Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Automatic diagnosis of speech disorder“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Automatic diagnosis of speech disorder" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Automatic diagnosis of speech disorder"
Sarria Paja, Milton Orlando. „Automatic detection of Parkinson's disease from components of modulators in speech signals“. Computer and Electronic Sciences: Theory and Applications 1, Nr. 1 (14.12.2020): 71–82. http://dx.doi.org/10.17981/cesta.01.01.2020.05.
Der volle Inhalt der QuelleMesallam, Tamer A., Mohamed Farahat, Khalid H. Malki, Mansour Alsulaiman, Zulfiqar Ali, Ahmed Al-nasheri und Ghulam Muhammad. „Development of the Arabic Voice Pathology Database and Its Evaluation by Using Speech Features and Machine Learning Algorithms“. Journal of Healthcare Engineering 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/8783751.
Der volle Inhalt der QuelleWalker, Traci, Heidi Christensen, Bahman Mirheidari, Thomas Swainston, Casey Rutten, Imke Mayer, Daniel Blackburn und Markus Reuber. „Developing an intelligent virtual agent to stratify people with cognitive complaints: A comparison of human–patient and intelligent virtual agent–patient interaction“. Dementia 19, Nr. 4 (14.09.2018): 1173–88. http://dx.doi.org/10.1177/1471301218795238.
Der volle Inhalt der QuelleTawhid, Md Nurul Ahad, Siuly Siuly, Hua Wang, Frank Whittaker, Kate Wang und Yanchun Zhang. „A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG“. PLOS ONE 16, Nr. 6 (25.06.2021): e0253094. http://dx.doi.org/10.1371/journal.pone.0253094.
Der volle Inhalt der QuelleChui, Kwok Tai, Miltiadis D. Lytras und Pandian Vasant. „Combined Generative Adversarial Network and Fuzzy C-Means Clustering for Multi-Class Voice Disorder Detection with an Imbalanced Dataset“. Applied Sciences 10, Nr. 13 (01.07.2020): 4571. http://dx.doi.org/10.3390/app10134571.
Der volle Inhalt der QuelleBeavis, Lizzie, Ronan O'Malley, Bahman Mirheidari, Heidi Christensen und Daniel Blackburn. „How can automated linguistic analysis help to discern functional cognitive disorder from healthy controls and mild cognitive impairment?“ BJPsych Open 7, S1 (Juni 2021): S7. http://dx.doi.org/10.1192/bjo.2021.78.
Der volle Inhalt der QuelleDi Matteo, Daniel, Wendy Wang, Kathryn Fotinos, Sachinthya Lokuge, Julia Yu, Tia Sternat, Martin A. Katzman und Jonathan Rose. „Smartphone-Detected Ambient Speech and Self-Reported Measures of Anxiety and Depression: Exploratory Observational Study“. JMIR Formative Research 5, Nr. 1 (29.01.2021): e22723. http://dx.doi.org/10.2196/22723.
Der volle Inhalt der QuellePanek, Daria, Andrzej Skalski, Janusz Gajda und Ryszard Tadeusiewicz. „Acoustic analysis assessment in speech pathology detection“. International Journal of Applied Mathematics and Computer Science 25, Nr. 3 (01.09.2015): 631–43. http://dx.doi.org/10.1515/amcs-2015-0046.
Der volle Inhalt der QuelleBone, Daniel, Chi-Chun Lee, Matthew P. Black, Marian E. Williams, Sungbok Lee, Pat Levitt und Shrikanth Narayanan. „The Psychologist as an Interlocutor in Autism Spectrum Disorder Assessment: Insights From a Study of Spontaneous Prosody“. Journal of Speech, Language, and Hearing Research 57, Nr. 4 (August 2014): 1162–77. http://dx.doi.org/10.1044/2014_jslhr-s-13-0062.
Der volle Inhalt der QuelleCantürk, İsmail. „A Feature Driven Intelligent System for Neurodegenerative Disorder Detection: An Application on Speech Dataset for Diagnosis of Parkinson’s Disease“. International Journal on Artificial Intelligence Tools 30, Nr. 03 (Mai 2021): 2150011. http://dx.doi.org/10.1142/s0218213021500111.
