percentage contribution of HDNA bacteria to total bacterial numbers (%HDNA) increased. This indicates that the HDNA bacteria are the dynamic members of the bacterial assemblage. Given how quickly and easily the numbers of HDNA and LDNA bacteria can be obtained, and given the similarity to the numbers of “live” cells and NuCC, the %HDNA is suggested as a reference value for the percentage of actively growing bacteria in marine planktonic environments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Souza, V., und L. E. Eguiarte. „Bacteria gone native vs. bacteria gone awry?: Plasmidic transfer and bacterial evolution“. Proceedings of the National Academy of Sciences 94, Nr. 11 (27.05.1997): 5501–3. http://dx.doi.org/10.1073/pnas.94.11.5501.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Bacteria"

1

Chen, Fei [Verfasser]. „Light-controlled bacteria-surface and bacteria-bacteria adhesions / Fei Chen“. Mainz : Universitätsbibliothek der Johannes Gutenberg-Universität Mainz, 2020. http://d-nb.info/1224895649/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

de, Klerk Nele. „Host-bacteria interactions : Host cell responses and bacterial pathogenesis“. Doctoral thesis, Stockholms universitet, Institutionen för molekylär biovetenskap, Wenner-Grens institut, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-126425.

Der volle Inhalt der Quelle
Annotation:
Helicobacter pylori colonizes the human stomach, where it causes gastritis that may develop into peptic ulcer disease or cancer when left untreated. Neisseria gonorrhoeae colonizes the urogenital tract and causes the sexually transmitted disease gonorrhea. In contrast, Lactobacillus species are part of the human microbiota, which is the resident microbial community, and are considered to be beneficial for health. The first host cell types that bacteria encounter when they enter the body are epithelial cells, which form the border between the inside and the outside, and macrophages, which are immune cells that engulf unwanted material.       The focus of this thesis has been the interaction between the host and bacteria, aiming to increase our knowledge of the molecular mechanisms that underlie the host responses and their effects on bacterial pathogenicity. Understanding the interactions between bacteria and the host will hopefully enable the development of new strategies for the treatment of infectious disease. In paper I, we investigated the effect of N. gonorrhoeae on the growth factor amphiregulin in cervical epithelial cells and found that the processing and release of amphiregulin changes upon infection. In paper II, we examined the expression of the transcription factor early growth response-1 (EGR1) in epithelial cells during bacterial colonization. We demonstrated that EGR1 is rapidly upregulated by many different bacteria. This upregulation is independent of the pathogenicity, Gram-staining type and level of adherence of the bacteria, but generally requires viable bacteria and contact with the host cell. The induction of EGR1 is mediated primarily by signaling through EGFR, ERK1/2 and β1-integrins. In paper III, we described the interactions of the uncharacterized protein JHP0290, which is secreted by H. pylori, with host cells. JHP0290 is able to bind to several cell types and induces apoptosis and TNF release in macrophages. For both of these responses, signaling through Src family kinases and ERK is essential. Apoptosis is partially mediated by TNF release. Finally, in paper IV, we showed that certain Lactobacillus strains can reduce the colonization of H. pylori on gastric epithelial cells. Lactobacilli decrease the gene expression of SabA and thereby inhibit the binding mediated by this adhesin.

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 4: Manuscript.

APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Maldonado, Vázquez Jesús Manuel. „Interferometric biosensors for rapid identification of nosocomial infections“. Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/403761.

