Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Automation of metallographic preparation.

Zeitschriftenartikel zum Thema „Automation of metallographic preparation“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Automation of metallographic preparation" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Huang, Song Lin, und Jian Zhong Cui. „Application and Realization of Liquid Automatic Drip System with Metallographic Polishing“. Advanced Materials Research 1014 (Juli 2014): 45–48. http://dx.doi.org/10.4028/www.scientific.net/amr.1014.45.

Der volle Inhalt der Quelle
Annotation:
Metallographic examination is one of the essential means of materials science research. Metallurgical polishing is a significant preparation before metallographic examination. In this paper, a polishing liquid automatic drip system was designed and related experiments were conducted. The results show that, as a secondary automation equipment of polishing process, polishing liquid automatically supply system can meet the requirements of metallurgical polishing, reduce the labor intensity, improve efficiency and also reduce the polishing liquid consumables waste. It also shows that automation and computerization in the field of material is not only feasible, but also essential for materials science research.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Chopra, M. A., und R. W. Rauser. „Automatic metallographic preparation of low-concentration, directionally solidified lead-tin alloys“. Materials Characterization 25, Nr. 3 (Oktober 1990): 311–23. http://dx.doi.org/10.1016/1044-5803(90)90060-w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kopp, Wolf-Ulrich, und Günther Müller. „Prepamatic — eine Maschine zur vollautomatischen Anschliff- Präparation metallographischer Proben / Prepamatic — a Machine for the Fully Automatic Preparation of Metallographic Specimens“. Practical Metallography 24, Nr. 7 (01.07.1987): 336–47. http://dx.doi.org/10.1515/pm-1987-240705.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

López de Lacalle, Luis Norberto, Gorka Urbikain Pelayo, Ibon Azkona, Victor Verbiţchi, Radu Cojocaru, Lia Nicoleta Boţilă, Cristian Ciucă, Ion Aurel Perianu und Miomir Vlascici. „Functional Layers of Aluminium Alloy on Steel Made by Alternative Friction Processes, for Elements of Metal Structures“. Advanced Materials Research 1146 (April 2018): 106–14. http://dx.doi.org/10.4028/www.scientific.net/amr.1146.106.

Der volle Inhalt der Quelle
Annotation:
Coating of steel with aluminium alloy is needed for the execution of a functional layer for corrosion protection. Some experiments have been performed on square-section tubes (50 mm x 50 mm) of S235 steel, according to EN 10 025, to be coated with 1 mm thick sheets of EN AW 5754 aluminium alloy that have been previously bended as U shaped profiles. A new experimental model of specialized equipment has been used for certain experiments to make these functional layers of aluminium alloy on steel. Firstly, friction drilling and threading by form tapping, followed by screws-mounting without nuts have been used to make such joints. Several holes have been executed by a Ø4.3 friction drilling tool, then an M5 form tap was used for threading. For friction drilling, tools with 90% tungsten carbide content and 1 micron grain size were applied. By threading, TiN coated form taps have been used. Secondly, overlap friction stir welding (FSW) has been applied, to make a functional layer of aluminium alloy on a 50 mm x 50 mm S235 steel tube. The wings of the U profiles were overlapped. A quenched FSW tool, own-made of C 45 grade steel, EN 10083, has been used for these joining tests. The joining parameters are mentioned for each process. The run of each joining process is described and the joint test samples are presented. The appearance of the screw-mounted functional layers is appropriate. The metallographic analysis has revealed adequate form of the burr formed below the hole. The burr height is 2.5 – 3.2 mm. The pattern of the M5 thread is appropriate. No defects have been detected on the holes and threads. The appearance of the FSW functional layers is adequate. Metallographic analysis shows that FSW joints of the overlapped aluminium alloy sheets are adequate, because there is no gap between these sheets. There is only a narrow gap between the aluminium alloy bottom sheet and the wall of the steel tube, which proves an appropriate positioning of the two metals. No defects were detected, except for a weld flaw, as a small and isolated cavity, with a section less than 0.1 mm2, considered within the acceptance limit, according to EN 25239-5. The U shaped sheets of aluminium alloy are firmly fixed on the square steel tube, for both coating types. The mentioned processes are proposed to increase productivity in industrial technologies for series production. The processes addressed in this paper are more rapid than conventional processes. Adequate preparation of the parts to be welded, mechanization and automation allow repeatability and quality. The target applications are coated structure elements for devices, appliances, tools, welded structures or automobiles. The involved industrial areas of the applications are: manufacturing, electro-technique, construction and automotive industries. The presented processes are ecological, because they do not need lubricants or other toxic substances and do not produce chips or harmfull substances.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kachynskyi, Volodymyr, Michael Koval und Volodymyr Klymenko. „DEVELOPMENT OF TECHNOLOGY AND CREATION OF TEST EQUIPMENT FOR PRESSURE WELDING OF HIGH-LOAD THIN-WALLED HETEROGENEOUS STEEL TUBULAR PARTS“. Science and Innovation 17, Nr. 4 (09.08.2021): 3–10. http://dx.doi.org/10.15407/scine17.04.003.

