Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Autonomous vehicle testing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Autonomous vehicle testing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Autonomous vehicle testing"
Tulsyan, Ansh, Anshul Bhardwaj, Pranjal Shukla, Piyush Gautam und Tushar Singh. „Autonomous Vehicle Simulation“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, Nr. 01 (05.01.2025): 1–9. https://doi.org/10.55041/ijsrem40459.
Der volle Inhalt der QuelleDickens, John, Thabisa Maweni, Tiro Setati und Zubair Suddoo. „Design of HERMES: a mobile autonomous surveillance robot for security patrol“. MATEC Web of Conferences 388 (2023): 04005. http://dx.doi.org/10.1051/matecconf/202338804005.
Der volle Inhalt der QuelleAbu Bakar, Amirul Ibrahim, Mohd Azman Abas, Mohd Farid Muhamad Said und Tengku Azrul Tengku Azhar. „Synthesis of Autonomous Vehicle Guideline for Public Road-Testing Sustainability“. Sustainability 14, Nr. 3 (27.01.2022): 1456. http://dx.doi.org/10.3390/su14031456.
Der volle Inhalt der QuelleChen, Hong Yun, Yan Qiang Li, Zi Hui Zhang und Yong Wang. „Test Method for Decision Planning of Autonomous Vehicles Based on DQN Algorithm“. E3S Web of Conferences 253 (2021): 03022. http://dx.doi.org/10.1051/e3sconf/202125303022.
Der volle Inhalt der QuelleCao, Yicheng, Haiming Sun, Guisheng Li, Chuan Sun, Haoran Li, Junru Yang, Liangyu Tian und Fei Li. „Multi-Environment Vehicle Trajectory Automatic Driving Scene Generation Method Based on Simulation and Real Vehicle Testing“. Electronics 14, Nr. 5 (01.03.2025): 1000. https://doi.org/10.3390/electronics14051000.
Der volle Inhalt der QuelleKwon, Donghwoon, Ritesh Malaiya, Geumchae Yoon, Jeong-Tak Ryu und Su-Young Pi. „A Study on Development of the Camera-Based Blind Spot Detection System Using the Deep Learning Methodology“. Applied Sciences 9, Nr. 14 (23.07.2019): 2941. http://dx.doi.org/10.3390/app9142941.
Der volle Inhalt der QuelleBhavsar, Parth, Plaban Das, Matthew Paugh, Kakan Dey und Mashrur Chowdhury. „Risk Analysis of Autonomous Vehicles in Mixed Traffic Streams“. Transportation Research Record: Journal of the Transportation Research Board 2625, Nr. 1 (Januar 2017): 51–61. http://dx.doi.org/10.3141/2625-06.
Der volle Inhalt der QuelleFeys, Manon, Evy Rombaut und Lieselot Vanhaverbeke. „Does a Test Ride Influence Attitude towards Autonomous Vehicles? A Field Experiment with Pretest and Posttest Measurement“. Sustainability 13, Nr. 10 (12.05.2021): 5387. http://dx.doi.org/10.3390/su13105387.
Der volle Inhalt der QuelleCao, Hang, und Máté Zöldy. „An Investigation of Autonomous Vehicle Roundabout Situation“. Periodica Polytechnica Transportation Engineering 48, Nr. 3 (04.08.2019): 236–41. http://dx.doi.org/10.3311/pptr.13762.
Der volle Inhalt der QuelleLi, Mu, Yingqi Liu und Ruiyu Feng. „How Can China’s Autonomous Vehicle Companies Use Digital Empowerment to Improve Innovation Quality?—The Role of Digital Platform Capabilities and Boundary-Spanning Search“. Systems 13, Nr. 1 (10.01.2025): 45. https://doi.org/10.3390/systems13010045.
Der volle Inhalt der QuelleDissertationen zum Thema "Autonomous vehicle testing"
Mikesell, David Russell. „Portable automated driver for universal road vehicle dynamics testing“. Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1198722243.
Der volle Inhalt der QuelleKirsch, Patricia Jean. „Autonomous swarms of unmanned vehicles software control system and ground vehicle testing /“. College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2993.
Der volle Inhalt der QuelleThesis research directed by: Dept. of Electrical and Computer Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Hebib, Jasmina, und Sofie Dam. „Vehicle Dynamic Models for Virtual Testing of Autonomous Trucks“. Thesis, Linköpings universitet, Fordonssystem, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-155513.
Der volle Inhalt der QuelleNordenström, Martin. „Future certification of autonomous vehicles and the use of virtual testing methods“. Thesis, KTH, Fordonsdynamik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288717.
Der volle Inhalt der QuelleEtt av de största hindren för att lansera självkörande fordon är den nuvarande lagstiftningen som i dagsläget inte täcker automationsnivå högre än nivå 2. Arbetet med att ta fram lagkraven sker på FN nivå inom WP29 (The UNECE World Forum for Harmonization of Vehicle Regulations). Som en världsledande fordonstillverkare strävar Scania efter att bana väg för hållbara transportlösningar. På Scania finns väletablerade metoder för certifiering av olika system, men processen för certifiering av autonoma fordon måste dock utvecklas.Detta examensarbete undersöker den aktuella situationen när det gäller utformandet av regelverk för att täcka autonoma fordon, framtida certifieringsmetoder relaterade till dessa system och hur detta påverkar Scania. Särskilt fokus ligger på utredning av virtuella certifieringsmetoder. Detta kan ligga till grund för olika avdelningar på Scania i deras arbete med framtida autonoma system och hur man får dessa certifierade.Det framtida certifieringsarbetet för autonoma fordon kommer att bygga på en valideringsprocess som bygger på en process som kallas för ”Multi-pillars approach”/”Three- pillars approach”. Tanken är att fordonet ska certifieras utifrån en process där grunden till certifiering görs genom att validera och rättfärdiga sina system. Detta ska ske genom simulering och andra metoder för att säkerhetsställa att systemen är tillfredställande. Ett mindre omfattande arbete ska sedan göras i testningen av fordonen på testbana och ute i trafik, där endast mindre krävande situationer ska valideras.De funktionella kraven på fordonen kommer till stor del att styra den valideringsprocessen som görs med för ”Multi-pillars approach”/”Three-pillars approach”. Exempelvis är definierandet av ODD (Operational Design Domain) avgörande för den validering som fordonet i ett senare skede ska genomgå.
Volland, Kirk N. „Design, construction and testing of a prototype holonomic autonomous vehicle“. Thesis, Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion-image.exe/07Dec%5FVolland.pdf.
Der volle Inhalt der QuelleThesis Advisor(s): Harkins, Richard. "December 2007." Description based on title screen as viewed on January 24, 2008. Includes bibliographical references (p. 189-192). Also available in print.
Arslan, Suat. „Testing and evaluation of the Small Autonomous Underwater Vehicle Navigation System (SANS)“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2000. http://handle.dtic.mil/100.2/ADA376607.
Der volle Inhalt der QuelleThesis advisor(s): Yun, Xiaoping; Bachmann, Eric R. "March 2000." Includes bibliographical references (p. 93-94). Also available online.
Jun, Hyun Il. „The implementation and testing of a robotic arm on an autonomous vehicle“. Thesis, Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion-image.exe/07Dec%5FJun.pdf.
Der volle Inhalt der QuelleThesis Advisor(s): Harkins, Richard. "December 2007." Description based on title screen as viewed on January 18, 2008. Includes bibliographical references (p. 35-36). Also available in print.
Doepke, Edward Brady. „DESIGN AND FLIGHT TESTING OF A WARPING WING FOR AUTONOMOUS FLIGHT CONTROL“. UKnowledge, 2012. http://uknowledge.uky.edu/me_etds/20.
Der volle Inhalt der QuelleMercer, Anthony Scott. „Autonomous unmanned ground vehicle for non-destructive testing of fiber reinforced polymer bridge decks“. Morgantown, W. Va. : [West Virginia University Libraries], 2006. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4943.
Der volle Inhalt der QuelleTitle from document title page. Document formatted into pages; contains x, 100 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 83-86).
Sevcik, Keith Wayne Oh Paul Yu. „A hardware-in-the-loop testing facility for unmanned aerial vehicle sensor suites and control algorithms /“. Philadelphia, Pa. : Drexel University, 2010. http://hdl.handle.net/1860/3262.
Der volle Inhalt der QuelleBücher zum Thema "Autonomous vehicle testing"
Montilla, Michael A. N. Observations from Autonomous Vehicle Testing in Phoenix, Noteworthy Ways Existing Political Practices and Commuting Behaviors Will Affect Planning for Self-Driving Vehicles. [New York, N.Y.?]: [publisher not identified], 2019.
Den vollen Inhalt der Quelle findenFanelli, Francesco. Development and Testing of Navigation Algorithms for Autonomous Underwater Vehicles. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-15596-4.
Der volle Inhalt der QuelleCanis, Bill. Issues in Autonomous Vehicle Testing and Deployment. Independently Published, 2019.
Den vollen Inhalt der Quelle findenTesting and Evaluation of the Small Autonomous Underwater Vehicle Navigation System (SANS). Storming Media, 2000.
Den vollen Inhalt der Quelle findenFanelli, Francesco. Development and Testing of Navigation Algorithms for Autonomous Underwater Vehicles. Springer, 2019.
Den vollen Inhalt der Quelle findenStanton, Neville, Patrick Langdon und Kirsten M. A. Revell. Designing Interaction and Interfaces for Automated Vehicles: User-Centred Ecological Design and Testing. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenStanton, Neville, Patrick Langdon und Kirsten M. A. Revell. Designing Interaction and Interfaces for Automated Vehicles: User-Centred Ecological Design and Testing. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenStanton, Neville, Patrick Langdon und Kirsten M. A. Revell. Designing Interaction and Interfaces for Automated Vehicles: User-Centred Ecological Design and Testing. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenDesigning Interaction and Interfaces for Automated Vehicles: User-Centred Ecological Design and Testing. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenTest and Evaluation of Aircraft Avionics and Weapon Systems. Scitech Publishing, 2014.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Autonomous vehicle testing"
Corey, Jonathan, und Heng Wei. „Autonomous Vehicle Testing“. In Disruptive Emerging Transportation Technologies, 105–38. Reston, VA: American Society of Civil Engineers, 2022. http://dx.doi.org/10.1061/9780784415986.ch3.
Der volle Inhalt der QuelleSoriano, Bernard C., Stephanie L. Dougherty, Brian G. Soublet und Kristin J. Triepke. „Regulations for Testing Autonomous Vehicles in California“. In Road Vehicle Automation 2, 29–33. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19078-5_3.
Der volle Inhalt der QuelleSolmaz, Selim, Franz Holzinger, Marlies Mischinger, Martin Rudigier und Jakob Reckenzaun. „Novel Hybrid-Testing Paradigms for Automated Vehicle and ADAS Function Development“. In Towards Connected and Autonomous Vehicle Highways, 193–228. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-66042-0_8.
Der volle Inhalt der QuellePataki, Márton, und Zsolt Szalay. „Development of an Advanced Durable Test Target for Autonomous Emergency Brake Testing“. In Vehicle and Automotive Engineering 3, 3–17. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9529-5_1.
Der volle Inhalt der QuelleGoetzl, Thomas, Sven Kopacz und Henrik Liebau. „Digital Twin Concepts for Autonomous and Electric Vehicle Testing“. In Proceedings, 73–80. Wiesbaden: Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-42236-3_6.
Der volle Inhalt der QuelleChucholowski, F., C. Gnandt, C. Hepperle und Sebastian Hafner. „Close to reality surrounding model for virtual testing of autonomous driving and ADAS“. In Advanced Vehicle Control AVEC’16, 85–92. CRC Press/Balkema, P.O. Box 11320, 2301 EH Leiden, The Netherlands, e-mail: Pub.NL@taylorandfrancis.com, www.crcpress.com – www.taylorandfrancis.com: Crc Press, 2016. http://dx.doi.org/10.1201/9781315265285-15.
Der volle Inhalt der QuelleSaraoğlu, Mustafa, Qihang Shi, Andrey Morozov und Klaus Janschek. „Virtual validation of autonomous vehicle safety through simulation-based testing“. In Proceedings, 419–34. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-29943-9_33.
Der volle Inhalt der QuelleJan, Qazi Hamza, Jan Markus Arnold Kleen und Karsten Berns. „Simulated Pedestrian Modelling for Reliable Testing of Autonomous Vehicle in Pedestrian Zones“. In Communications in Computer and Information Science, 290–307. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89170-1_15.
Der volle Inhalt der QuelleFernández, César Omar Chacón, Sergio Fernández Balaguer, Lucía Isasi de la Iglesia und Borja Gorriz Espinar. „Autonomous Bus Depot Management: Operator’s Lessons Learned and Cost Analysis Perspective“. In Lecture Notes in Mobility, 79–95. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-71793-2_6.
Der volle Inhalt der QuellePao, Wing Yi, Long Li, Joshua Howorth, Martin Agelin-Chaab, Langis Roy, Julian Knutzen, Alexis Baltazar y Jimenez und Klaus Muenker. „Wind Tunnel Testing Methodology for Autonomous Vehicle Optical Sensors in Adverse Weather Conditions“. In Proceedings, 13–39. Wiesbaden: Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-42236-3_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Autonomous vehicle testing"
Gómez, Gabriel, René Játiva und Gustavo Scaglia. „Commissioning and testing of an autonomous ground vehicle“. In 2024 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/colcaci63187.2024.10666545.
Der volle Inhalt der QuelleWang, Weijie, Houping Wu, Chundi Zheng, Tao Liang, Shaozhe Cui, Xikuai Xie, Guojin Feng, Haiyong Gan und Yingwei He. „Research on calibration method for optical characteristics of pedestrian targets in autonomous vehicle testing“. In Optoelectronics Testing and Measurement, herausgegeben von Sen Han, 15. SPIE, 2024. https://doi.org/10.1117/12.3047661.
Der volle Inhalt der QuelleSilva-Sassaman, Dinithi, Mingi Jeong, Paul Sassaman, Zitong Wu und Alberto Quattrini Li. „CataBotSim: A Realistic Aquatic Simulator for Autonomous Surface Vehicle Testing“. In 2024 Eighth IEEE International Conference on Robotic Computing (IRC), 202–9. IEEE, 2024. https://doi.org/10.1109/irc63610.2024.00043.
Der volle Inhalt der QuelleBatet, Gerard, David Sarria, Marta Real, Spartacus Gomariz, Joaquin Del Rio, Narcis Palomeras und Ivan Masmitja. „Testing autonomous underwater vehicle compatibility with bidirectional acoustic tags for biotelemetry“. In 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE), 824–29. IEEE, 2024. http://dx.doi.org/10.1109/case59546.2024.10711493.
Der volle Inhalt der QuelleHuang, Yuqi, Xiaoji Zhou, Deng Pan, Qiang Zhang, Jian Zhang, Yufei Chen und Chengjin Xiao. „Iterative Scenario Searching with PSO: Improving Simulation Efficiency for Autonomous Vehicle Testing“. In 2024 IEEE 22nd International Conference on Industrial Informatics (INDIN), 1–6. IEEE, 2024. https://doi.org/10.1109/indin58382.2024.10774382.
Der volle Inhalt der QuelleZhang, Zhiyuan, und Panagiotis Tsiotras. „BuzzRacer: A Palm-sized Autonomous Vehicle Platform for Testing Multi-Agent Adversarial Decision-Making“. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 8510–15. IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10802853.
Der volle Inhalt der QuelleGao, Hang, Zhen Liu, Xun Gong und Hong Chen. „Generation of Autonomous Vehicle Testing Trajectories for Cut-In Scenario Integrating Data and Kinematics“. In 2024 China Automation Congress (CAC), 4532–37. IEEE, 2024. https://doi.org/10.1109/cac63892.2024.10865443.
Der volle Inhalt der QuelleCompere, Marc, Garrett Holden, Otto Legon und Roberto Martinez Cruz. „MoVE: A Mobility Virtual Environment for Autonomous Vehicle Testing“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10936.
Der volle Inhalt der QuelleMitrović, Miloš, Dušan Opsenica, Uroš Stanojčić, Pavle Rađenović und Dragan Stamenković. „Autonomous vehicle testing – Serbia’s experience“. In 2023 31st Telecommunications Forum (TELFOR). IEEE, 2023. http://dx.doi.org/10.1109/telfor59449.2023.10372711.
Der volle Inhalt der QuelleAradi, Szilard, Tamas Becsi und Peter Gaspar. „Experimental vehicle development for testing autonomous vehicle functions“. In 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA). IEEE, 2014. http://dx.doi.org/10.1109/mesa.2014.6935534.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Autonomous vehicle testing"
Smith, Emma, Julie Webster und Annette Stumpf. Autonomous Transport Innovation : the regulatory environment of autonomous vehicles. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42025.
Der volle Inhalt der QuelleGross, Matthew, und Julie Webster. Autonomous Transport Innovation : a review of enabling technologies. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42028.
Der volle Inhalt der QuelleRolufs, Angela, Amelia Trout, Kevin Palmer, Clark Boriack, Bryan Brilhart und Annette Stumpf. Autonomous Transport Innovation (ATI) : integration of autonomous electric vehicles into a tactical microgrid. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42160.
Der volle Inhalt der QuelleParker, Michael, Alex Stott, Brian Quinn, Bruce Elder, Tate Meehan und Sally Shoop. Joint Chilean and US mobility testing in extreme environments. Engineer Research and Development Center (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42362.
Der volle Inhalt der QuelleWebster, Julie, Emma Smith, Annette Stumpf und Megan Fuhler. Autonomous vehicle testing : a survey of commercial test sites and features. Engineer Research and Development Center (U.S.), März 2024. http://dx.doi.org/10.21079/11681/48334.
Der volle Inhalt der QuelleRolufs, Angela, Amelia Trout, Kevin Palmer, Clark Boriack, Bryan Brilhart und Annette Stumpf. Integration of autonomous electric transport vehicles into a tactical microgrid : final report. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42007.
Der volle Inhalt der QuelleWang, Shenlong, und David Forsyth. Safely Test Autonomous Vehicles with Augmented Reality. Illinois Center for Transportation, August 2022. http://dx.doi.org/10.36501/0197-9191/22-015.
Der volle Inhalt der QuelleDunn, Stanley E. The Enhancement of Autonomous Marine Vehicle Testing in the South Florida Testing Facility Range. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada629859.
Der volle Inhalt der QuelleMorison, James H. Testing of the Autonomous Microconductivity - Temperature Vehicle and a Direct Technique for the Determination of Turbulent Fluxes With Autonomous Underwater Vehicles. Fort Belvoir, VA: Defense Technical Information Center, Juni 2003. http://dx.doi.org/10.21236/ada414847.
Der volle Inhalt der QuelleMorison, James H. Testing of the Autonomous Microconductivity-Temperature Vehicle and a Direct Technique for the Determination of Turbulent Fluxes with Autonomous Underwater Vehicles. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada629666.
Der volle Inhalt der Quelle