Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Automatic Text Recognition (ATR)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Automatic Text Recognition (ATR)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Automatic Text Recognition (ATR)"
Prebor, Gila. „From Digitization and Images to Text and Content: Transkribus as a Case Study“. Proceedings of the Association for Information Science and Technology 60, Nr. 1 (Oktober 2023): 1102–3. http://dx.doi.org/10.1002/pra2.958.
Der volle Inhalt der QuelleR.V, Shalini, Sangamithra G, Shamna A.S, Priyadharshini B und Raguram M. „Digital Prescription for Hospital Database Management using ASR“. International Journal of Computer Communication and Informatics 6, Nr. 1 (25.05.2024): 58–69. http://dx.doi.org/10.34256/ijcci2414.
Der volle Inhalt der QuelleKit, Chunyu, und Xiaoyue Liu. „Measuring mono-word termhood by rank difference via corpus comparison“. Terminology 14, Nr. 2 (12.12.2008): 204–29. http://dx.doi.org/10.1075/term.14.2.05kit.
Der volle Inhalt der QuelleHu, Jinge. „Automatic Target Recognition of SAR Images Using Collaborative Representation“. Computational Intelligence and Neuroscience 2022 (24.05.2022): 1–7. http://dx.doi.org/10.1155/2022/3100028.
Der volle Inhalt der QuelleWeng, Wenbo. „Multitask Sparse Representation of Two-Dimensional Variational Mode Decomposition Components for SAR Target Recognition“. Scientific Programming 2023 (25.04.2023): 1–12. http://dx.doi.org/10.1155/2023/8846287.
Der volle Inhalt der QuelleAraujo, Gustavo F., Renato Machado und Mats I. Pettersson. „Non-Cooperative SAR Automatic Target Recognition Based on Scattering Centers Models“. Sensors 22, Nr. 3 (08.02.2022): 1293. http://dx.doi.org/10.3390/s22031293.
Der volle Inhalt der QuelleZhang, Likun, Xiaoyan Li, Yi Tang, Fangbin Song, Tian Xia und Wei Wang. „Contemporary Advertising Text Art Design and Effect Evaluation by IoT Deep Learning under the Smart City“. Security and Communication Networks 2022 (22.07.2022): 1–14. http://dx.doi.org/10.1155/2022/5161398.
Der volle Inhalt der QuelleSalamun, Sukri, Khairul Amin, Luluk Elvitaria und Liza Trisnawati. „Artificial Intelligence Automatic Speech Recognition (ASR) untuk pencarian potongan ayat Al-Qu’ran“. Jurnal Komputer Terapan, Vol. 8 No. 1 (2022) (31.05.2022): 36–45. http://dx.doi.org/10.35143/jkt.v8i1.5299.
Der volle Inhalt der QuelleYu, Xuelian, Hailong Yu, Yi Liu und Haohao Ren. „Enhanced Prototypical Network with Customized Region-Aware Convolution for Few-Shot SAR ATR“. Remote Sensing 16, Nr. 19 (25.09.2024): 3563. http://dx.doi.org/10.3390/rs16193563.
Der volle Inhalt der QuelleEck, J. Thomas, und Frank Y. Shih. „An automatic text-free speaker recognition system based on an enhanced Art 2 neural architecture“. Information Sciences 76, Nr. 3-4 (Januar 1994): 233–53. http://dx.doi.org/10.1016/0020-0255(94)90011-6.
Der volle Inhalt der QuelleDissertationen zum Thema "Automatic Text Recognition (ATR)"
Chiffoleau, Floriane. „Understanding the automatic text recognition process : model training, ground truth and prediction errors“. Electronic Thesis or Diss., Le Mans, 2024. http://www.theses.fr/2024LEMA3002.
Der volle Inhalt der QuelleThis thesis works on identifying what a text recognition model can learn during its training, through the examination of its ground truth’s content, and its prediction’s errors. The main intent here is to improve the knowledge of how a neural network operates, with experiments focused on typewritten documents. The methods used mostly concentrated on the thorough exploration of the training data, the observation of the model’s prediction’s errors, and the correlation between both. A first hypothesis, based on the influence of the lexicon, was inconclusive. However, it steered the observation towards a new level of study, relying on an infralexical level: the n-grams. Their training data’s distribution was analysed and subsequently compared to that of the n-grams retrieved from the prediction errors. Promising results lead to further exploration, while upgrading from single-language to multilingual model. Conclusive results enabled me to infer that the n-grams might indeed be a valid answer to recognition’s performances
Gregori, Alessandro <1975>. „Automatic Speech Recognition (ASR) and NMT for Interlingual and Intralingual Communication: Speech to Text Technology for Live Subtitling and Accessibility“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9931/1/Gregori_Alessandro_tesi.pdf.
