Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Autonomous and highly oscillatory differential equations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Autonomous and highly oscillatory differential equations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Autonomous and highly oscillatory differential equations"
DAVIDSON, B. D., und D. E. STEWART. „A NUMERICAL HOMOTOPY METHOD AND INVESTIGATIONS OF A SPRING-MASS SYSTEM“. Mathematical Models and Methods in Applied Sciences 03, Nr. 03 (Juni 1993): 395–416. http://dx.doi.org/10.1142/s0218202593000217.
Der volle Inhalt der QuellePhilos, Ch G., I. K. Purnaras und Y. G. Sficas. „ON THE BEHAVIOUR OF THE OSCILLATORY SOLUTIONS OF SECOND-ORDER LINEAR UNSTABLE TYPE DELAY DIFFERENTIAL EQUATIONS“. Proceedings of the Edinburgh Mathematical Society 48, Nr. 2 (23.05.2005): 485–98. http://dx.doi.org/10.1017/s0013091503000993.
Der volle Inhalt der QuelleOgorodnikova, S., und F. Sadyrbaev. „MULTIPLE SOLUTIONS OF NONLINEAR BOUNDARY VALUE PROBLEMS WITH OSCILLATORY SOLUTIONS“. Mathematical Modelling and Analysis 11, Nr. 4 (31.12.2006): 413–26. http://dx.doi.org/10.3846/13926292.2006.9637328.
Der volle Inhalt der QuelleCondon, Marissa, Alfredo Deaño und Arieh Iserles. „On second-order differential equations with highly oscillatory forcing terms“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, Nr. 2118 (13.01.2010): 1809–28. http://dx.doi.org/10.1098/rspa.2009.0481.
Der volle Inhalt der QuelleSanz-Serna, J. M. „Mollified Impulse Methods for Highly Oscillatory Differential Equations“. SIAM Journal on Numerical Analysis 46, Nr. 2 (Januar 2008): 1040–59. http://dx.doi.org/10.1137/070681636.
Der volle Inhalt der QuellePetzold, Linda R., Laurent O. Jay und Jeng Yen. „Numerical solution of highly oscillatory ordinary differential equations“. Acta Numerica 6 (Januar 1997): 437–83. http://dx.doi.org/10.1017/s0962492900002750.
Der volle Inhalt der QuelleCohen, David, Ernst Hairer und Christian Lubich. „Modulated Fourier Expansions of Highly Oscillatory Differential Equations“. Foundations of Computational Mathematics 3, Nr. 4 (01.10.2003): 327–45. http://dx.doi.org/10.1007/s10208-002-0062-x.
Der volle Inhalt der QuelleCondon, M., A. Iserles und S. P. Nørsett. „Differential equations with general highly oscillatory forcing terms“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, Nr. 2161 (08.01.2014): 20130490. http://dx.doi.org/10.1098/rspa.2013.0490.
Der volle Inhalt der QuelleHerrmann, L. „Oscillatory Solutions of Some Autonomous Partial Differential Equations with a Parameter“. Journal of Mathematical Sciences 236, Nr. 3 (01.12.2018): 367–75. http://dx.doi.org/10.1007/s10958-018-4117-1.
Der volle Inhalt der QuelleChartier, Philippe, Joseba Makazaga, Ander Murua und Gilles Vilmart. „Multi-revolution composition methods for highly oscillatory differential equations“. Numerische Mathematik 128, Nr. 1 (17.01.2014): 167–92. http://dx.doi.org/10.1007/s00211-013-0602-0.
Der volle Inhalt der QuelleDissertationen zum Thema "Autonomous and highly oscillatory differential equations"
Bouchereau, Maxime. „Modélisation de phénomènes hautement oscillants par réseaux de neurones“. Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS034.
Der volle Inhalt der QuelleThis thesis focuses on the application of Machine Learning to the study of highly oscillatory differential equations. More precisely, we are interested in an approach to accurately approximate the solution of a differential equation with the least amount of computations, using neural networks. First, the autonomous case is studied, where the proper- ties of backward analysis and neural networks are used to enhance existing numerical methods. Then, a generalization to the strongly oscillating case is proposed to improve a specific first-order numerical scheme tailored to this scenario. Subsequently, neural networks are employed to replace the necessary pre- computations for implementing uniformly ac- curate numerical methods to approximate so- lutions of strongly oscillating equations. This can be done either by building upon the work done for the autonomous case or by using a neural network structure that directly incorporates the equation’s structure
Khanamiryan, Marianna. „Numerical methods for systems of highly oscillatory ordinary differential equations“. Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/226323.
Der volle Inhalt der QuelleKanat, Bengi Tanoğlu Gamze. „Numerical Solution of Highly Oscillatory Differential Equations By Magnus Series Method/“. [s.l.]: [s.n.], 2006. http://library.iyte.edu.tr/tezler/master/matematik/T000572.pdf.
Der volle Inhalt der QuelleBréhier, Charles-Edouard. „Numerical analysis of highly oscillatory Stochastic PDEs“. Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00824693.
Der volle Inhalt der QuelleBücher zum Thema "Autonomous and highly oscillatory differential equations"
Wu, Xinyuan, und Bin Wang. Geometric Integrators for Differential Equations with Highly Oscillatory Solutions. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7.
Der volle Inhalt der QuelleSchütte, Christof. A quasiresonant smoothing algorithm for solving large highly oscillatory differential equations from quantum chemistry. Aachen: Verlag Shaker, 1994.
Den vollen Inhalt der Quelle findenBin, Wang, und Xinyuan Wu. Geometric Integrators for Differential Equations with Highly Oscillatory Solutions. Springer Singapore Pte. Limited, 2021.
Den vollen Inhalt der Quelle findenBin, Wang, und Xinyuan Wu. Geometric Integrators for Differential Equations with Highly Oscillatory Solutions. Springer, 2022.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Autonomous and highly oscillatory differential equations"
Hairer, Ernst, Gerhard Wanner und Christian Lubich. „Highly Oscillatory Differential Equations“. In Springer Series in Computational Mathematics, 407–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05018-7_13.
Der volle Inhalt der QuelleWu, Xinyuan, Xiong You und Bin Wang. „Effective Methods for Highly Oscillatory Second-Order Nonlinear Differential Equations“. In Structure-Preserving Algorithms for Oscillatory Differential Equations, 185–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35338-3_8.
Der volle Inhalt der QuelleLe Bris, Claude, Frédéric Legoll und Alexei Lozinski. „MsFEM à la Crouzeix-Raviart for Highly Oscillatory Elliptic Problems“. In Partial Differential Equations: Theory, Control and Approximation, 265–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41401-5_11.
Der volle Inhalt der QuelleWu, Xinyuan, Kai Liu und Wei Shi. „Improved Filon-Type Asymptotic Methods for Highly Oscillatory Differential Equations“. In Structure-Preserving Algorithms for Oscillatory Differential Equations II, 53–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48156-1_3.
Der volle Inhalt der QuelleWu, Xinyuan, Kai Liu und Wei Shi. „Error Analysis of Explicit TSERKN Methods for Highly Oscillatory Systems“. In Structure-Preserving Algorithms for Oscillatory Differential Equations II, 175–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48156-1_8.
Der volle Inhalt der QuelleWu, Xinyuan, und Bin Wang. „Symplectic Approximations for Efficiently Solving Semilinear KG Equations“. In Geometric Integrators for Differential Equations with Highly Oscillatory Solutions, 351–91. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7_11.
Der volle Inhalt der QuelleWu, Xinyuan, Kai Liu und Wei Shi. „Highly Accurate Explicit Symplectic ERKN Methods for Multi-frequency Oscillatory Hamiltonian Systems“. In Structure-Preserving Algorithms for Oscillatory Differential Equations II, 193–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48156-1_9.
Der volle Inhalt der QuelleWu, Xinyuan, und Bin Wang. „Energy-Preserving Schemes for High-Dimensional Nonlinear KG Equations“. In Geometric Integrators for Differential Equations with Highly Oscillatory Solutions, 263–97. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7_9.
Der volle Inhalt der QuelleWu, Xinyuan, und Bin Wang. „Linearly-Fitted Conservative (Dissipative) Schemes for Nonlinear Wave Equations“. In Geometric Integrators for Differential Equations with Highly Oscillatory Solutions, 235–61. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7_8.
Der volle Inhalt der QuelleBensoussan, Alain. „Homogenization for Non Linear Elliptic Equations with Random Highly Oscillatory Coefficients“. In Partial Differential Equations and the Calculus of Variations, 93–133. Boston, MA: Birkhäuser Boston, 1989. http://dx.doi.org/10.1007/978-1-4684-9196-8_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Autonomous and highly oscillatory differential equations"
Kuo, Chi-Wei, und C. Steve Suh. „On Controlling Non-Autonomous Time-Delay Feedback Systems“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51128.
Der volle Inhalt der QuelleFeng, Dehua, Frederick Ferguson, Yang Gao und Xinru Niu. „Investigating the Start-Up Structures and Their Evolution Within an Under-Expanded Jet Flows“. In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-113767.
Der volle Inhalt der Quelle