Der volle Inhalt der Quelle
Annotation:
Esta tesis doctoral se centra en el desarrollo de un nuevo biosensor óptico como una técnica alternativa para la identificación de infecciones nosocomiales con el fin de determinar el tratamiento más eficaz y reducir el uso inespecífico de fármacos antimicrobianos de amplio espectro. Proponemos el uso de un nuevo sensor nanofótonico basado en un dispositivo interferométrico, el biosensor de guías de onda bimodales (BiMW) para un análisis rápido, específico, directo y altamente sensible de los diferentes patógenos asociados a infecciones nosocomiales y su resistencia a múltiples fármacos. En primer lugar, se evaluaron y optimizaron diferentes estrategias de biofuncionalización para conseguir una inmovilización eficiente de los elementos de bioreconocimiento que aseguran una detección bacteriana altamente sensible con suficiente selectividad y reproducibilidad, particularmente para la detección directa en matrices complejas tales como orina y líquido ascítico. Posteriormente, las estrategias optimizadas se utilizaron para la identificación de diversos patógenos nosocomiales como Bacillus cereus, Escherichia coli y Pseudomonas aeruginosa utilizando anticuerpos como elementos de bioreconocimiento. La detección de Escherichia coli se realizó en una matriz compleja como es el líquido ascítico humano. Finalmente, el biosensor BiMW se empleó para identificar bacterias resistentes a múltiples fármacos como: i) la identificación de Staphylococcus aureus resistente a meticilina (MRSA) usando un aptámero, que es capaz de discriminar entre un Staphylococcus susceptible a antibióticos y un Staphylococcus multirresistente y (ii) la detección ultra sensible de genes de E. coli resistentes a múltiples fármacos, sin la necesidad de una previa amplificación por PCR. En general, esta tesis aprovecha los conocimientos en biosensores fotónicos y en métodos bioanalíticos de nuestro Grupo de investigación para desarrollar una poderosa herramienta que permita la identificación directa y efectiva de patógenos nosocomiales y su resistencia a antibióticos.
This doctoral Thesis is focusing on the development of a novel optical biosensor as an alternative technique for the identification of nosocomial infections in a faster way. This new tool will also facilitate the finding of the most effective treatment for each patient, reduce the nonspecific use of broad-spectrum antimicrobial drugs, and facilitate new antibiotic treatments. We propose the use of a novel nanophotonic sensor based on an interferometric transducer device, the Bimodal Waveguide device (BiMW) for the rapid, specific, highly sensitive and direct analysis of different pathogens associated to nosocomial infections and their multidrug resistant. First, we assessed and optimized different biofunctionalization strategies for an efficient immobilization of the required biorecognition receptors, which ensure a highly sensitive bacterial detection with enough selectivity and reproducibility, particularly suitable for the direct detection in complex matrices, such as urine and ascitic fluid. The optimized strategies were employed for the identification of various nosocomial pathogens such as Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa using antibodies as biorecognition elements. The detection of Escherichia coli was done in human ascitic fluid. Finally, the BiMW biosensor was employed to identify the multidrug-resistant bacteria such as: i) the identification of methicillin-resistant Staphylococcus aureus (MRSA) using a specific aptamer, which is able to discriminate among a susceptible one to antibiotic and a multidrug-resistant Staphylococcus, and (ii) the ultra-sensitive detection of multidrug-resistant E. coli genes without PCR amplification. This Thesis takes advantage of the knowledge in photonics biosensors and bioanalytical methods in our Group in order to develop a powerful tool for the direct and effective identification of nosocomial pathogens and their antibiotic-resistance in a rapid and label-free scheme.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lawlor, Kirsten. „Distribution of bacteria and bacterial plasmids in lake water sediments“. Thesis, University of Liverpool, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240596.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Habeeb, Fatema. „Bacteria-cytokines interactions : effect of normal bacterial flora of pathogenic bacteria on pro-inflammatory cytokines production in human blood“. Thesis, University of Strathclyde, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501921.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kim, Min Jun. „Bacterial flows : mixing and pumping in microfluidic systems using flagellated bacteria /“. View online version; access limited to Brown University users, 2005. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3174627.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wood, Ryan. „Bacteria in Blood: Optimized Recovery of Bacterial DNA for Rapid Identification“. BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8147.

Der volle Inhalt der Quelle
Annotation:
Blood stream infections are challenging infections to rapidly diagnose. The current clinical diagnostic methods for blood stream infections require culturing the blood sample prior to identifying the bacteria and any resistance the bacteria may contain. Removing the culturing step from the bacterial identification process of a blood stream infection provides a significant reduction in the processing time. However, eliminating the culturing step shifts the difficulty from processing time to concentration, since clinical concentration levels can be as low as 10 CFU/mL in blood. This dissertation developed and evaluated many aspects of the process required to identify bacteria from a blood stream infection without culturing the bacteria. Two new methods of separating the bacteria from the blood cells were developed: inducing clotting using a centrifugal-sedimentation on a hollow disk, and filtering whole blood. Inducing clotting achieved 69\% bacterial recovery from 7 mLs of whole blood in 117 s. Filtering whole blood achieved 100\% bacterial removal from 5 mLs of whole blood in $\approx 90$ s, but the bacteria were difficult to remove from the filter. Bacterial removal from the filter after blood filtration was also investigated. At a very low bacterial concentration of 200 CFU/mL, a blood lysis solution of 3\% Tween 80 followed by a 3\% Pluronic F108 backflush solution achieved 60\% removal of the bacteria from the filter. In addition to developing two new methods, a previously developed technique using centrifugal-sedimentation on a hollow disk underwent a stability analysis in order to decrease the occurrence of mixing. This analysis yielded the development of the analytical solution to the Navier-Stokes equations for a two-fluid flow with a moving wall boundary and a free surface. The analysis also experimentally identified a stability boundary that was found to be in good agreement with the Kelvin-Helmholtz instability model. After exploring the methods to recover bacteria from blood, experiments were performed to identify a bacterial lysing solution that could lyse \textit{E. coli}, \textit{E. cloacae} and \textit{K. pneumoniae} bacteria. The best bacterial lysing solution consisted of incubating the bacteria with 1 mg/mL lysozyme for 10 min followed by the addition of 6 M GHCl and 1\% SDS. This solution obtained a 46\% DNA recovery. The DNA were then fragmented by ultrasound to reduce the segment length for DNA labelling. In addition to lysing and fragmenting the DNA, a microfluidic device was prototyped and tested for incorporating the lysing, capturing, releasing, and fragmenting of the DNA all on a single device. Whole experiments were performed which extracted the bacteria from the blood, removed and collected the DNA from the bacteria, and fragmented the DNA. The best overall recovery from an experiment performing the whole process was 26.8\%. The 26.8\% recovery was achieved with a 68\% recovery of the bacteria from spinning and a 54.1\% removal of bacteria from off of the filter and a 72.9\% recovery of the DNA from the bacteria.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Adebayo, Olajumoke O. „Evaluation of bacterial polymers as protective agents for sensitive probiotic bacteria“. Thesis, University of Wolverhampton, 2018. http://hdl.handle.net/2436/621096.