Der volle Inhalt der QuelleJansson, Annika. „Tal till text för relevant metadatataggning av ljudarkiv hos Sveriges Radio“. Thesis, KTH, Medieteknik och interaktionsdesign, MID, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-169464.
Der volle Inhalt der QuelleSpeech to text for relevant metadata tagging of audio archive at Sveriges Radio Abstract In the years 2009-2013, Sveriges Radio digitized its program archive. Sveriges Radio's ambition is that more material from the 175 000 hours of radio they broadcast every year should be archived. This is a relatively time-consuming process to make all materials to be searchable and it's far from certain that the quality of the data is equally high on all items. The issue that has been treated for this thesis is: What opportunities exist to develop a system to Sveriges Radio for Swedish speech to text? Systems for speech to text has been analyzed and examined to give Sveriges Radio a current overview in this subject. Interviews with other similar organizations working in the field have been performed to see how far they have come in their development of the concerned subject. A literature study has been conducted on the recent research reports in speech recognition to compare which system would match Sveriges Radio's needs and requirements best to get on with. What Sveriges Radio should concentrate at first, in order to build an ASR, Automatic Speech Recognition, is to transcribe their audio material. Where there are three alternatives, either transcribe themselves by selecting a number of programs with different orientations to get such a large width as possible on the content, preferably with different speakers and then also be able to develop further recognition of the speaker. The easiest way is to let different professions who make the features/programs in the system do it. Other option is to start a similar project that the BBC has done and take help of the public. The third option is to buy the service for transcription. My advice is to continue evaluate the Kaldi system, because it has evolved significantly in recent years and seems to be relatively easy to extend. Also the open-source that Lingsoft uses is interesting to study further.
Gong, XiangQi. „Ellection markup language (EML) based tele-voting system“. Thesis, University of the Western Cape, 2009. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_5841_1350999620.
Der volle Inhalt der Quellevoting machines, voting via the Internet, telephone, SMS and digital interactive television. This thesis concerns voting by telephone, or televoting, it starts by giving a brief overview and evaluation of various models and technologies that are implemented within such systems. The aspects of televoting that have been investigated are technologies that provide a voice interface to the voter and conduct the voting process, namely the Election Markup Language (EML), Automated Speech Recognition (ASR) and Text-to-Speech (TTS).
Wager, Nicholas. „Automatic Target Recognition (ATR) ATR : background statistics and the detection of targets in clutter /“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1994. http://handle.dtic.mil/100.2/ADA293062.
Der volle Inhalt der QuelleThesis advisor(s): David L. Fried, David Scott Davis. :December 1994." Includes bibliographical references. Also available online.
Horvath, Matthew Steven. „Performance Prediction of Quantization Based Automatic Target Recognition Algorithms“. Wright State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=wright1452086412.
Der volle Inhalt der QuelleJobbins, Amanda Caryn. „The contribution of semantics to automatic text processing“. Thesis, Nottingham Trent University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302405.
Der volle Inhalt der QuelleNamane, Abderrahmane. „Degraded printed text and handwritten recognition methods : Application to automatic bank check recognition“. Université Louis Pasteur (Strasbourg) (1971-2008), 2007. http://www.theses.fr/2007STR13048.
