Zeitschriftenartikel zum Thema „Automotive Aftertreatment system“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Automotive Aftertreatment system" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Kang, Jun-Mo, Ilya Kolmanovsky und J. W. Grizzle. „Dynamic Optimization of Lean Burn Engine Aftertreatment“. Journal of Dynamic Systems, Measurement, and Control 123, Nr. 2 (13.06.2000): 153–60. http://dx.doi.org/10.1115/1.1368114.
Der volle Inhalt der QuelleJung, Jong Hwa, und Geun Sik Lee. „The Inlet Shape Optimization of Aftertreatment System for Automotive Vehicle with Adjoint Optimization“. Transaction of The Korean Society of Automotive Engineers 26, Nr. 1 (01.01.2018): 60–66. http://dx.doi.org/10.7467/ksae.2018.26.1.060.
Der volle Inhalt der QuelleDevarakonda, M., G. Parker, J. H. Johnson und V. Strots. „Model-based control system design in a urea-SCR aftertreatment system based on NH3 sensor feedback“. International Journal of Automotive Technology 10, Nr. 6 (Dezember 2009): 653–62. http://dx.doi.org/10.1007/s12239-009-0077-2.
Der volle Inhalt der QuelleGosala, Dheeraj B., Aswin K. Ramesh, Cody M. Allen, Mrunal C. Joshi, Alexander H. Taylor, Matthew Van Voorhis, Gregory M. Shaver et al. „Diesel engine aftertreatment warm-up through early exhaust valve opening and internal exhaust gas recirculation during idle operation“. International Journal of Engine Research 19, Nr. 7 (20.09.2017): 758–73. http://dx.doi.org/10.1177/1468087417730240.
Der volle Inhalt der QuelleSchröder, Jörg, Franziska Hartmann, Robert Eschrich, Denis Worch, Jürgen Böhm, Roger Gläser und Franziska Müller-Langer. „Accelerated performance and durability test of the exhaust aftertreatment system by contaminated biodiesel“. International Journal of Engine Research 18, Nr. 10 (03.04.2017): 1067–76. http://dx.doi.org/10.1177/1468087417700762.
Der volle Inhalt der QuelleUeda, M. „A new optimizing technique of a diesel engine aftertreatment system using HC DeNox catalyst“. JSAE Review 24, Nr. 1 (Januar 2003): 47–51. http://dx.doi.org/10.1016/s0389-4304(02)00249-7.
Der volle Inhalt der QuelleStiglic, P., J. Hardy und B. Gabelman. „Control Considerations for an On-Line, Active Regeneration System for Diesel Particulate Traps“. Journal of Engineering for Gas Turbines and Power 111, Nr. 3 (01.07.1989): 404–9. http://dx.doi.org/10.1115/1.3240269.
Der volle Inhalt der QuelleUpadhyay, Devesh, und Michiel Van Nieuwstadt. „Model Based Analysis and Control Design of a Urea-SCR deNOx Aftertreatment System“. Journal of Dynamic Systems, Measurement, and Control 128, Nr. 3 (02.06.2005): 737–41. http://dx.doi.org/10.1115/1.2234494.
Der volle Inhalt der QuelleVos, Kalen R., Gregory M. Shaver, Mrunal C. Joshi und James McCarthy. „Implementing variable valve actuation on a diesel engine at high-speed idle operation for improved aftertreatment warm-up“. International Journal of Engine Research 21, Nr. 7 (16.10.2019): 1134–46. http://dx.doi.org/10.1177/1468087419880639.
Der volle Inhalt der QuelleKumakura, H., M. Sasaki, D. Suzuki und H. Ichikawa. „Development of a Low-Emission Combustor for a 100-kW Automotive Ceramic Gas Turbine (II)“. Journal of Engineering for Gas Turbines and Power 118, Nr. 1 (01.01.1996): 167–72. http://dx.doi.org/10.1115/1.2816534.