Der volle Inhalt der QuelleDissertationen zum Thema "Automatic diagnosis of speech disorder"
Bezůšek, Marek. „Objektivizace Testu 3F - dysartrický profil pomocí akustické analýzy“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442568.
Der volle Inhalt der QuelleHeidtke, Uta Johanna. „Diagnosis of Auditory Processing Disorder in Children using an Adaptive Filtered Speech Test“. Thesis, University of Canterbury. Communication Disorders, 2010. http://hdl.handle.net/10092/4536.
Der volle Inhalt der QuelleWhaley, Jennifer R. „Diagnosis of an Autism Spectrum Disorder: Parents' Perceptions of the Interpretive Conference“. Oxford, Ohio : Miami University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=miami1176586163.
Der volle Inhalt der QuelleCogswell, Pamela E. „A Study of the Association Among the Diagnosis of Speech-Language Impairments and the Diagnoses of Learning Disabilities and/or Attention Deficit Hyperactivity Disorder“. PDXScholar, 1992. https://pdxscholar.library.pdx.edu/open_access_etds/4222.
Der volle Inhalt der QuelleEsteller, Rosana. „Detection of seizure onset in epileptic patients from intracranial EEG signals“. Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/15620.
Der volle Inhalt der QuelleKwok, Chui-ling Irene, und 郭翠玲. „Electropalatographic investigation of normal Cantonese speech: a qualitative and quantitative analysis“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1992. http://hub.hku.hk/bib/B38626135.
Der volle Inhalt der QuelleAmaro, Luciana. „Descrição de distorções dos sons da fala em crianças com e sem transtorno fonológico“. Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/8/8139/tde-05122008-111037/.
Der volle Inhalt der QuellePhonological and phonetic alterations can occur together in the phonological disorder compromising the articulation and the internal knowledge of the speech sounds of a language. Phonetic alterations can occur in children with typical phonological development. Several researches have shown the importance of the use of objective techniques during both the diagnosis of disorder and application of severity indexes. The aim of this research is to identify the occurrence of distortions in the speech. Also, to apply and compare severity indexes in children between five and seven years old with and without phonological disorders. 30 children with typical language development (GSTF) and 15 phonologically-disordered children (GTF) were assessed. Experimental test of Phonology (nomeation, imitation and continuous speech) and the oral motricity were applied. The PCC, PPC-R, PDI, RDI and ACI indexes were calculated based on Phonology tests. If any kind of distortion as detected in any Phonology test related to the sounds [s], [z], [?], [?], [l], [?] and [?], the specific test to verify distortion was used, for confirmation and perceptual classification of kind distortion, besides the palatography and tongue graph. The results pointed that in the GSTF, 23,3% of the children presented distortion in the Phonology tests and continuous speech in the [s], [z] and [?] sounds; there was no evidence of statistic differences between number of subjects that presented distortion in the GSTF and in the GTF. There was significant difference only in the imitation and continuous speech tests in the age range of seven years, with more occurrence of [s] distortion in the GTF compared to the GSTF. Only the GTF presented [] distortions. It seems that this distortion is more related to the phonological disorder. The palatography and the tongue graph confirmed the perceptive analysis, offering the advantage of showing the exact place of production. All subjects from the GSTF and GTF that did not present distortions had better severity indexes compared to the subjects that presented it. The ACI index indicated that the GSTF without distortion had better performance, showing that it is adequate to measure articulatory competence.
Pokorný, Vojtěch. „Systém pro odstranění vad řeči u dětí“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316837.
Der volle Inhalt der QuelleSodré, Bruno Ribeiro. „Reconhecimento de padrões aplicados à identificação de patologias de laringe“. Universidade Tecnológica Federal do Paraná, 2016. http://repositorio.utfpr.edu.br/jspui/handle/1/2013.