Der volle Inhalt der QuelleCharacter recognition is a significant stage in all document recognition systems. Character recognition is considered as an assignment problem and decision of a given character, and is an active research subject in many disciplines. This thesis is mainly related to the recognition of degraded printed and handwritten characters. New solutions were brought to the field of document image analysis (DIA). The first solution concerns the development of two recognition methods for handwritten numeral character, namely, the method based on the use of Fourier-Mellin transform (FMT) and the self-organization map (SOM), and the parallel combination of HMM-based classifiers using as parameter extraction a new projection technique. In the second solution, one finds a new holistic recognition method of handwritten words applied to French legal amount. The third solution presents two recognition methods based on neural networks for the degraded printed character applied to the Algerian postal check. The first work is based on sequential combination and the second used a serial combination based mainly on the introduction of a relative distance for the quality measurement of the degraded character. During the development of this thesis, methods of preprocessing were also developed, in particular, the handwritten numeral slant correction, the handwritten word central zone detection and its slope
Bayik, Tuba Makbule. „Automatic Target Recognition In Infrared Imagery“. Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/2/12605388/index.pdf.
Der volle Inhalt der QuelleBae, Junhyeong. „Adaptive Waveforms for Automatic Target Recognition and Range-Doppler Ambiguity Mitigation in Cognitive Sensor“. Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/306942.
Der volle Inhalt der QuelleBücher zum Thema "Automatic Text Recognition (ATR)"
Thompson, Karen H. Automatic term recognition in legal text: A feasibility study. Manchester: UMIST, 1996.
Den vollen Inhalt der Quelle findenMeisel, William S. The telephony voice user interface: Applications of speech recognition, text-to-speech, and speaker verification over the telephone. Tarzana, CA: TMA Associates, 1998.
Den vollen Inhalt der Quelle findenHabernal, Ivan. Text, Speech and Dialogue: 14th International Conference, TSD 2011, Pilsen, Czech Republic, September 1-5, 2011. Proceedings. Berlin, Heidelberg: Springer-Verlag GmbH Berlin Heidelberg, 2011.
Den vollen Inhalt der Quelle findenGriffiths und Blacknell, Hrsg. Radar Automatic Target Recognition (ATR) and Non-Cooperative Target Recognition (NCTR). Institution of Engineering and Technology, 2013. http://dx.doi.org/10.1049/pbra033e.
Der volle Inhalt der QuelleGriffiths, Hugh, und David Blacknell. Radar Automatic Target Recognition (ATR) and Non-Cooperative Target Recognition (NCTR). Institution of Engineering & Technology, 2013.
Den vollen Inhalt der Quelle findenGriffiths, Hugh, und David Blacknell. Radar Automatic Target Recognition (ATR) and Non-Cooperative Target Recognition (NCTR). Institution of Engineering & Technology, 2013.
Den vollen Inhalt der Quelle findenRenals, Steve, und Gregory Grefenstette. Text- and Speech-Triggered Information Access: 8th ELSNET Summer School, Chios Island, Greece, July 15-30, 2000, Revised Lectures. Springer London, Limited, 2006.
Den vollen Inhalt der Quelle findenMatousek, Vaclav, und Ivan Habernal. Text, Speech and Dialogue: 16th International Conference, TSD 2013, Pilsen, Czech Republic, September 1-5, 2013, Proceedings. Springer, 2013.
Den vollen Inhalt der Quelle findenHabernal, Ivan, und Václav Matousek. Text, Speech, and Dialogue: 16th International Conference, TSD 2013, Pilsen, Czech Republic, September 1-5, 2013, Proceedings. Springer, 2013.
Den vollen Inhalt der Quelle findenHabernal, Ivan, und Václav Matousek. Text, Speech and Dialogue: 16th International Conference, TSD 2013, Pilsen, Czech Republic, September 1-5, 2013, Proceedings. Springer, 2013.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Automatic Text Recognition (ATR)"
Formoe, Lars, Dan Bruun Mygind, Espen Løkke und Hasan Ogul. „Unsupervised Learning for Automatic Speech Recognition in Air Traffic Control Environment“. In Text, Speech, and Dialogue, 239–48. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-40498-6_21.
Der volle Inhalt der QuelleRoberts, Ian, Andres Garcia Silva, Cristian Berrìo Aroca, Jose Manuel Gómez-Pérez, Miroslav Jánoší, Dimitris Galanis, Rémi Calizzano, Andis Lagzdiņš, Milan Straka und Ulrich Germann. „Language Technology Tools and Services“. In European Language Grid, 131–49. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17258-8_7.
Der volle Inhalt der QuellePopova, Svetlana, Ivan Khodyrev, Irina Ponomareva und Tatiana Krivosheeva. „Automatic Speech Recognition Texts Clustering“. In Text, Speech and Dialogue, 489–98. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10816-2_59.
Der volle Inhalt der QuelleJelinek, Frederick. „Code Breaking for Automatic Speech Recognition“. In Text, Speech and Dialogue, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04208-9_1.
Der volle Inhalt der QuelleAnwar, Shamama. „Automatic Text Recognition Using Difference Ratio“. In Smart Computing and Informatics, 691–99. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5544-7_68.
Der volle Inhalt der QuelleHaderlein, Tino, Stefan Steidl, Elmar Nöth, Frank Rosanowski und Maria Schuster. „Automatic Recognition and Evaluation of Tracheoesophageal Speech“. In Text, Speech and Dialogue, 331–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30120-2_42.
Der volle Inhalt der QuelleUrrea, Alfonso Medina, und Jaroslava Hlaváčová. „Automatic Recognition of Czech Derivational Prefixes“. In Computational Linguistics and Intelligent Text Processing, 189–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-30586-6_18.
Der volle Inhalt der QuelleWiggers, Pascal, und Leon J. M. Rothkrantz. „Integration of Speech Recognition and Automatic Lip-Reading“. In Text, Speech and Dialogue, 205–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46154-x_28.
Der volle Inhalt der QuelleNouza, Jan, und Radek Safarik. „Parliament Archives Used for Automatic Training of Multi-lingual Automatic Speech Recognition Systems“. In Text, Speech, and Dialogue, 174–82. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64206-2_20.
Der volle Inhalt der QuelleMushtaq, Sumiya, und Neerendra Kumar. „Text-Based Automatic Personality Recognition: Recent Developments“. In Proceedings of Third International Conference on Computing, Communications, and Cyber-Security, 537–49. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1142-2_43.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Automatic Text Recognition (ATR)"
Piscaer, Pieter, Lukas Knobel, Lotte Nijskens, Michel van Lier, Judith Dijk und Nicolas Boehrer. „Improving automatic text recognition through atmospheric turbulence“. In Artificial Intelligence for Security and Defence Applications II, herausgegeben von Henri Bouma, Yitzhak Yitzhaky, Radhakrishna Prabhu und Hugo J. Kuijf, 36. SPIE, 2024. http://dx.doi.org/10.1117/12.3031801.
Der volle Inhalt der QuelleMohd Shahadan, Amin Syatir, Huda Adibah Mohd Ramli, Nur Shahida Midi und Norazlina Saidin. „An Automatic Text Recognition Tool in Signage for the Visually Impaired“. In 2024 9th International Conference on Mechatronics Engineering (ICOM), 7–12. IEEE, 2024. http://dx.doi.org/10.1109/icom61675.2024.10652391.
Der volle Inhalt der QuelleSampaio, Matheus Xavier, Regis Pires Magalhães, Ticiana Linhares Coelho da Silva, Lívia Almada Cruz, Davi Romero de Vasconcelos, José Antônio Fernandes de Macêdo und Marianna Gonçalves Fontenele Ferreira. „Evaluation of Automatic Speech Recognition Systems“. In Simpósio Brasileiro de Banco de Dados. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/sbbd.2021.17889.
Der volle Inhalt der QuelleChen, Chang, Xun Gong und Yanmin Qian. „Efficient Text-Only Domain Adaptation For CTC-Based ASR“. In 2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). IEEE, 2023. http://dx.doi.org/10.1109/asru57964.2023.10389682.
Der volle Inhalt der QuelleCardoso, Walcir, und Danial Mehdipour-Kolour. „Writing with automatic speech recognition: Examining user’s behaviours and text quality (lexical diversity)“. In EuroCALL 2023: CALL for all Languages. Editorial Universitat Politécnica de Valéncia: Editorial Universitat Politécnica de Valéncia, 2023. http://dx.doi.org/10.4995/eurocall2023.2023.16997.
Der volle Inhalt der QuelleHu, Ke, Tara N. Sainath, Bo Li, Yu Zhang, Yong Cheng, Tao Wang, Yujing Zhang und Frederick Liu. „Improving Multilingual and Code-Switching ASR Using Large Language Model Generated Text“. In 2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). IEEE, 2023. http://dx.doi.org/10.1109/asru57964.2023.10389644.