Der volle Inhalt der QuelleBIELACZYC, Piotr, Joseph WOODBURN und Ameya JOSHI. „World-wide trends in powertrain system development in light of emissions legislation, fuels, lubricants, and test methods“. Combustion Engines 184, Nr. 1 (30.03.2021): 57–71. http://dx.doi.org/10.19206/ce-134785.
Der volle Inhalt der QuelleBIELACZYC, Piotr, Andrzej SZCZOTKA, Piotr PAJDOWSKI und Joseph WOODBURN. „Development of automotive emissions testing equipment and test methods in response to legislative, technical and commercial requirements“. Combustion Engines 152, Nr. 1 (01.02.2013): 28–41. http://dx.doi.org/10.19206/ce-117010.
Der volle Inhalt der QuelleMassaguer, A., E. Massaguer, J. Ximinis, T. Pujol, M. Comamala, L. Montoro, J. R. González, P. Fernández-Yañez und O. Armas. „Analysis of an automotive thermoelectric generator coupled to an electric exhaust heater to reduce NOx emissions in a Diesel-powered Euro VI Heavy Duty vehicle“. Renewable Energy and Power Quality Journal 19 (September 2021): 407–12. http://dx.doi.org/10.24084/repqj19.305.
Der volle Inhalt der QuelleLapuerta, Magín, Ángel Ramos, David Fernández-Rodríguez und Inmaculada González-García. „High-pressure versus low-pressure exhaust gas recirculation in a Euro 6 diesel engine with lean-NOx trap: Effectiveness to reduce NOx emissions“. International Journal of Engine Research 20, Nr. 1 (16.12.2018): 155–63. http://dx.doi.org/10.1177/1468087418817447.
Der volle Inhalt der QuelleJohannessen, Tue, Henning Schmidt, Anne Mette Frey und Claus Hviid Christensen. „Improved Automotive NO x Aftertreatment System: Metal Ammine Complexes as NH3 Source for SCR Using Fe-Containing Zeolite Catalysts“. Catalysis Letters 128, Nr. 1-2 (09.01.2009): 94–100. http://dx.doi.org/10.1007/s10562-008-9809-6.
Der volle Inhalt der QuellePielecha, Jacek, und Maciej Gis. „The use of the mild hybrid system in vehicles with regard to exhaust emissions and their environmental impact“. Archives of Transport 55, Nr. 3 (30.09.2020): 41–50. http://dx.doi.org/10.5604/01.3001.0014.4229.
Der volle Inhalt der QuelleMa, Yao, und Junmin Wang. „Integrated Power Management and Aftertreatment System Control for Hybrid Electric Vehicles With Road Grade Preview“. IEEE Transactions on Vehicular Technology 66, Nr. 12 (Dezember 2017): 10935–45. http://dx.doi.org/10.1109/tvt.2017.2763587.
Der volle Inhalt der QuelleJoshi, Mrunal C., Dheeraj Gosala, Gregory M. Shaver, James McCarthy und Lisa Farrell. „Exhaust valve profile modulation for improved diesel engine curb idle aftertreatment thermal management“. International Journal of Engine Research 22, Nr. 10 (09.04.2021): 3179–95. http://dx.doi.org/10.1177/1468087420969101.
Der volle Inhalt der QuelleGuan, Wei, Vinícius B. Pedrozo, Hua Zhao, Zhibo Ban und Tiejian Lin. „Variable valve actuation–based combustion control strategies for efficiency improvement and emissions control in a heavy-duty diesel engine“. International Journal of Engine Research 21, Nr. 4 (26.04.2019): 578–91. http://dx.doi.org/10.1177/1468087419846031.
Der volle Inhalt der QuelleGuan, Wei, Vinícius B. Pedrozo, Hua Zhao, Zhibo Ban und Tiejian Lin. „Miller cycle combined with exhaust gas recirculation and post–fuel injection for emissions and exhaust gas temperature control of a heavy-duty diesel engine“. International Journal of Engine Research 21, Nr. 8 (20.02.2019): 1381–97. http://dx.doi.org/10.1177/1468087419830019.