Der volle Inhalt der Quelle
Annotation:
Probiotics are live microorganisms which when administered in adequate amounts confer one or more health benefits on the host. Different processing conditions, the acidic condition of the stomach and exposure to hydrolytic enzymes affect the viability and efficacy of probiotic organisms. This study investigated the protective effects of two biopolymers poly-gamma-glutamic acid (γ-PGA) and bacterial cellulose (BC) on probiotics during freeze drying and during exposure to simulated intestinal juices and bile salts. The antibacterial property of Bifidobacterium strains was also investigated against four pathogenic bacteria. γ-PGA, a naturally occurring biopolymer was produced by two bacteria (Bacillus subtilis ATCC 15245 and B. licheniformis ATCC 9945a) in GS and E media, γ-PGA yields of about 14.11g/l were achieved in shake flasks and molecular weight of up to 1620 k Da was recorded, γ-PGA production was scaled up in a fermenter with B. subtilis using GS medium. BC, an edible biopolymer was produced by Gluconacetobacter xylinus ATCC 23770 in HS medium and a modified HS (MHS) medium. A yield of about 1.37g/l was recorded and BC production with MHS medium was used for probiotic application. B. longum NCIMB 8809 B. breve NCIMB 8807 and B. animalis NCIMB 702716 showed the best antimicrobial properties against the investigated pathogens. Survival of Bifidobacterium strains was improved when protected with powdered BC (PBC) although γ-PGA offered better protection than PBC. Viability of B. longum NCIMB 8809, B. breve NCIMB 8807 and B. animalis NCIMB 702716 in simulated gastric juice (SGJ) and simulated intestinal juice with bile salts was improved when protected with 5% γ-PGA and 5% γ-PGA+PBC with a reduction of < 1 Log CFU/ml while a reduction of ≤2 Log CFU/ml was recorded in PBC protected cells. Protecting Bifidobacterium strains with γ-PGA, PBC or a novel γ-PGA + PBC combination is a promising method to deliver probiotic bacteria to the target site in order to confer their health benefits on the host.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hughes, Roxana Bejarano. „Distribution of a Novel Gram Negative, Capsule-Forming Bacterium“. Thesis, University of North Texas, 1997. https://digital.library.unt.edu/ark:/67531/metadc500729/.

Der volle Inhalt der Quelle
Annotation:
A novel Gram negative, capsule-forming bacterium was previously isolated in Dr. G. Roland Vela's laboratory. The distribution of this bacterium in soils from various locations was investigated. Soil samples from 188 locations around the world were examined. Isolates of the bacterium were obtained from 50 of these soils, with 48 of the isolates found in soils from the southwestern United States and northern Mexico. This suggests that this region is the natural habitat of the bacterium. The other two isolates were obtained from Madrid, Spain and Taipei, Taiwan. None were found in soils from South America or Australia. A lack of variation in morphology and physiological properties in the isolates suggests that a homogeneous population exists, even from widespread geographical locations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Song, Yanqing. „Microfluidic devices for bacteria study and bacteria-based sensing“. Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8577/.