Der volle Inhalt der QuelleDiseases that affect the larynx have been considerably increased in recent years due to the condition of nowadays society where there have been unhealthy habits like smoking, alcohol and tobacco and an increased vocal abuse, perhaps due to the increase in noise pollution, especially in large urban cities. Currently the exam performed by per-oral endoscopy (aimed to identify laryngeal pathologies) have been videolaryngoscopy and videostroboscopy, both invasive and often uncomfortable to the patient. Seeking to improve the comfort of the patients who need to undergo through these procedures, this study aims to identify acoustic patterns that can be applied to the identification of laryngeal pathologies in order to creating a new non-invasive larynx assessment method. Here two different configurations of neural networks were used. The first one was generated from 524.287 combinations of 19 acoustic measurements to classify voices into normal or from a diseased larynx, and achieved an max accuracy of 99.5% (96.99±2.08%). Using 3 and 6 rotated measurements (obtained from the principal components analysis method), the accuracy was 93.98±0.24% and 94.07±0.29%, respectively. With 6 rotated measurements from a previouly standardization of the 19 acoustic measurements, the accuracy was 97.88±1.53%. The second one, to classify 23 different voice types (including normal voices), showed better accuracy in identifying hiperfunctioned larynxes and normal voices, with 58.23±18.98% and 52.15±18.31%, respectively. The worst accuracy was obtained from vocal fatigues, with 0.57±1.99%. Excluding normal voices of the analysis, hyperfunctioned voices remained the most easily identifiable (with an accuracy of 57.3±19.55%) followed by anterior-posterior constriction (with 18.14±11.45%), and the most difficult condition to be identified remained vocal fatigue (with 0.7±2.14%). Re-sampling the neural networks input vectors, it was obtained accuracies of 25.88±10.15%, 21.47±7.58%, and 18.44±6.57% from such networks with 20, 30, and 40 hidden layer neurons, respectively. For comparison, classification using support vector machine produced an accuracy of 67±6.2%. Thus, it was shown that the acoustic measurements need to be improved to achieve better results of classification among the studied laryngeal pathologies. Even so, it was found that is possible to discriminate normal from dysphonic speakers.
Vošická, Edita. „Autismus - Použití systémů alternativní a augmentativní komunikace u jedinců s poruchou autistického spektra“. Master's thesis, 2012. http://www.nusl.cz/ntk/nusl-306901.
Der volle Inhalt der QuelleBücher zum Thema "Automatic diagnosis of speech disorder"
Baghai-Ravary, Ladan. Automatic Speech Signal Analysis for Clinical Diagnosis and Assessment of Speech Disorders. New York, NY: Springer New York, 2013.
Den vollen Inhalt der Quelle findenBaghai-Ravary, Ladan, und Steve W. Beet. Automatic Speech Signal Analysis for Clinical Diagnosis and Assessment of Speech Disorders. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-4574-6.
Der volle Inhalt der QuelleDodd, Barbara. The differential diagnosis and treatment of children with speech disorder. London: Whurr Publishers, 1995.
Den vollen Inhalt der Quelle findenDodd, Barbara. The differential diagnosis and treatment of children with speech disorder. London: Whurr, 1995.
Den vollen Inhalt der Quelle findenManaging organizational change: Human factors and automation. Philadelphia: Taylor & Francis, 1988.
Den vollen Inhalt der Quelle findenLearning disabilities sourcebook: Basic consumer health information about dyslexia, dyscalculia, dysgraphia, speech and communication disorders, auditory and visual processing disorders, and other conditions that make learning difficult, including attention deficit hyperactivity disorder, down syndrome and other chromosomal disorders, fetal alcohol spectrum disorders, hearing and visual impairment, autism and other pervasive developmental disorders, and traumatic brain Injury; along with facts about diagnosing learning disabilities, early intervention, the special education process, legal protections, assistive technology, and accommodations, and guidelines for life-stage transitions, suggestions for coping with daily challenges, a glossary of related terms, and a directory of additional resources. 4. Aufl. Detroit, MI: Omnigraphics, 2012.
Den vollen Inhalt der Quelle findenBaghai-Ravary, Ladan, und Steve W. Beet. Automatic Speech Signal Analysis for Clinical Diagnosis and Assessment of Speech Disorders. Springer, 2012.