Der volle Inhalt der QuelleWojnar, Sławomir, Tomáš Polóni, Peter Šimončič, Boris Rohal̓-Ilkiv, Marek Honek und Jozef Csambál. „Real-time implementation of multiple model based predictive control strategy to air/fuel ratio of a gasoline engine“. Archives of Control Sciences 23, Nr. 1 (01.03.2013): 93–106. http://dx.doi.org/10.2478/v10170-011-0044-9.
Der volle Inhalt der QuelleWang, Buyu, Michael Pamminger, Ryan Vojtech und Thomas Wallner. „Impact of injection strategies on combustion characteristics, efficiency and emissions of gasoline compression ignition operation in a heavy-duty multi-cylinder engine“. International Journal of Engine Research 21, Nr. 8 (25.09.2018): 1426–40. http://dx.doi.org/10.1177/1468087418801660.
Der volle Inhalt der QuelleFranken, Tim, Fabian Mauss, Lars Seidel, Maike Sophie Gern, Malte Kauf, Andrea Matrisciano und Andre Casal Kulzer. „Gasoline engine performance simulation of water injection and low-pressure exhaust gas recirculation using tabulated chemistry“. International Journal of Engine Research 21, Nr. 10 (04.07.2020): 1857–77. http://dx.doi.org/10.1177/1468087420933124.
Der volle Inhalt der QuelleMotroniuk, Iurii, Radoslaw Królak, Ralf Stöber und Gerhard Fischerauer. „Wireless communication-based state estimation of automotive aftertreatment systems“. Measurement 106 (August 2017): 245–50. http://dx.doi.org/10.1016/j.measurement.2016.08.004.
Der volle Inhalt der QuelleBIELACZYC, Piotr, und Joseph WOODBURN. „Analysis of current and future trends in automotive emissions, fuels, lubricants and test methods“. Combustion Engines 147, Nr. 4 (01.11.2011): 104–18. http://dx.doi.org/10.19206/ce-117084.
Der volle Inhalt der QuelleBernal, S., G. Blanco, J. J. Calvino, J. M. Gatica, J. A. Pérez Omil und J. M. Pintado. „Characterisation of Three-Way Automotive Aftertreatment Catalysts and Related Model Systems“. Topics in Catalysis 28, Nr. 1-4 (April 2004): 31–45. http://dx.doi.org/10.1023/b:toca.0000024332.95053.0a.
Der volle Inhalt der QuelleSoleimani, Morteza, Felician Campean und Daniel Neagu. „Reliability Challenges for Automotive Aftertreatment Systems: a State-of-the-art Perspective“. Procedia Manufacturing 16 (2018): 75–82. http://dx.doi.org/10.1016/j.promfg.2018.10.174.
Der volle Inhalt der QuelleSun, Jing, Yong Wha Kim und Leyi Wang. „Aftertreatment control and adaptation for automotive lean burn engines with HEGO sensors“. International Journal of Adaptive Control and Signal Processing 18, Nr. 2 (März 2004): 145–66. http://dx.doi.org/10.1002/acs.786.
Der volle Inhalt der QuelleStröm, Henrik, Jonas Sjöblom, Ananda Subramani Kannan, Houman Ojagh, Oskar Sundborg und Jan Koegler. „Near-wall dispersion, deposition and transformation of particles in automotive exhaust gas aftertreatment systems“. International Journal of Heat and Fluid Flow 70 (April 2018): 171–80. http://dx.doi.org/10.1016/j.ijheatfluidflow.2018.02.013.
Der volle Inhalt der QuelleBromberg, L., D. R. Cohn und A. Rabinovich. „Plasmatron fuel converter-catalyst systems for aftertreatment of diesel vehicle emissions“. International Journal of Vehicle Design 25, Nr. 4 (2001): 275. http://dx.doi.org/10.1504/ijvd.2001.005202.
Der volle Inhalt der QuellePontikakis, G. N., G. S. Konstantas und A. M. Stamatelos. „Three-Way Catalytic Converter Modeling as a Modern Engineering Design Tool“. Journal of Engineering for Gas Turbines and Power 126, Nr. 4 (01.10.2004): 906–23. http://dx.doi.org/10.1115/1.1787506.
Der volle Inhalt der QuelleNova, Isabella, Massimo Colombo, Enrico Tronconi, Volker Schmeisser, Brigitte Bandl-Konrad und Lisa Zimmermann. „Experimental and Modelling Study of a Dual-Layer NH3 Slip Monolith Catalyst for Automotive SCR Aftertreatment Systems“. Topics in Catalysis 56, Nr. 1-8 (26.02.2013): 227–31. http://dx.doi.org/10.1007/s11244-013-9957-9.
Der volle Inhalt der QuelleHagen, Gunter, Christoph Spannbauer, Markus Feulner, Jaroslaw Kita, Andreas Müller und Ralf Moos. „Conductometric Soot Sensors: Internally Caused Thermophoresis as an Important Undesired Side Effect“. Sensors 18, Nr. 10 (19.10.2018): 3531. http://dx.doi.org/10.3390/s18103531.
Der volle Inhalt der QuelleBIELACZYC, Piotr, und Joseph WOODBURN. „Global trends in emissions regulation and reduction (perspectives from the 1st International Exhaust Emissions Symposium)“. Combustion Engines 142, Nr. 3 (01.07.2010): 3–27. http://dx.doi.org/10.19206/ce-117132.
Der volle Inhalt der QuelleHerrmann, Julia, Gunter Hagen, Jaroslaw Kita, Frank Noack, Dirk Bleicker und Ralf Moos. „Multi-gas sensor to detect simultaneously nitrogen oxides and oxygen“. Journal of Sensors and Sensor Systems 9, Nr. 2 (09.10.2020): 327–35. http://dx.doi.org/10.5194/jsss-9-327-2020.
Der volle Inhalt der QuelleLeach, FCP, MH Davy und MS Peckham. „Cyclic NO2:NOx ratio from a diesel engine undergoing transient load steps“. International Journal of Engine Research 22, Nr. 1 (26.02.2019): 284–94. http://dx.doi.org/10.1177/1468087419833202.
Der volle Inhalt der QuelleVagnoni, Giovanni, Markus Eisenbarth, Jakob Andert, Giuseppe Sammito, Joschka Schaub, Michael Reke und Michael Kiausch. „Smart rule-based diesel engine control strategies by means of predictive driving information“. International Journal of Engine Research 20, Nr. 10 (12.03.2019): 1047–58. http://dx.doi.org/10.1177/1468087419835696.
Der volle Inhalt der QuelleColombo, Massimo, Isabella Nova, Enrico Tronconi, Volker Schmeißer, Brigitte Bandl-Konrad und Lisa Zimmermann. „Experimental and modeling study of a dual-layer (SCR+PGM) NH3 slip monolith catalyst (ASC) for automotive SCR aftertreatment systems. Part 1. Kinetics for the PGM component and analysis of SCR/PGM interactions“. Applied Catalysis B: Environmental 142-143 (Oktober 2013): 861–76. http://dx.doi.org/10.1016/j.apcatb.2012.10.031.
Der volle Inhalt der QuelleGuan, Wei, Hua Zhao, Zhibo Ban und Tiejian Lin. „Exploring alternative combustion control strategies for low-load exhaust gas temperature management of a heavy-duty diesel engine“. International Journal of Engine Research 20, Nr. 4 (07.02.2018): 381–92. http://dx.doi.org/10.1177/1468087418755586.
Der volle Inhalt der QuelleClaßen, Johannes, Sascha Krysmon, Frank Dorscheidt, Stefan Sterlepper und Stefan Pischinger. „Real Driving Emission Calibration—Review of Current Validation Methods against the Background of Future Emission Legislation“. Applied Sciences 11, Nr. 12 (11.06.2021): 5429. http://dx.doi.org/10.3390/app11125429.
Der volle Inhalt der QuelleKamp, Carl J., Alexander G. Sappok und Victor W. Wong. „Focused Ion Beam (FIB) Milling and Automotive Catalysis Aging: A Novel Approach for the Direct Observation of Interfacial and Sub-Surface Chemical and Structural Properties Relevant to Catalyst Aging and Functionality“. MRS Proceedings 1641 (2014). http://dx.doi.org/10.1557/opl.2014.322.
Der volle Inhalt der QuelleTaylor, Alexander H., Troy E. Odstrcil, Aswin K. Ramesh, Gregory M. Shaver, Edward Koeberlein, Lisa Farrell und James McCarthy. „Model-based compressor surge avoidance algorithm for internal combustion engines utilizing cylinder deactivation during motoring conditions“. International Journal of Engine Research, 29.10.2019, 146808741988347. http://dx.doi.org/10.1177/1468087419883477.
Der volle Inhalt der QuelleBermúdez, Vicente, Santiago Ruiz, Brayan Conde und Lian Soto. „Analysis of the aftertreatment performance in HD-SI engine fueled with LPG“. International Journal of Engine Research, 22.09.2021, 146808742110481. http://dx.doi.org/10.1177/14680874211048138.
Der volle Inhalt der QuellePla, Benjamin, Pedro Piqueras, Pau Bares und André Aronis. „Simultaneous NOx and NH3 slip prediction in a SCR catalyst under real driving conditions including potential urea injection failures“. International Journal of Engine Research, 02.04.2021, 146808742110076. http://dx.doi.org/10.1177/14680874211007646.
Der volle Inhalt der QuelleMoscherosch, Benjamin W., Christopher J. Polonowski, Scott A. Miers und Jeffrey D. Naber. „Combustion and Emissions Characterization of Soy Methyl Ester Biodiesel Blends in an Automotive Turbocharged Diesel Engine“. Journal of Engineering for Gas Turbines and Power 132, Nr. 9 (18.06.2010). http://dx.doi.org/10.1115/1.4000607.
Der volle Inhalt der QuelleMartin, Jonathan, und André Boehman. „Mapping the combustion modes of a dual-fuel compression ignition engine“. International Journal of Engine Research, 20.05.2021, 146808742110183. http://dx.doi.org/10.1177/14680874211018376.
Der volle Inhalt der QuelleWang, Guoyang, Jinzhu Qi, Shiyu Liu, Yanfei Li, Shijin Shuai und Zhiming Wang. „Zonal control for selective catalytic reduction system using a model-based multi-objective genetic algorithm“. International Journal of Engine Research, 11.09.2019, 146808741987459. http://dx.doi.org/10.1177/1468087419874597.
Der volle Inhalt der QuelleKamath, Rohith, Richard Kopold, Vivek Venkobarao und CK Subramaniam. „Development and validation of nonlinear dynamic engine airpath models for real-time advanced control application“. International Journal of Engine Research, 06.08.2021, 146808742110377. http://dx.doi.org/10.1177/14680874211037766.
Der volle Inhalt der QuelleBermúdez, Vicente, José Ramón Serrano, Pedro Piqueras und Bárbara Diesel. „Fuel consumption and aftertreatment thermal management synergy in compression ignition engines at variable altitude and ambient temperature“. International Journal of Engine Research, 22.07.2021, 146808742110350. http://dx.doi.org/10.1177/14680874211035015.
Der volle Inhalt der QuelleWoodburn, Joseph. „Emissions of reactive nitrogen compounds (RNCs) from two vehicles with turbo-charged spark ignition engines over cold start driving cycles“. Combustion Engines, 22.04.2021. http://dx.doi.org/10.19206/ce-135811.
Der volle Inhalt der Quelle