Der volle Inhalt der Quelle
Annotation:
Environmental pollutants pose great risks and adverse effects to humans and therefore arouse global environmental concern. Bacterial sensors capable of assessing the bioavailability and toxicity of pollutants show great advantages in environmental sensing. This project aims at developing a bioluminescent bacteria-based microfluidic sensor for online monitoring of environmental contaminants and toxicity. Microfluidic devices immobilised with Acinetobacter sp. ADP1_lux cells as a model strain have been developed for quantitative bioassays. Three microfluidic devices were developed and tested in order to trap and culture a monolayer of bacterial cells. The terrace device is capable of trapping a monolayer of cells in a chamber for tracking single-cell growth and response. This device utilises a barrier channel lower than the cell diameter. Two flow channels can be used to load bacterial cells, deliver fresh media and inducers and wash away overgrown cells. The device was used to measure the bioluminescence induction of ADP1_lux cells and its capability to track individual cell growth was demonstrated with E.coli cells. Since bioluminescence signals from a monolayer of ADP1_lux cells were too weak to be detected after 2 h induction by 200 µM salicylate, a microwell device was developed to concentrate cells in individual microwells for population-based analysis. Cell loading procedures, dimensions of wells, carbon sources and on-chip cultures that affect bioluminescence light intensities were investigated. This device succeeded in detecting 200 µM salicylate within 1 h. However, long-term cell culture revealed that ADP1_lux cells tend to form biofilms. Cell populations in individual wells varied greatly, making quantification impossible. Therefore, this device is only suitable for rapid detection of high concentrations of contaminants if biofilm forming bacteria cells are used as biosensors. In contrast, in the case of non-adherent cells such as E.coli, a uniform population distribution in each well was achieved after 2-day culture, suggesting this method is applicable to perform long term, quantitative bioassays using suitable, non-adherent cells. To be able to detect low concentrations of contaminants and overcome potential biofilm formation, a new population array device was developed as a proof of concept to control and isolate cell populations. It consists of a network of microfluidic channels and an array of microchambers. The device was characterised with fluorescent dyes and its capability to perform quantitative bioluminescence assays was evaluated by detecting a range of concentrations of salicylate solutions (from 10 µM to 50 µM salicylate) using ADP1_lux cells. A linear correlation between bioluminescence intensities and salicylate concentrations was successfully established within 90 min induction. It is worth noting that the population array device is the first demonstration of bioluminescence detection at the length scale of microns. Therefore, it has potential to perform multiplex detection within a small footprint where different types of whole cell biosensors can be employed simultaneously. To this end, a logarithmic serial dilution device was also developed to enable quantitative, multiplex bioassays to be conducted in the same device. This integrated dilution and population device provides a powerful tool for rapid quantification of multiple contaminants simultaneously in a sample.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Bacteria"

1

C, Crabbe M. James, Hrsg. Bacteria and anti-bacterical agents. Oxford: Spektrum, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ernst, Joel D., und Olle Stendahl, Hrsg. Phagocytosis of Bacteria and Bacterial Pathogenicity. Cambridge: Cambridge University Press, 2006. http://dx.doi.org/10.1017/cbo9780511541513.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

D, Ernst Joel, und Stendahl Olle, Hrsg. Phagocytosis of bacteria and bacterial pathogenicity. Cambridge: Cambridge University Press, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

J, Dring G., Gould G. W, Ellar D. J, Federation of European Microbiological Societies., Society for Applied Bacteriology und International Symposium on "Fundamental and Applied Aspects of Bacterial Spores" (1982 : University of Cambridge), Hrsg. Fundamental and applied aspects of bacterial spores. London: Academic Press, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wassenaar, Trudy M. Bacteria. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118143391.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Friedman, B. Ellen. Bacteria. Mankato, Minn: Creative Education, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Margery, Facklam, Hrsg. Bacteria. New York: Twenty-First Century Books, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

1935-, Hill L. R., und Kirsop B. E, Hrsg. Bacteria. Cambridge [England]: Cambridge University Press, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

S, Gnanamanickam S., Hrsg. Plant-associated bacteria. Dordrecht: Springer, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

de, Reuse Hilde, und Bereswill Stefan, Hrsg. Microbial pathogenomics. Basel: Karger, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Bacteria"

1

Malinowska, Agnes. „Bacteria“. In Microbium, 31–45. Earth, Milky Way: punctum books, 2023. http://dx.doi.org/10.53288/0396.1.04.