Der volle Inhalt der Quelle
Annotation:
Introduction. Magnetically impelled arc butt welding (MIAB) method differs from the existing arc methods by high productivity, stable quality of welded joints, high degree of mechanization and automation of the technological process and so on. Welding is performed automatically, which significantly reduces the influence of theoperator-welder on the quality of welded joints. The optimal values of the magnetic field induction components for thin-walled tubular parts with a diameter of 212 mm are determined. The basic technological parameters on welding of tubular details in stationary conditions are defined, it is: qualitative preparation of end faces of pipes;optimal distribution of induction of the control magnetic field (CMF); arc voltage; the magnitude and order of programming the welding current; the rate of closure of the arc gap in the process of upset. The influence of liquid metal melt in the arc gap during upset on the formation of welded joints of pipes is determined. Metallographicstudies showed no defects in the weld line and a relatively small area of thermal impact. Mechanical properties of welded joints at the level of mechanical properties of the base metal. Studies have been conducted to determine theparameters that affect the stable movement of the arc along the thin-walled edges of tubular parts and the influence of liquid metal melt in the arc gap during heating on the formation of welded joints.Problem Statement. Pipes of small diameters (up to 220 mm) are used in various industrial enterprises and construction of pipelines. The work requires high-performance automatic welding methods that allow obtaining stable and reliable welded joints.Purpose. The purpose is to raise labor productivity and to save materials by using equipment and technology for press welding of magnetically controlled arc of thin-walled tubular parts.Materials and Methods. Steel thin-walled tubular parts with a diameter of 42mm and 212 mm, with a wall thickness of 2.5… 3 mm were used for research on press welding. To create a control magnetic field, magnetic systems for tubular parts with a diameter of 212 mm were developed. Experimental welding was performed andsamples of welded joints of pipes with a diameter of 212 mm with a wall thickness of 3 mm were investigated. In the course of the research, the main parameters are recorded and the welding process is controlled by computer. Results. The main technological parameters: preparation of pipe ends; magnitude and distribution of control magnetic field induction; the arc voltage; the magnitude and order of programming the welding current; the rateof closure of the arc gap during upset, which affects the formation of welds have been determined. The experimental industrial technology for welding of thin-walled tubular details with a diameter up to 212 mm for thepurpose of its industrial use and the concept of the welding equipment has been developed, patents for the invention have been received.Conclusions. The mechanical and metallographic tests have shown that the properties of welded joints are at the level of the properties of the base metal. The use of press welding technology for tubular parts increases productivity and automates the welding process. The influence of the bandwidth of the liquid molten metal in the arc gap, while heating, on the formation of welded joints of pipes has been experimentally established. The main technological parameters and their influence on the quality of welded joints in the process of heating, the ends, and the upset of thin-walled tubular parts have been determined. Experimental industrial technology for press welding of thin-walled tubular parts has been developed and industrial tests have been conducted, in accordance with the customer's requirements.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kelly, Ann M., Dan J. Thoma, Robert D. Field, Paul S. Dunn und David F. Teter. „Metallographic preparation techniques for uranium“. Journal of Nuclear Materials 353, Nr. 3 (Juli 2006): 158–66. http://dx.doi.org/10.1016/j.jnucmat.2005.12.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Voos, Patrick. „Metallographic Preparation for Electron Backscattered Diffraction“. Materials Science Forum 702-703 (Dezember 2011): 578–81. http://dx.doi.org/10.4028/www.scientific.net/msf.702-703.578.