Der volle Inhalt der QuelleShetty, Shruthi, Hartmut Helmke, Matthias Kleinert und Oliver Ohneiser. „Early Callsign Highlighting using Automatic Speech Recognition to Reduce Air Traffic Controller Workload“. In 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1002493.
Der volle Inhalt der QuelleGonçalves, Yanna Torres, João Victor B. Alves, Breno Alef Dourado Sá, Lázaro Natanael da Silva, José A. Fernandes de Macedo und Ticiana L. Coelho da Silva. „MedTalkAI: Assisted Anamnesis Creation With Automatic Speech Recognition“. In Anais Estendidos do Simpósio Brasileiro de Banco de Dados, 83–88. Sociedade Brasileira de Computação - SBC, 2024. http://dx.doi.org/10.5753/sbbd_estendido.2024.243214.
Der volle Inhalt der QuelleNegoita, Alexandru, George Suciu, Svetlana Segarceanu und Dan Trufin. „SPEECH RECOGNITION SYSTEM“. In eLSE 2021. ADL Romania, 2021. http://dx.doi.org/10.12753/2066-026x-21-095.
Der volle Inhalt der QuelleGonçalves, Yanna Torres, João Victor B. Alves, Breno Alef Dourado Sá, Lázaro Natanael da Silva, José A. Fernandes de Macedo und Ticiana L. Coelho da Silva. „Speech Recognition Models in Assisting Medical History“. In Simpósio Brasileiro de Banco de Dados, 485–97. Sociedade Brasileira de Computação - SBC, 2024. http://dx.doi.org/10.5753/sbbd.2024.240270.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Automatic Text Recognition (ATR)"
Oran, D. Requirements for Distributed Control of Automatic Speech Recognition (ASR), Speaker Identification/Speaker Verification (SI/SV), and Text-to-Speech (TTS) Resources. RFC Editor, Dezember 2005. http://dx.doi.org/10.17487/rfc4313.
Der volle Inhalt der QuelleFisher, John, Eric Grimson und Alan Willsky. A Unified Multiresolution Framework for Automatic Target Recognition (ATR). Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada400047.
Der volle Inhalt der QuelleBhanu, Bir, Yingqiang Lin und Krzysztof Krawiec. Automatic Design and Synthesis of Automatic Target Recognition (ATR) Systems Using Learning Paradigms. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2003. http://dx.doi.org/10.21236/ada424338.
Der volle Inhalt der QuelleXue, Kefu, und Sam Sink. Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) Parametric Study. Fort Belvoir, VA: Defense Technical Information Center, Februar 2003. http://dx.doi.org/10.21236/ada418766.
Der volle Inhalt der QuelleRoss, Timothy D., Lori A. Westerkamp, David A. Gadd und Robert B. Kotz. Feature and Extractor Evaluation Concepts for Automatic Target Recognition (ATR). Fort Belvoir, VA: Defense Technical Information Center, Oktober 1995. http://dx.doi.org/10.21236/ada388215.
Der volle Inhalt der QuelleZucker, Steven W., und Ronald Coifman. Diffusion Maps and Geometric Harmonics for Automatic Target Recognition (ATR). Volume 2. Appendices. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada476293.
Der volle Inhalt der QuelleMoses, Randolph L., Lee C. Potter und Inder J. Gupta. Feature Extraction Using Attributed Scattering Center Models for Model-Based Automatic Target Recognition (ATR). Fort Belvoir, VA: Defense Technical Information Center, Oktober 2005. http://dx.doi.org/10.21236/ada444563.
Der volle Inhalt der QuelleTaylor, James S., und Mary C. Hulgan. Electro-Optic Identification Research Program: Computer Aided Identification (CAI) and Automatic Target Recognition (ATR). Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada624974.
Der volle Inhalt der QuelleGriffiths, Rachael M. Handwritten Text Recognition (HTR) for Tibetan Manuscripts in Cursive Script. Verlag der Österreichischen Akademie der Wissenschaften, September 2024. http://dx.doi.org/10.1553/tibschol_erc_htr.
Der volle Inhalt der QuelleBinford, Thomas O., und Tsung-Liang Chen. Context and Quasi-Invariants in Automatic Target Recognition (ATR) with Synthetic Aperture Radar (SAR) Imagery. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada400048.
Der volle Inhalt der Quelle