Der volle Inhalt der Quelle
Annotation:
Bacteria have played a truly outsized role in the evolutionary story of life on earth, and they continue to be crucial to sustaining organisms and ecosystems. Until recently, however, most cultural and scientific interest in bacteria has centered on defeating the nefarious “germ.” This entry focuses in particular on how public health efforts to reign in the threat of bacterial disease in the US around 1900 aligned with the aspirations of a hegemonic Anglo-American culture to control and suppress marginalized groups like immigrants and racial others, easy scapegoats for disease. At the same time, British settler colonialism and, eventually, US government policy catalyzed devastating epidemics amongst Indigenous populations from the colonial period into the twentieth century, such as the tuberculosis crisis in Native health. While bacterial disease has been largely divisive in the US, bacteria themselves can encourage humans to think in terms of cooperation and alliance, rather than the strict enforcement of borders. Both symbiosis—bacteria’s preferred social relation—and binary fission—bacterial reproduction—suggest a radical form of sociality that permeates, ruptures, and transforms “individuals” constantly, so that the one always slips into the collective.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bährle-Rapp, Marina. „Bacterium (Plur. Bacteria)“. In Springer Lexikon Kosmetik und Körperpflege, 56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_947.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Paterson, Jamie, Martín López-García, Joseph Gillard, Thomas R. Laws, Grant Lythe und Carmen Molina-París. „Analysis of Single Bacterium Dynamics in a Stochastic Model of Toxin-Producing Bacteria“. In Lecture Notes in Computer Science, 210–25. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91825-5_13.

Der volle Inhalt der Quelle
Annotation:
AbstractWe stochastically model two bacterial populations which can produce toxins. We propose to analyse this biological system by following the dynamics of a single bacterium during its lifetime, as well as its progeny. We study the lifespan of a single bacterium, the number of divisions that this bacterium undergoes, and the number of toxin molecules that it produces during its lifetime. We also compute the mean number of bacteria in the genealogy of the original bacterium and the number of toxin molecules produced by its genealogy. We illustrate the applicability of our methods by considering the bacteria Bacillus anthracis and antibiotic treatment, making use of in vitro experimental data. We quantify, for the first time, bacterial toxin production by exploiting an in vitro assay for the A16R strain, and make use of the resulting parameterised model to illustrate our techniques.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Gómez-Gutiérrez, Jaime, So Kawaguchi und José Raúl Morales-Ávila. „Bacteria“. In Global Diversity and Ecological Function of Parasites of Euphausiids, 43–53. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-41055-5_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chandrasekar, Pranatharthi H., und George Alangaden. „Bacteria“. In Managing Infections in Patients With Hematological Malignancies, 71–112. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-415-5_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Rodriguez-Valera, Francisco. „Bacteria“. In Encyclopedia of Astrobiology, 137–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_143.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Brack, Manfred. „Bacteria“. In Agents Transmissible from Simians to Man, 99–249. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71911-0_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Jackson, Trevor A., Colin Berry und Maureen O'Callaghan. „Bacteria“. In Ecology of Invertebrate Diseases, 287–326. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119256106.ch8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lucas, George B., C. Lee Campbell und Leon T. Lucas. „Bacteria“. In Introduction to Plant Diseases, 259–65. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-7294-7_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gooch, Jan W. „Bacteria“. In Encyclopedic Dictionary of Polymers, 62. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_974.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Bacteria"

1

Martel, Sylvain, Mahmood Mohammadi und Nisryn Mokrani. „Switching Between Magnetic or Oxigen Sensory Input for the MC-1 Flagellated Bacteria to be Used for Controlling the Motion of Swarms of Bacterial Microscale Nanorobots“. In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13302.

Der volle Inhalt der Quelle
Annotation:
Our previous studies have shown that the flagellated nanomotors combined with the nanometer-sized chain of magnetosomes of a single Magnetotactic Bacterium (MTB) can be used as an effective integrated propulsion and steering system for microscale nanorobots. In this case, magnetotaxis has been exploited to control the swimming direction of the flagellated bacteria. This was done by inducing a directional torque on the chain of magnetosomes embedded in each bacterial cell. This approach allowed us to control swarms of flagellated bacteria of type MC-1 to accomplish relatively complex computer coordinated tasks such as micro-assemblies and drug deliveries, to name but only two examples. But the motion of each cell can also be influenced by other sensory means besides magnetotaxis, and includes chemotaxis, phototaxis, and aerotaxis. Here we show examples of MC-1 flagellated bacteria being controlled by magnetotaxis or aerotaxis. It is then demonstrated that these flagellated bacteria can not only provide an effective propulsion and steering system for future bio-nanorobots but also various sensory means capable of influencing their motions and swarm formations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ibrahim, Mohd Danial, Alyssa Asong Ananthan, Dayang Salyani Abang Mahmod, Awang Ahmad Sallehin Awang Husaini, Ngieng Ngui Sing, Shunsuke Nakano, Yuta Sunami und Pierre Barroy. „Antibacterial Properties of Snakeskin Inspired PDMS Surfaces Layered With Poly-DL-lactic Acid Nanosheet“. In ASME 2023 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/smasis2023-111176.