Der volle Inhalt der Quelle
Annotation:
Electron Backscatter Diffraction measurement can provide much analytical information, such as the phase orientation or material identification. The “Quality” rating of the backscatter diffraction depends on the success rate of indexing. To achieve this, a deformation-free preparation is essential. In recent years most preparation methods have been optimized to contain on average only three to four sample preparation steps. The sample quality is excellent when reflected light microscopy is used. Due to the low information depth of the EBSD measurement (20-100nm), the standard method must be modified. The preparation method must remove the scratches and the underlying damage in order to obtain a high quality EBSD pattern. The optimization can be done by chemo-mechanical polishing, electrolytic polishing or vibratory polishing. Examples are used to show where the limits of the technologies are and to give helpful ‘Hints’ for EBSD sample preparation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Romberg, J., J. Freudenberger, J. Scharnweber, U. Gaitzsch, T. Marr, A. Eschke, U. Kühn et al. „Metallographic Preparation of Aluminium-Titanium Composites“. Practical Metallography 50, Nr. 11 (15.11.2013): 739–53. http://dx.doi.org/10.3139/147.110259.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Voort, G. Vander, W. Van Geertruyden, S. Dillon und E. Manilova. „Metallographic Preparation for Electron Backscattered Diffraction“. Microscopy and Microanalysis 12, S02 (31.07.2006): 1610–11. http://dx.doi.org/10.1017/s1431927606069327.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Milkereit, B., Y. Meißner, C. Ladewig, J. Osten, Q. Peng, B. Yang, A. Springer und O. Keßler. „Metallographic Preparation of Single Powder Particles“. Practical Metallography 58, Nr. 3 (01.03.2021): 129–39. http://dx.doi.org/10.1515/pm-2021-0009.

Der volle Inhalt der Quelle
Annotation:
Abstract This work developed a systematic method for a metallographic preparation of single powder particles with diameters of approx. 20 to 40 μm. It was motivated by the objective of understanding additive manufacturing processes such as Laser Powder Bed Fusion. A fundamental aspect of the relationship between manufacturing, structure, and properties is the correlation of rapid solidification and resulting microstructure. During powder-based additive manufacturing processes, cooling rates up to 1 MK/s are attained. A thermal analysis determining the characteristics of solidification at such rapid cooling rates can be performed with the aid of chip sensor-based, dynamic Differential Fast Scanning Calorimetry, DFSC. For this purpose, the heat flow during the solidification of single powder particles is measured and, for instance, the solidification onset temperature is evaluated as a function of cooling rate. It is thus possible to estimate the undercooling which has a significant impact on the resulting structure. Subsequently, cross sections of single powder particles must be prepared for the analysis of the resulting structure.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Remešová, Michaela, Lenka Klakurková, Miroslava Horynová, Ladislav Čelko und Jozef Kaiser. „Preparation of Metallographic Samples with Anodic Layers“. Materials Science Forum 891 (März 2017): 106–10. http://dx.doi.org/10.4028/www.scientific.net/msf.891.106.