Den vollen Inhalt der Quelle findenBaghai-Ravary, Ladan. Automatic Speech Signal Analysis for Clinical Diagnosis and Assessment of Speech Disorders. Springer, 2012.
Den vollen Inhalt der Quelle findenDodd, Barbara. Differential Diagnosis of Children with Speech Disorder. Not Avail, 1994.
Den vollen Inhalt der Quelle findenBarbara, Dodd, Hrsg. Differential diagnosis and treatment of children with speech disorder. 2. Aufl. London: Whurr, 2005.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Automatic diagnosis of speech disorder"
Kaneri, Sushmita, Deepali Joshi und Ranjana Jadhav. „Automatic Diagnosis of Attention Deficit/Hyperactivity Disorder“. In Machine Learning and Information Processing, 127–35. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1884-3_12.
Der volle Inhalt der QuelleJain, Deepti, Sandhya Arora und C. K. Jha. „Diagnosis of Psychopathic Personality Disorder with Speech Patterns“. In Communications in Computer and Information Science, 411–21. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0108-1_38.
Der volle Inhalt der QuelleYang, Zhixin, Hualiang Li, Li Li, Kai Zhang, Chaolin Xiong und Yuzhong Liu. „Speech-Based Automatic Recognition Technology for Major Depression Disorder“. In Human Centered Computing, 546–53. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37429-7_55.
Der volle Inhalt der QuelleDodd, Barbara, Tania Russell und Michael Oerlemans. „Does a Past History of Speech Disorder Predict Literacy Difficulties?“ In Reading Disabilities: Diagnosis and Component Processes, 199–212. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1988-7_9.
Der volle Inhalt der QuelleLopez-de-Ipiña, K., J. Solé-Casals, J. B. Alonso, C. M. Travieso, M. Ecay und P. Martinez-Lage. „On the Alzheimer’s Disease Diagnosis: Automatic Spontaneous Speech Analysis“. In Transactions on Computational Collective Intelligence XVII, 272–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44994-3_14.
Der volle Inhalt der QuellePompili, Anna, Alberto Abad, Paolo Romano, Isabel P. Martins, Rita Cardoso, Helena Santos, Joana Carvalho, Isabel Guimarães und Joaquim J. Ferreira. „Automatic Detection of Parkinson’s Disease: An Experimental Analysis of Common Speech Production Tasks Used for Diagnosis“. In Text, Speech, and Dialogue, 411–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64206-2_46.
Der volle Inhalt der QuelleIgual, Laura, Joan Carles Soliva, Roger Gimeno, Sergio Escalera, Oscar Vilarroya und Petia Radeva. „Automatic Internal Segmentation of Caudate Nucleus for Diagnosis of Attention-Deficit/Hyperactivity Disorder“. In Lecture Notes in Computer Science, 222–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31298-4_27.
Der volle Inhalt der QuelleMumtaz, Wajid, Lukáš Vařeka und Roman Mouček. „Investigation of EEG-Based Graph-Theoretic Analysis for Automatic Diagnosis of Alcohol Use Disorder“. In Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions, 205–18. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30493-5_23.
Der volle Inhalt der QuelleLópez-de-Ipiña, Karmele, Jesús B. Alonso, Nora Barroso, Marcos Faundez-Zanuy, Miriam Ecay, Jordi Solé-Casals, Carlos M. Travieso, Ainara Estanga und Aitzol Ezeiza. „New Approaches for Alzheimer’s Disease Diagnosis Based on Automatic Spontaneous Speech Analysis and Emotional Temperature“. In Lecture Notes in Computer Science, 407–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-35395-6_55.
Der volle Inhalt der Quelle„The differential diagnosis of thought disorder“. In Schizophrenic Speech, 48–79. Cambridge University Press, 2001. http://dx.doi.org/10.1017/cbo9780511544057.004.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Automatic diagnosis of speech disorder"
Hammami, Nacereddine, Mouldi Bedda, Nadir Farah und Sihem Mansouri. „/r/-Letter disorder diagnosis (/r/-LDD): Arabic speech database development for automatic diagnosis of childhood speech disorders (Case study)“. In 2015 Intelligent Systems and Computer Vision (ISCV). IEEE, 2015. http://dx.doi.org/10.1109/isacv.2015.7105542.
Der volle Inhalt der QuelleVyas, Garima, Malay Kishore Dutta, Jiri Prinosil und Pavol Harar. „An automatic diagnosis and assessment of dysarthric speech using speech disorder specific prosodic features“. In 2016 39th International Conference on Telecommunications and Signal Processing (TSP). IEEE, 2016. http://dx.doi.org/10.1109/tsp.2016.7760933.
Der volle Inhalt der QuelleAlbornoz, E. M., L. D. Vignolo, C. E. Martinez und D. H. Milone. „Genetic wrapper approach for automatic diagnosis of speech disorders related to Autism“. In 2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI). IEEE, 2013. http://dx.doi.org/10.1109/cinti.2013.6705227.
Der volle Inhalt der QuelleSrivastava, Neelesh, Mansi Bhatnagar, Anjali Yadav, Malay Kishore Dutta und Carlos M. Travieso. „Machine learning based improved automatic diagnosis of cardiac disorder“. In the 2nd International Conference. New York, New York, USA: ACM Press, 2019. http://dx.doi.org/10.1145/3309772.3309783.
Der volle Inhalt der QuelleRen, Zhao, Jing Han, Nicholas Cummins, Qiuqiang Kong, Mark D. Plumbley und Björn W. Schuller. „Multi-instance Learning for Bipolar Disorder Diagnosis using Weakly Labelled Speech Data“. In DPH2019: 9th International Digital Public Health Conference (2019). New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3357729.3357743.
Der volle Inhalt der QuelleIjitona, T. B., J. J. Soraghan, A. Lowit, G. Di-Caterina und H. Yue. „Automatic Detection of Speech Disorder in Dysarthria using Extended Speech Feature Extraction and Neural Networks Classification“. In IET 3rd International Conference on Intelligent Signal Processing (ISP 2017). Institution of Engineering and Technology, 2017. http://dx.doi.org/10.1049/cp.2017.0360.
Der volle Inhalt der Quelle„Alzheimer Disease Diagnosis based on Automatic Spontaneous Speech Analysis“. In Special Session on Challenges in Neuroengineering. SciTePress - Science and and Technology Publications, 2012. http://dx.doi.org/10.5220/0004188606980705.
Der volle Inhalt der QuelleChen, Chin-Po, Xian-Hong Tseng, Susan Shur-Fen Gau und Chi-Chun Lee. „Computing Multimodal Dyadic Behaviors During Spontaneous Diagnosis Interviews Toward Automatic Categorization of Autism Spectrum Disorder“. In Interspeech 2017. ISCA: ISCA, 2017. http://dx.doi.org/10.21437/interspeech.2017-563.
Der volle Inhalt der QuellePahwa, Anjali, Gaurav Aggarwal und Ashutosh Sharma. „A machine learning approach for identification & diagnosing features of Neurodevelopmental disorders using speech and spoken sentences“. In 2016 International Conference on Computing, Communication and Automation (ICCCA). IEEE, 2016. http://dx.doi.org/10.1109/ccaa.2016.7813749.
Der volle Inhalt der QuellePadilla, Jennifer, Thierry Morlet, Kyoko Nagao, Rachel Crum, L. Ashleigh Greenwood, Jessica Loson und Sarah Zavala. „Speech perception capabilities in children a few years after initial diagnosis of auditory processing disorder“. In 169th Meeting of the Acoustical Society of America. Acoustical Society of America, 2016. http://dx.doi.org/10.1121/2.0000169.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Automatic diagnosis of speech disorder"
Cogswell, Pamela. A Study of the Association Among the Diagnosis of Speech-Language Impairments and the Diagnoses of Learning Disabilities and/or Attention Deficit Hyperactivity Disorder. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.6104.
Der volle Inhalt der Quelle