Der volle Inhalt der Quelle
Annotation:
Abstract The increment of sterilization resistant bacteria minimizes the effectiveness of disinfectants which leads researchers into studying other means in minimizing bacterial contamination on surfaces. Hence, this study plans to investigate surfaces with the ability to discourage bacterial adhesion and reduces the need for frequent sterilization. This study tested the feasibility of applying snakeskin inspired microstructures onto a polydimethylsiloxane (PDMS) surface to reduce bacterial adhesion and increase its antibacterial properties. In theory, the microstructure of snakeskin is smaller or about the same size as a bacterium making it unfeasible for bacterial adhesion. The embeddedelastomeric stamping method was used for the biomimicry of snakeskin onto PDMS surfaces. The replicated snakeskin and controlled (no microstructure) PDMS samples were layered with Poly-DL-lactic acid (PDLLA) nanosheet of different thickness. Then, the morphology of the surfaces was observed using a scanning electron microscope. The surface of the samples was tested with Staphylococcus aureus and Bacillus with compliance of the ISO 22196 standard to evaluate the antimicrobial activity. Our results revealed, surfaces with snakeskin microstructures displayed a 16% reduction in bacterial adhesion compared to flat PDMS. Whereas the presence of nanosheet does not significantly affect the adhesion of bacteria on the replicated snakeskin. These findings suggest that surfaces with the presence of snakeskin microstructures possess antibacterial property.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bhaduri, S., S. K. Mitra und A. Kumar. „Understanding Biofilm Growth Dynamics Within a Stagnant Culture of Sporosarcina Pasteurii“. In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36778.

Der volle Inhalt der Quelle
Annotation:
Biofilms are bacterial colonies that form at interfaces, where bacteria are encased in extracellular polymeric substances (EPS). Biofilms are ubiquitous in both artificial systems and our environment. Here we focus on understanding biofilm growth within a stagnant pool of confined diluted culture of the bacteria. Sporosarcina pasteurii is taken as the model bacterium for this study. The motivation behind the choice of this organism stems from the fact that S. Pasteurii has the unique ability to precipitate calcite inside the host media which has tremendous applications in reservoir and restoration engineering. As the biofilm evolves with time inside the confinement, the dynamics of transport is recorded continuously by an optical microscope and the data processed digitally to gain valuable insights into the bio-physical aspects of the system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Steager, Edward, M. Selman Sakar, U. Kei Cheang, David Casale, Vijay Kumar, George J. Pappas und Min Jun Kim. „Galvanotactic Control of Self-Powered Microstructures“. In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66647.

Der volle Inhalt der Quelle
Annotation:
We are examining microactuation techniques by employing the electrokinetic and galvanotactic behavior of certain bacteria. We cultured selected strains of swarming Serratia marcescens which were attached to microstructures using a blotting technique that creates a bacterial monolayer carpet. These bacterial carpets naturally self-coordinate to propel the microstructures. The microstructures were placed in an open channel and a voltage was applied and polarity was switched. We have demonstrated directional control of the motion of the microstructures patterned with bacteria. This mobility is due to the patterning of bacteria on the microstructure surface and arises from a combination of electrokinetic effects and galvanotaxis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Malsam, Jason A., Vishard Ragoonanan, Daniel R. Bond und Alptekin Aksan. „Desiccation Response of Geobacter sulfurreducens“. In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176271.

Der volle Inhalt der Quelle
Annotation:
Geobacter sulfurreducens is an electricity producing bacteria. It is used in bacterial fuel cells, microbial-based sensors, and catalytic surfaces for bioremediation. Further development of such applications requires stabilization and preservation of the bacteria as thin films on surfaces. This research investigated G.sulfurreducens response to desiccation to explore the feasibility of room temperature preservation. Room temperature preservation involves drying and storing bacteria at ambient conditions. Dried bacteria can be revived on demand by the addition of water.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Maltseva, S. V., A. S. Yakubovich, E. R. Gritskevitch, I. E. Buchenkov und A. G. Sysa. „ANTAGONISTIC ACTIVITY OF BACTERIA OF THE GENUS BACILLUS ISOLATED FROM SOILS UNDER PROLONGED EXPOSURE TO IONIZING RADIATION IN RELATION TO COLIMORPHOUS BACTERIA“. In SAKHAROV READINGS 2022: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2022. http://dx.doi.org/10.46646/sakh-2022-1-299-302.