Der volle Inhalt der Quelle
Annotation:
Anodization is an electrochemical process that converts the metal surface into a decorative, durable, corrosion-resistant, anodic oxide coatings. The thickness of the resulting layer depends on the process parameters (voltage, current, type of electrolyte, concentration and temperature of the electrolyte). In this work, the preparation of zinc metallographic samples with anodic layer is described. Samples prepared by anodic oxidation on the zinc substrate are rather brittle and porous. During the mounting, cutting, grinding and polishing the layer can be deformed which can affect the layer thickness measurements. The problem is to determine the boundary between anodic layer and resin. The cross-sectional micrographs were observed by scanning electron microscopy with the aim to improve anodic layers thickness measurements by means of digital image analysis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Kelly, A. M., D. Thoma, R. Field, E. Cerreta und R. Hackenberg. „Metallographic Preparation Techniques for Uranium/Uranium Alloys“. Microscopy and Microanalysis 18, S2 (Juli 2012): 454–55. http://dx.doi.org/10.1017/s1431927612004126.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Hernáez, J., A. Pardo und M. I. Aja. „Improved metallographic preparation of lead by electropolishing“. Metallography 19, Nr. 1 (Februar 1986): 5–17. http://dx.doi.org/10.1016/0026-0800(86)90003-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Kelly, A. M., R. D. Field und D. J. Thoma. „Metallographic preparation techniques for U–6wt.%Nb“. Journal of Nuclear Materials 429, Nr. 1-3 (Oktober 2012): 118–27. http://dx.doi.org/10.1016/j.jnucmat.2012.05.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Ednie, K. H. „Metallographic preparation of soft materials: Lead alloys“. Materials Characterization 36, Nr. 4-5 (April 1996): 243–55. http://dx.doi.org/10.1016/s1044-5803(96)00056-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Braunstein Faldini, Sonia, Jan Vatavuk und Anne Naomi Konno. „The Metallographic Technical Preparation Influence on the Zinc Hot Dip Deposited Layer Morphology“. Materials Science Forum 805 (September 2014): 178–83. http://dx.doi.org/10.4028/www.scientific.net/msf.805.178.

Der volle Inhalt der Quelle
Annotation:
The metallographic technical preparation influence on hot dip deposited zinc layer intermetallic phases investigation and distribution was the aim objective in this work. The base material was SAE 1020 carbon steel and specimens with and without zinc layer detachment was selected after the submission to adherence test base on hammer impact. Three different grinding and polishing technique were employed and the phases were investigated by optical metallographic technical as well as through a scanning electron microscope with an EDS system. The different metallographic techniques have no effect on the phase determination and distribution.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Ramos-Moore, E. „Metallographic Preparation of Hard Coatings for EBSD Analysis“. Practical Metallography 53, Nr. 11 (15.11.2016): 665–80. http://dx.doi.org/10.3139/147.110428.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Zavdoveev, Anatoliy, Thierry Baudin, Elena Pashinska und Mykola Skoryk. „Preparation of metallographic specimens for electron backscatter diffraction“. Emerging Materials Research 6, Nr. 2 (November 2017): 260–64. http://dx.doi.org/10.1680/jemmr.16.00117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Pinard, PT, P. Hovington, M. Lagacé, GM Lucas, GF Vander Voort und R. Gauvin. „Quantitative Evaluation of Metallographic Preparation Quality using EBSD“. Microscopy and Microanalysis 15, S2 (Juli 2009): 778–79. http://dx.doi.org/10.1017/s1431927609097141.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Chidambaram, A., und S. D. Bhole. „Metallographic preparation of aluminum-alumina metal-matrix composites“. Materials Characterization 38, Nr. 3 (März 1997): 187–91. http://dx.doi.org/10.1016/s1044-5803(97)00041-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Scott, David A. „Laboratory notes: Homemade aids for metallographic sample preparation“. Conservator 31, Nr. 1 (Januar 2008): 87–91. http://dx.doi.org/10.1080/01410096.2008.9995235.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Müller, Günter, und Wolf-Ulrich Kopp. „Methodische Anschliffpräparation in der Metallographie / Methodical Metallographic Preparation“. Practical Metallography 26, Nr. 12 (01.12.1989): 640–53. http://dx.doi.org/10.1515/pm-1989-261206.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Couch, G. „Coal preparation — Automation and control“. Fuel and Energy Abstracts 37, Nr. 3 (Mai 1996): 172. http://dx.doi.org/10.1016/0140-6701(96)88358-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Lößlein, S. M., M. Kasper, R. Merz, C. Pauly, D. W. Müller, M. Kopnarski und F. Mücklich. „Patience Alone is not Enough – A Guide for the Preparation of Low-Defect Sections from Pure Copper“. Practical Metallography 58, Nr. 7 (01.07.2021): 388–407. http://dx.doi.org/10.1515/pm-2021-0031.

