Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Aza-Wacker“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Aza-Wacker" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Aza-Wacker"
Li, Mengjuan, Jingya Li, Zhiguo Zhang, Liming Chen, Nana Ma, Qingfeng Liu, Xingjie Zhang und Guisheng Zhang. „Palladium-catalyzed intramolecular aza-Wacker-type cyclization of vinyl cyclopropanecarboxamides to access conformationally restricted aza[3.1.0]bicycles“. RSC Advances 13, Nr. 39 (2023): 27158–66. http://dx.doi.org/10.1039/d3ra05440c.
Der volle Inhalt der QuelleThomas, Annu Anna, Someshwar Nagamalla und Shyam Sathyamoorthi. „Salient features of the aza-Wacker cyclization reaction“. Chemical Science 11, Nr. 31 (2020): 8073–88. http://dx.doi.org/10.1039/d0sc02554b.
Der volle Inhalt der QuelleBarboza, Amanda Aline, Juliana Arantes Dantas, Guilherme Augusto de Melo Jardim, Marco Antonio Barbosa Ferreira, Mateus Oliveira Costa und Attilio Chiavegatti. „Recent Advances in Palladium-Catalyzed Oxidative Couplings in the Synthesis/Functionalization of Cyclic Scaffolds Using Molecular Oxygen as the Sole Oxidant“. Synthesis 54, Nr. 09 (19.11.2021): 2081–102. http://dx.doi.org/10.1055/a-1701-7397.
Der volle Inhalt der QuelleAdachi, Sota, und Yohei Okada. „Electrochemical radical cation aza-Wacker cyclizations“. Beilstein Journal of Organic Chemistry 20 (05.08.2024): 1900–1905. http://dx.doi.org/10.3762/bjoc.20.165.
Der volle Inhalt der QuelleYoun, So Won, und So Ra Lee. „Unusual 1,2-aryl migration in Pd(ii)-catalyzed aza-Wacker-type cyclization of 2-alkenylanilines“. Organic & Biomolecular Chemistry 13, Nr. 16 (2015): 4652–56. http://dx.doi.org/10.1039/c5ob00361j.
Der volle Inhalt der QuellePeng, Xichao, und Pengju Feng. „Continuous-Flow Electrochemistry Promoted Aza-Wacker Cyclizations“. Chinese Journal of Organic Chemistry 41, Nr. 7 (2021): 2918. http://dx.doi.org/10.6023/cjoc202100051.
Der volle Inhalt der QuelleWang, Xin, Qinlin Wang, Yanru Xue, Kai Sun, Lanlan Wu und Bing Zhang. „An organoselenium-catalyzed N1- and N2-selective aza-Wacker reaction of alkenes with benzotriazoles“. Chemical Communications 56, Nr. 32 (2020): 4436–39. http://dx.doi.org/10.1039/d0cc01079k.
Der volle Inhalt der QuelleLi, Huimin, Lihao Liao und Xiaodan Zhao. „Organoselenium-Catalyzed Aza-Wacker Reactions: Efficient Access to Isoquinolinium Imides and an Isoquinoline N-Oxide“. Synlett 30, Nr. 14 (28.06.2019): 1688–92. http://dx.doi.org/10.1055/s-0039-1690103.
Der volle Inhalt der QuelleNagamalla, Someshwar, David K. Johnson und Shyam Sathyamoorthi. „Sulfamate-tethered aza-Wacker approach towards analogs of Bactobolin A“. Medicinal Chemistry Research 30, Nr. 7 (06.04.2021): 1348–57. http://dx.doi.org/10.1007/s00044-021-02724-7.
Der volle Inhalt der QuelleSen, Abhijit, Kazuhiro Takenaka und Hiroaki Sasai. „Enantioselective Aza-Wacker-Type Cyclization Promoted by Pd-SPRIX Catalyst“. Organic Letters 20, Nr. 21 (24.10.2018): 6827–31. http://dx.doi.org/10.1021/acs.orglett.8b02946.
Der volle Inhalt der QuelleDissertationen zum Thema "Aza-Wacker"
Geulin, Anselme. „Synthèse de 3-amino-3-désoxyglycals par réaction d'aza-Wacker“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR42.
Der volle Inhalt der Quelle3-Amino-3-deoxyglycosides (ADGi) constitute an essential class of glycosides found in the structure of several important bioactive compounds. 3-Amino-3-deoxyglycals (ADGa) are promising donors for these ADGi. The glycal moiety allows ADGa to serve as donors of 2-deoxy-ADGi by glycosylation in the presence of an acceptor, or as donors of 1,2-trans-ADGi through an epoxidation / glycosylation sequence. This thesis work focuses on developing a new synthetic route for these ADGa, taking advantage of two key reactions: a Ferrier reaction followed by an aza-Wacker (AW) reaction in oxidizing conditions with carbamate type tether. This AW step enables C3-N bond formation and glycal reformation in a single step. Based on modified conditions from the literature using 1,4-benzoquinone (p-BQ), we obtained ADGa corresponding to the D-Glucal, D-Galactal, L-Rhamnal, and L-Fucal series, using DMF as the solvent. These ADGa were obtained orthogonally protected, and a proof of concept for their selective deprotection was demonstrated on the model ADGa. Finally, the ADGa derived from D-Galactal was subjected to an epoxidation / glycosylation sequence to synthesize a disaccharide with excellent yield and selectivity. The use of DMF as a solvent also allowed us to establish conditions for the AW cyclization, using dioxygen from the air as a reoxidant for Pd(0). The selectivity of the amidopalladation step was then examined for the two systems. After deuteration of the Ferrier adducts, we demonstrated that amidopalladation proceeded trans in both reoxidizing systems, starting from carbamates derived from D-Glucal and D-Galactal. Finally, two by-products of interest were studied. The first is a formal 1,3-functionalization of the model carbamate, and the reaction conditions for its synthesis were optimized. The second is a hexa-2,4-dienal derivative, which was isolated and fully characterized