Der volle Inhalt der Quelle
Annotation:
This paper presents the results of studies of the antagonistic activity of bacteria of the genus Bacillus (Bacillus subtilis, Bacillus thuringiensis, Bacillus mycoides and Bacillus cereus) under prolonged exposure to ionizing radiation in relation to bacteria of the E. coli group. It was found that bacteria of the genus Bacillus exhibit antagonistic activity of varying degrees of severity. It was found that the bacterial strains Bacillus subtilis, Bacillus thuringiensis and Bacillus mycoides showed a high level of antagonistic activity. Low antagonistic activity was characteristic of Bacillus cereus bacteria.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Caraba, Ion Valeriu, Marioara Nicoleta Caraba, Delia Hutanu, Elena Pet und Roxana Popescu. „EVALUATION OF THE ANTIBACTERIAL POTENTIAL OF THYMUS PULEGIOIDES EXTRACTS“. In 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023/6.1/s25.20.

Der volle Inhalt der Quelle
Annotation:
Increasing resistance of microorganisms to conventional drugs has required scientists to discover new sources of biocides with a broad spectrum of action. Since ancient times, plants and plant derivatives such as essential oils have been used in traditional medicine. In the present study, the ethanolic extracts of the aerial parts (leaves and stem) of Thymus pulegioides were evaluated for their antimicrobial activity against some pathogenic bacteria, Gram+ bacteria: Staphylococcus aureus and Streptococcus pyogenes, respectively Gram- bacteria Escherichia coli. The antibacterial potential was tested by the bacterial cell viability test, the spectrophotometric method. The results of the performed tests indicate a different antibacterial effect depending on the type of vegetative organ from which the extract was made, the concentration tested and the bacterial strain studied. A decrease in the antibacterial potential of the extracts is identified as the concentration decreases, the effect exerted being bacteriolytic or bacteriostatic, at some concentrations the values recorded being almost non-existent. The antibacterial potential of Thymus pulegioides extracts were more evident in Gram+ bacteria compared to Gram- bacteria.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Steager, Edward, M. Selman Sakar, Dalhyung Kim, Vijay Kumar, George J. Pappas und Min Jun Kim. „Hybrid Control and Transport Using Bacteria-Driven Microbiorobots“. In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11327.

Der volle Inhalt der Quelle
Annotation:
We are examining techniques for manipulation of microfabricated elements using arrays of bacteria as microactuators. Flagellated Serratia marcescens bacteria are attached to microstructures using a blotting technique that creates a bacterial monolayer carpet. These bacterial carpets naturally self-coordinate to propel the microstructures. We refer to these constructs as microbiorobots (MBR). Generally, the motion pattern of the MBRs is largely rotational in nature, and the center of mass deviates no more than several hundred microns from its original position. However, the angular velocity and orientation of the MBRs may be controlled using ultraviolet light stimulus, and the translational position may be adjusted using electrokinetic stimulus. Here, we demonstrate precision positional adjustment of a microbiorobotic transporter that is used to engage and transport cube-shaped particles 10 μm on each side.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lithgow, K., V. Buchholz, S. Konschuh und L. Sycuro. „O02.5 Secreted Proteolytic Activity of Bacterial Vaginosis-Associated Bacteria“. In Abstracts for the STI & HIV World Congress, July 14–17 2021. BMJ Publishing Group Ltd, 2021. http://dx.doi.org/10.1136/sextrans-2021-sti.60.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Steffensen, Aurelija, Morten Miller, Susan Elleskov und Eric Vilain. „Real-Time Bacteria Monitoring Applications in Oil & Gas Operations can Help to Prevent and Mitigate Corrosion“. In SPE Annual Technical Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210349-ms.

Der volle Inhalt der Quelle
Annotation:
Abstract Controlling bacteria in Oil & Gas operations is essential for flow assurance and avoiding unhealthy environments developing in the systems. The resistance of bacteria grows stronger as they manage to survive environments, In gaming terms, the bacteria is "leveling up" every time it faces and overcomes adversities, thus getting more resilient. Once bacteria are present in medias of Oil & Gas, they will already be bacteria with high survival skills and with very complex development and growth path. Knowing the total content of bacteria can provide confident decision-making on aspects such as HSE, system integrity, biocide selection, and dose frequency. As anaerobe bacteria are very harsh on metal structures, they can cause corrosion and damage and shortened lifetime on flow structures and pipelines. Ideally, bacteria are monitored closely with short testing times to ensure rapid decision-making and initiation of mitigating actions. However, the traditional methods for detecting and enumerating bacteria in Oil & Gas operations are cumbersome and time-consuming, with analysis times of 24 hours to 28 days, making them inefficient in an operational environment that requires rapid decision-making to stay in control. Tools that address these limitations are thus in high demand. In this study, we will describe how a field portable technology for fluorometric determination of a hydrolase activity can be used to identify and monitor bacterial contamination in an offshore operation in near real-time.The study demonstrates how the use of the enzyme method allowed the platform chemical engineer to quickly identify a bacterial contamination issue, related to a failed biocide injection pump and allowed the platform manager to rapidly initiate relevant mitigation of the problem.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Bacteria"