Der volle Inhalt der Quelle
Annotation:
Abstract The preparation of metallographic sections from soft metals such as pure copper constitutes a particular challenge: the high degree of ductility promotes the formation of preparation artifacts and complicates the preparation of homogeneous, low-deformation surfaces. A metallographic preparation routine is therefore presented which has proven effective for pure copper and which can also be applied to additionally soft annealed samples. The subsequent removal of fine crystalline deformation layers is discussed and different setups for electropolishing and its optimization are presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Anisovich, A. G. „Artifacts in metallography: dust.“ Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY), Nr. 3 (20.10.2020): 93–98. http://dx.doi.org/10.21122/1683-6065-2020-3-93-98.

Der volle Inhalt der Quelle
Annotation:
The article discusses the identification of dust particles on the surface of metallographic samples. It is noted that the volume of literature on metallographic artifacts is very small one. This is due to the fact that the Russian – language literature of the metallographic direction was wtitten long ago when the structure was fixed using the photographic method on photographic plates or film. The complexity of the process and the lack of photographic materials excluded the generation of information about metallographic artifacts.Modern metallographic complexes capture structure images digitally. Therefore, in addition to images of the structure, it is possible to record sample preparation artifacts without restrictions. Dust particles on the surface of metallographic sections and their difference from non-metallic inclusions are illustrated. The use of dark-field illumination and polarized light to identify artifacts is considered. Some effects arising from metallographic etching are illustrated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Scott, David A. „A Note on the Metallographic Preparation of Ancient Lead“. Studies in Conservation 41, Nr. 1 (1996): 60. http://dx.doi.org/10.2307/1506553.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Voort, George F. Vander. „Metallographic Specimen Preparation for Electron Backscattered Diffraction Part I“. Practical Metallography 48, Nr. 9 (September 2011): 454–73. http://dx.doi.org/10.3139/147.110151.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Lockley, A. J. „Metallographic Preparation of Incoloy 800 Tube Material for EBSD“. Microscopy and Microanalysis 21, S3 (August 2015): 1169–70. http://dx.doi.org/10.1017/s1431927615006637.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Scott, David A. „A note on the metallographic preparation of ancient lead“. Studies in Conservation 41, Nr. 1 (Januar 1996): 60–62. http://dx.doi.org/10.1179/sic.1996.41.1.60.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

da Silveira, T. L., und I. Le May. „Effects of metallographic preparation procedures on creep damage assessment“. Materials Characterization 28, Nr. 1 (Januar 1992): 75–85. http://dx.doi.org/10.1016/1044-5803(92)90030-l.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

de Silva, H. P., und J. R. M. d'Almeida. „Metallographic preparation of glass microspheres-resin matrix composite material“. Materials Characterization 28, Nr. 4 (Juni 1992): 253–54. http://dx.doi.org/10.1016/1044-5803(92)90087-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Rodríguez-Hernández, M. G., E. E. Martínez-Flores, G. Torres-Villaseñor und M. Dolores Escalera. „Metallographic Preparation of Zn-21Al-2Cu Alloy for Analysis by Electron Backscatter Diffraction (EBSD)“. Microscopy and Microanalysis 20, Nr. 4 (31.03.2014): 1276–83. http://dx.doi.org/10.1017/s1431927614000397.

Der volle Inhalt der Quelle
Annotation:
AbstractSamples of Zn-21Al-2Cu alloy (Zinalco) that will be heavily deformed were prepared using five different manual mechanical metallographic methods. Samples were analyzed before tensile testing using the orientation imaging microscopy-electron backscatter diffraction (OIM-EBSD) technique. The effect of type and particle size during the final polishing stages for this material were studied in order to identify a method that produces a flat, damage free surface with a roughness of about 50 nm and clean from oxide layers, thereby producing diffraction patterns with high image quality (IQ) and adequate confidence indexes (CI). Our results show that final polishing with alumina and silica, as was previously suggested by other research groups for alloys that are difficult to prepare or alloys with low melting point, are not suitable for manual metallographic preparation of this alloy. Indexes of IQ and CI can be used to evaluate methods of metallographic preparation of samples studied using the OIM-EBSD technique.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Siegle, Christel, Ursula Christian, Norbert Jost und Simon Kött. „A Three-Dimensional Microstructure Preparation Using Metallographic In-Depth Microsections“. Practical Metallography 49, Nr. 1 (Januar 2012): 15–26. http://dx.doi.org/10.3139/147.110134.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Weilnhammer, G. „Particularities in the Metallographic Preparation of Black and White Joints“. Practical Metallography 52, Nr. 2 (16.02.2015): 75–82. http://dx.doi.org/10.3139/147.110328.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Blann, George. „Special metallographic sample preparation techniques for difficult materials: Electromechanical polishing“. Metallography 18, Nr. 1 (Februar 1985): 89–91. http://dx.doi.org/10.1016/0026-0800(85)90037-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

McNee, C., J. Frafjord und M. Mondo. „Metallographic Preparation Techniques for Evaluation of Co-Cr-Mo Alloys“. Microscopy and Microanalysis 17, S2 (Juli 2011): 1030–31. http://dx.doi.org/10.1017/s1431927611006027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Lucas, G. M., und J. Spanos. „Metallographic Preparation, Imaging and Analysis of High Purity Refractory Metals“. Microscopy and Microanalysis 8, S02 (August 2002): 1302–3. http://dx.doi.org/10.1017/s1431927602104946.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Průcha, Vojtěch, Zdeněk Jansa, Jiří Šimeček, Ondřej Žďánský und Antonín Kříž. „Characterization of Microstructure of Hadfield Steel“. Solid State Phenomena 270 (November 2017): 265–70. http://dx.doi.org/10.4028/www.scientific.net/ssp.270.265.

Der volle Inhalt der Quelle
Annotation:
In this contribution, the preparation of metallographic sections and characterization of the microstructure of manganese Hadfield steels are discussed. The purpose of this paper is to provide information relevant to microstructural characterization of these steels. This type of steel is characterized by high resistance to abrasive wear, which is provided by surface strengthening through strain-induced martensitic transformation. Strengthening complicates the preparation of metallographic sections because the final microstructure can be influenced by the process and it can be eventually misinterpreted. Great attention must be paid to the choice of the etchant and the etching procedure. This contribution describes the entire metallographic characterization procedure, including the evaluation of grain size, micro-cleanness and presence of carbides on grain boundaries. It provides information for manufacturers and those, whose process and examine Hadfield steels with respect to their processing routes, wear resistance, non-magnetic properties and other aspects.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Yalda, K. D., V. N. Spiridonov und D. V. Zhuzhelskii. „Automation of sample preparation using microwave systems“. Analytics 8, Nr. 5 (2018): 470–72. http://dx.doi.org/10.22184/2227-572x.2018.08.5.470.472.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Quispe, Joel, Rachel Banez, Bridget Carragher und Clinton S. Potter. „Improving Automation for Cryo-EM Specimen Preparation“. Microscopy and Microanalysis 10, S02 (August 2004): 1508–9. http://dx.doi.org/10.1017/s1431927604883624.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Lobanov, D. V., M. V. Kuptsov und V. Yu Skeeba. „Automation of composite materials products process preparation“. IOP Conference Series: Materials Science and Engineering 971 (01.12.2020): 042074. http://dx.doi.org/10.1088/1757-899x/971/4/042074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Gimmler, S., S. Düker, S. Hemes und A. Bührig-Polaczek. „Preparation Route for the Metallographic and Analytical Investigation of ZnAlCu Alloys“. Practical Metallography 57, Nr. 6 (15.06.2020): 415–20. http://dx.doi.org/10.3139/147.110637.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Rodelas, J. M., M. C. Maguire und J. R. Michael. „Martensite Formation in the Metallographic Preparation of Austenitic Stainless Steel Welds“. Microscopy and Microanalysis 19, S2 (August 2013): 1748–49. http://dx.doi.org/10.1017/s1431927613010738.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Otero, E., M. C. Merino, A. Pardo und M. V. Biezma. „Improved metallographic preparation of IN-657 alloy by high temperature oxidation“. Metallography 21, Nr. 2 (Mai 1988): 217–25. http://dx.doi.org/10.1016/0026-0800(88)90018-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Apollo, R. Nur, M. A. Suyuti und M. Madjid. „Development of polishing machine for preparation metallographic specimen with re-manufacturing“. IOP Conference Series: Materials Science and Engineering 885 (06.08.2020): 012016. http://dx.doi.org/10.1088/1757-899x/885/1/012016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Drewien, Celeste A., Arlan O. Benscoter und A. R. Marder. „Metallographic preparation technique for electrodeposited IronZinc alloy coatings on steel“. Materials Characterization 26, Nr. 1 (Januar 1991): 45–51. http://dx.doi.org/10.1016/1044-5803(91)90007-q.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Block, G�nter, Dieter Hirschfeld, Ilse-Marie Lichtenauer und Annette Pohl. „Preparation of VPS and PVD coatings for metallographic and TEM investigations“. Mikrochimica Acta 107, Nr. 3-6 (Mai 1992): 279–82. http://dx.doi.org/10.1007/bf01244482.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Anisovich, A. G. „Particularities of metallographic preparation for the analysis of thin layers and coatings. Foundry production and metallurgy“. Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY), Nr. 2 (09.06.2020): 59–62. http://dx.doi.org/10.21122/1683-6065-2020-2-59-62.

Der volle Inhalt der Quelle
Annotation:
The article deals with the issues of determining the thickness of layers and coatings for various purposes in metallographic research. The role of the material for filling metallographic sections in determining the layer thickness is demonstrated. It is shown that when filling the sample with plastic masses, the error in determining the layer thickness can be 0.2...0.4 microns, which is significant for thin layers. Sample preparation options for determining the thickness of titanium nitride layers with a thickness of 1 microns or less are considered. It is shown that with the optimal method of sample preparation, it is possible to visualize a layer less than 1 microns thick, and also determine its thickness in the image processing program.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Zhai, Zheng, Qing Liu, Xing You Xu, Ju Yuan Li, Zheng Li und Xiang Chen Li. „A Novel System for Sedimentary Organic Carbon Isotope Sample Preparation“. Applied Mechanics and Materials 333-335 (Juli 2013): 1899–902. http://dx.doi.org/10.4028/www.scientific.net/amm.333-335.1899.

Der volle Inhalt der Quelle
Annotation:
A new type of isotope preparation system was designed with excellent accuracy, high degree automation and high security. In view of the existing equipment with automation low degree automation, poor safety, much long preparation time and low precision of the sample preparation problems, a series of improvements were introduced, such as the automatic sampling device, contact valve, vacuum auxiliary system, gas meter and digital dashboards. It was found that the instrument finely designed had the characteristics such as high accuracy, automation and security. Combined with the sample detection device, the preparated sample had excellent detection results. Meanwhile, a set of standard operating procedures had also been formed. Furthermore, the sample preparation process was briefly discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Anthemidis, Aristidis, und Victoria F. Samanidou. „Automation in Sample Preparation and Green Analytical Perspectives“. Current Analytical Chemistry 15, Nr. 7 (15.10.2019): 705. http://dx.doi.org/10.2174/157341101507191015122729.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie