Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Automorphic periods“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Automorphic periods" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Automorphic periods"
Jacquet, Hervé, Erez Lapid und Jonathan Rogawski. „Periods of automorphic forms“. Journal of the American Mathematical Society 12, Nr. 1 (1999): 173–240. http://dx.doi.org/10.1090/s0894-0347-99-00279-9.
Der volle Inhalt der QuelleFrahm, Jan, und Feng Su. „Upper bounds for geodesic periods over rank one locally symmetric spaces“. Forum Mathematicum 30, Nr. 5 (01.09.2018): 1065–77. http://dx.doi.org/10.1515/forum-2017-0185.
Der volle Inhalt der QuelleZelditch, Steven. „geodesic periods of automorphic forms“. Duke Mathematical Journal 56, Nr. 2 (April 1988): 295–344. http://dx.doi.org/10.1215/s0012-7094-88-05613-x.
Der volle Inhalt der QuelleYamana, Shunsuke. „Periods of residual automorphic forms“. Journal of Functional Analysis 268, Nr. 5 (März 2015): 1078–104. http://dx.doi.org/10.1016/j.jfa.2014.11.009.
Der volle Inhalt der QuelleIchino, Atsushi, und Shunsuke Yamana. „Periods of automorphic forms: the case of“. Compositio Mathematica 151, Nr. 4 (13.11.2014): 665–712. http://dx.doi.org/10.1112/s0010437x14007362.
Der volle Inhalt der QuelleLee, Min Ho. „Mixed automorphic forms and differential equations“. International Journal of Mathematics and Mathematical Sciences 13, Nr. 4 (1990): 661–68. http://dx.doi.org/10.1155/s0161171290000916.
Der volle Inhalt der QuelleDaughton, Austin. „A Hecke correspondence theorem for automorphic integrals with infinite log-polynomial sum period functions“. International Journal of Number Theory 10, Nr. 07 (09.09.2014): 1857–79. http://dx.doi.org/10.1142/s1793042114500596.
Der volle Inhalt der QuelleYamana, Shunsuke. „PERIODS OF AUTOMORPHIC FORMS: THE TRILINEAR CASE“. Journal of the Institute of Mathematics of Jussieu 17, Nr. 1 (26.10.2015): 59–74. http://dx.doi.org/10.1017/s1474748015000377.
Der volle Inhalt der QuelleZYDOR, Michal. „Periods of automorphic forms over reductive subgroups“. Annales scientifiques de l'École Normale Supérieure 55, Nr. 1 (2022): 141–83. http://dx.doi.org/10.24033/asens.2493.
Der volle Inhalt der QuelleSharp, Richard. „Closed Geodesics and Periods of Automorphic Forms“. Advances in Mathematics 160, Nr. 2 (Juni 2001): 205–16. http://dx.doi.org/10.1006/aima.2001.1987.
Der volle Inhalt der QuelleDissertationen zum Thema "Automorphic periods"
Daughton, Austin James Chinault. „Hecke Correspondence for Automorphic Integrals with Infinite Log-Polynomial Periods“. Diss., Temple University Libraries, 2012. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/162078.
Der volle Inhalt der QuellePh.D.
Since Hecke first proved his correspondence between Dirichlet series with functional equations and automorphic forms, there have been a great number of generalizations. Of particular interest is a generalization due to Bochner that gives a correspondence between Dirichlet series with any finite number of poles that satisfy the classical functional equation and automorphic integrals with (finite) log-polynomial sum period functions. In this dissertation, we extend Bochner's result to Dirichlet series with finitely many essential singularities. With some restrictions on the underlying group and the weight, we also prove a correspondence for Dirichlet series with infinitely many poles. For this second correspondence, we provide a technique to approximate automorphic integrals with infinite log-polynomial sum period functions by automorphic integrals with finite log-polynomial period functions.
Temple University--Theses
Menes, Thibaut. „Grandes valeurs des formes de Maass sur des quotients compacts de grassmanniennes hyperboliques dans l’aspect volume“. Electronic Thesis or Diss., Paris 13, 2024. http://www.theses.fr/2024PA131059.
Der volle Inhalt der QuelleLet n > m = 1 be integers such that n + m >= 4 is even. We prove the existence, in the volume aspect, of exceptional Maass forms on compact quotients of the hyperbolic Grassmannian of signature (n,m). The method builds upon the work of Rudnick and Sarnak, extended by Donnelly and then generalized by Brumley and Marshall to higher rank. It combines a counting argument with a period relation, showingthat a certain period distinguishes theta lifts from an auxiliary group. The congruence structure is defined with respect to this period and the auxiliary group is either U(m,m) or Sp_2m(R), making (U(n,m),U(m,m)) or (O(n,m),Sp_2m(R)) a type 1 dual reductive pair. The lower bound is naturally expressed, up to a logarithmic factor, as the ratio of the volumes, with the principal congruence structure on the auxiliary group
Corbett, Andrew James. „Period integrals and L-functions in the theory of automorphic forms“. Thesis, University of Bristol, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.723463.
Der volle Inhalt der QuelleDimbour, William. „Solutions presque automorphes et S asymptotiquement ω– périodiques pour une classe d’équations d’évolution“. Thesis, Antilles-Guyane, 2013. http://www.theses.fr/2013AGUY0599/document.
Der volle Inhalt der QuelleThis thesis deals with the study of evolution equations and differential equations with piecewise constant argument. Studies of such equations were motivated by the fact that they represent a hybrid of discrete and continuous dynamical systems and combine the properties of both differential and differential-difference equations. We study the existence of almost automorphic solutions and S asymptotically omega periodic solution of evolution equations and differential equations with piecewise constant argument. The study of almost automorphic and S asymptotically omega periodic functions is motivated by the fact that these functions generalize the concept of periodic functions. Therefore, we obtain results about existence and unicity of almost automorphic and S asymptotic omega periodic solution of evolution equations. We will study this problem considering evolution equations who belong to a class of differential equation with piecewise constant argument
Boudjema, Souhila. „OSCILLATIONS DANS DES ÉQUATIONS DE LIÉNARD ET DES ÉQUATIONS D'ÉVOLUTION SEMI-LINÉAIRES“. Phd thesis, Université Panthéon-Sorbonne - Paris I, 2013. http://tel.archives-ouvertes.fr/tel-00903302.
Der volle Inhalt der QuelleWalls, Patrick. „The Theta Correspondence and Periods of Automorphic Forms“. Thesis, 2013. http://hdl.handle.net/1807/43752.
Der volle Inhalt der QuelleBücher zum Thema "Automorphic periods"
D, Goldfeld, Hrsg. Collected works of Hervé Jacquet. Providence, R.I: American Mathematical Society, 2011.
Den vollen Inhalt der Quelle findenN'Guerekata, Gaston M. Almost Automorphic and Almost Periodic Functions in Abstract Spaces. Boston, MA: Springer US, 2001.
Den vollen Inhalt der Quelle finden1938-, Griffiths Phillip, und Kerr Matthew D. 1975-, Hrsg. Hodge theory, complex geometry, and representation theory. Providence, Rhode Island: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 2013.
Den vollen Inhalt der Quelle findenPeriods and Harmonic Analysis on Spherical Varieties. Societe Mathematique De France, 2018.
Den vollen Inhalt der Quelle findenDiagana, Toka. Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. Springer, 2013.
Den vollen Inhalt der Quelle findenAlmost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. Springer, 2013.
Den vollen Inhalt der Quelle findenDiagana, Toka. Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. Springer, 2015.
Den vollen Inhalt der Quelle findenDiagana, Toka. Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. Springer London, Limited, 2013.
Den vollen Inhalt der Quelle findenNekrashevych, Volodymyr. Groups and Topological Dynamics. American Mathematical Society, 2022.
Den vollen Inhalt der Quelle findenGroups and Topological Dynamics. American Mathematical Society, 2022.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Automorphic periods"
Dou, Ze-Li, und Qiao Zhang. „Periods of automorphic forms“. In Six Short Chapters on Automorphic Forms and L-functions, 17–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28708-4_2.
Der volle Inhalt der QuelleShimura, Goro. „Automorphic forms and the periods of abelian varieties“. In Collected Papers, 115–46. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4612-2060-2_4.
Der volle Inhalt der QuelleShimura, Goro. „The periods of certain automorphic forms of arithmetic type“. In Collected Papers, 360–87. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4612-2060-2_12.
Der volle Inhalt der QuelleCornelissen, Gunther, und Oliver Lorscheid. „Toroidal Automorphic Forms, Waldspurger Periods and Double Dirichlet Series“. In Multiple Dirichlet Series, L-functions and Automorphic Forms, 131–46. Boston, MA: Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8334-4_6.
Der volle Inhalt der QuelleDou, Ze-Li, und Qiao Zhang. „Theta lifts and periods with respect to a quadratic extension“. In Six Short Chapters on Automorphic Forms and L-functions, 99–123. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28708-4_6.
Der volle Inhalt der QuelleShimura, Goro. „On the critical values of certain Dirichlet series and the periods of automorphic forms“. In Collected Papers, 848–908. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4612-2060-2_23.
Der volle Inhalt der QuelleN’Guérékata, Gaston M. „Almost Automorphic Functions“. In Almost Periodic and Almost Automorphic Functions in Abstract Spaces, 17–35. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73718-4_2.
Der volle Inhalt der QuelleDiagana, Toka. „Almost Automorphic Functions“. In Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, 111–40. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00849-3_4.
Der volle Inhalt der QuelleGetz, Jayce R., und Heekyoung Hahn. „Distinction and Period Integrals“. In An Introduction to Automorphic Representations, 371–94. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-41153-3_14.
Der volle Inhalt der QuelleDiagana, Toka. „Pseudo-Almost Automorphic Functions“. In Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, 167–88. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00849-3_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Automorphic periods"
Li, Lan. „Existence of Almost Periodic and Almost Automorphic Solutions for Second Order Differential Equations“. In 2011 Seventh International Conference on Computational Intelligence and Security (CIS). IEEE, 2011. http://dx.doi.org/10.1109/cis.2011.332.
Der volle Inhalt der QuelleArneodo, A., F. Argoul und P. Richetti. „Symbolic dynamics in the Belousov-Zhabotinskii reaction: from Rössler’s intuition to experimental evidence for Shil’nikov homoclinic chaos“. In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.is2.
Der volle Inhalt der Quelle