1

Austin, Robert H. Computation by Bacteria. Fort Belvoir, VA: Defense Technical Information Center, Januar 2011. http://dx.doi.org/10.21236/ada535062.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Malkin, A. Bacteria-Mineral Interactions on the Surfaces of Metal-Resistant Bacteria. Office of Scientific and Technical Information (OSTI), März 2010. http://dx.doi.org/10.2172/974393.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kapulnik, Yoram, und Donald A. Phillips. Isoflavonoid Regulation of Root Bacteria. United States Department of Agriculture, Januar 1996. http://dx.doi.org/10.32747/1996.7570561.bard.

Der volle Inhalt der Quelle
Annotation:
The overall objective of this project was to develop a conceptual framework for enhancing root colonization by beneficial bacteria. To accomplish this aim we tested the hypothesis that production and excretion of the plant phytoalexin medicarpin can be used for creation of a special niche along the legume roots, where beneficial microorganism, such as rhizobium, will have a selective advantage. On the Israeli side it was shown that higher medicarpin levels are exuded following the application of Rhizobium meliloti to the rhizosphere but the specific biochemical pathway governing medicarpin production was not induced significantly enough to support a constant production and excretion of this molecule to the rhizosphere. Furthermore, pathogenic bacteria and chemical elicitors were found to induce higher levels of this phytoalexin and it became important to test its natural abundance in field grown plants. On the US side, the occurrence of flavonoids and nucleosides in agricultural soils has been evaluated and biologically significant quantities of these molecules were identified. A more virulent Agrobacterium tumefaciens strain was isolated from alfalfa (Medicago sativa L.) which forms tumors on a wide range of plant species. This isolate contains genes that increase competitive colonization abilities on roots by reducing the accumulation of alfalfa isoflavonoids in the bacterial cells. Following gene tagging efforts the US lab found that mutation in the bacterial efflux pump operons of this isolate reduced its competitive abilities. This results support our original hypothesis that detoxification activity of isoflavenoids molecules, based on bacterial gene(s), is an important selection mechanism in the rhizosphere. In addition, we focused on biotin as a regulatory element in the rhizosphere to support growth of some rhizosphere microorganisms and designed a bacterial gene construct carrying the biotin-binding protein, streptavidin. Expressing this gene in tobacco roots did not affect the biotin level but its expression in alfalfa was lethal. In conclusion, the collaborative combination of basic and applied approaches toward the understanding of rhizosphere activity yielded new knowledge related to the colonization of roots by beneficial microorganisms in the presence of biological active molecules exuded from the plant roots.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Tsekovska, Rositsa, Roumyana Mironova und Ivan Ivanov. Protein Glycosylation in Bacteria. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, April 2021. http://dx.doi.org/10.7546/crabs.2021.04.01.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Burlage, R. S., T. Youngblood und D. Lamothe. Bioreporter bacteria for landmine detection. Office of Scientific and Technical Information (OSTI), April 1998. http://dx.doi.org/10.2172/645466.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Walsh, Marie K., Daryll B. De Wald und Bart C. Weimer. Biomimetic Sensor for Pathogenic Bacteria. Fort Belvoir, VA: Defense Technical Information Center, März 2001. http://dx.doi.org/10.21236/ada387395.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Nelson, Daniel C. Resensitizing Resistant Bacteria to Antibiotics. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada554271.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ornston, L. N. Control of Biodegradation in Bacteria. Fort Belvoir, VA: Defense Technical Information Center, August 1991. http://dx.doi.org/10.21236/ada244818.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wilde, E. W., J. C. Radway, T. C. Hazen und P. Hermann. Immobilization of degradative bacteria in polyurethane-based foams: embedding efficiency and effect on bacterial activity. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/565240.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Terry Ann Krulwich. The Respiratory Chain of Alkaliphilic Bacteria. Office of Scientific and Technical Information (OSTI), Januar 2008. http://dx.doi.org/10.2172/922628.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie