Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Automated depression estimation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Automated depression estimation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Automated depression estimation"
Mohamed, Islam Ismail, Mohamed Tarek El-Wakad, Khaled Abbas Shafie, Mohamed A. Aboamer und Nader A. Rahman Mohamed. „Major depressive disorder: early detection using deep learning and pupil diameter“. Indonesian Journal of Electrical Engineering and Computer Science 35, Nr. 2 (01.08.2024): 916. http://dx.doi.org/10.11591/ijeecs.v35.i2.pp916-932.
Der volle Inhalt der QuelleBensassi, I., J. Lopez-Castroman, R. Calati und P. Courtet. „Hippocampal Volume Recovery After Depression: Evidence from an Elderly Sample“. European Psychiatry 41, S1 (April 2017): S170. http://dx.doi.org/10.1016/j.eurpsy.2017.01.2061.
Der volle Inhalt der QuelleKALPANA, V., S. T. HAMDE und L. M. WAGHMARE. „NON-INVASIVE ESTIMATION OF DIABETES RELATED FEATURES FROM ECG USING GRAPHICAL PROGRAMAMING LANGUAGE AND MATLAB“. Journal of Mechanics in Medicine and Biology 12, Nr. 04 (September 2012): 1240016. http://dx.doi.org/10.1142/s0219519412400167.
Der volle Inhalt der QuelleZhang, Xin, Binayak Ojha, Hermann Bichlmaier, Ingo Hartmann und Heinz Kohler. „Extensive Gaseous Emissions Reduction of Firewood-Fueled Low Power Fireplaces by a Gas Sensor Based Advanced Combustion Airflow Control System and Catalytic Post-Oxidation“. Sensors 23, Nr. 10 (11.05.2023): 4679. http://dx.doi.org/10.3390/s23104679.
Der volle Inhalt der QuelleCopăcean, Loredana, Luminiţa Cojocariu, M. Simon, I. Zisu und C. Popescu. „GEOMATIC TECHNIQUES APPLIED FOR REMOTE DETERMINATION OF THE HAY QUANTITY IN AGROSILVOPASTORAL SYSTEMS“. Present Environment and Sustainable Development 14, Nr. 2 (14.10.2020): 89–101. http://dx.doi.org/10.15551/pesd2020142006.
Der volle Inhalt der QuelleAn, Yi, Zhen Qu, Ning Xu und Zhaxi Nima. „Automatic depression estimation using facial appearance“. Journal of Image and Graphics 25, Nr. 11 (2020): 2415–27. http://dx.doi.org/10.11834/jig.200322.
Der volle Inhalt der QuelleSun, Hao, Jiaqing Liu, Shurong Chai, Zhaolin Qiu, Lanfen Lin, Xinyin Huang und Yenwei Chen. „Multi-Modal Adaptive Fusion Transformer Network for the Estimation of Depression Level“. Sensors 21, Nr. 14 (12.07.2021): 4764. http://dx.doi.org/10.3390/s21144764.
Der volle Inhalt der QuelleKashid, Onkar, Rashmi Bhumbare, Eshwar Dange, Ajit Waghmare und Raj Nikam. „Depression Monitoring System via Social Media Data using Machine Learning frameworkk“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 5 (31.05.2023): 3431–37. http://dx.doi.org/10.22214/ijraset.2023.51811.
Der volle Inhalt der QuelleKaur, Chamandeep, Preeti Singh und Sukhtej Sahni. „Electroencephalography-Based Source Localization for Depression Using Standardized Low Resolution Brain Electromagnetic Tomography – Variational Mode Decomposition Technique“. European Neurology 81, Nr. 1-2 (2019): 63–75. http://dx.doi.org/10.1159/000500414.
Der volle Inhalt der QuelleGhosh, Priyanka, Siddharth Talwar und Arpan Banerjee. „Unsupervised Characterization of Prediction Error Markers in Unisensory and Multisensory Streams Reveal the Spatiotemporal Hierarchy of Cortical Information Processing“. eneuro 11, Nr. 5 (Mai 2024): ENEURO.0251–23.2024. http://dx.doi.org/10.1523/eneuro.0251-23.2024.
Der volle Inhalt der QuelleDissertationen zum Thema "Automated depression estimation"
Agarwal, Navneet. „Autοmated depressiοn level estimatiοn : a study οn discοurse structure, input representatiοn and clinical reliability“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC215.
Der volle Inhalt der QuelleGiven the severe and widespread impact of depression, significant research initiatives have been undertaken to define systems for automated depression assessment. The research presented in this dissertation revolves around the following questions that remain relatively unexplored despite their relevance within automated depression assessment domain; (1) the role of discourse structure in mental health analysis, (2) the relevance of input representation towards the predictive abilities of neural network models, and (3) the importance of domain expertise in automated depression detection.The dyadic nature of patient-therapist interviews ensures the presence of a complex underlying structure within the discourse. Within this thesis, we first establish the importance of therapist questions within the neural network model's input, before showing that a sequential combination of patient and therapist input is a sub-optimal strategy. Consequently, Multi-view architectures are proposed as a means of incorporating the discourse structure within the learning process of neural networks. Experimental results with two different text encodings show the advantages of the proposed multi-view architectures, validating the relevance of retaining discourse structure within the model's training process.Having established the need to retain the discourse structure within the learning process, we further explore graph based text representations. The research conducted in this context highlights the impact of input representations not only in defining the learning abilities of the model, but also in understanding their predictive process. Sentence Similarity Graphs and Keyword Correlation Graphs are used to exemplify the ability of graphical representations to provide varying perspectives of the same input, highlighting information that can not only improve the predictive performance of the models but can also be relevant for medical professionals. Multi-view concept is also incorporated within the two graph structures to further highlight the difference in the perspectives of the patient and the therapist within the same interview. Furthermore, it is shown that visualization of the proposed graph structures can provide valuable insights indicative of subtle changes in patient and therapist's behavior, hinting towards the mental state of the patient.Finally, we highlight the lack of involvement of medical professionals within the context of automated depression detection based on clinical interviews. As part of this thesis, clinical annotations of the DAIC-WOZ dataset were performed to provide a resource for conducting interdisciplinary research in this field. Experiments are defined to study the integration of the clinical annotations within the neural network models applied to symptom-level prediction task within the automated depression detection domain. Furthermore, the proposed models are analyzed in the context of the clinical annotations to analogize their predictive process and psychological tendencies with those of medical professionals, a step towards establishing them as reliable clinical tools
Konferenzberichte zum Thema "Automated depression estimation"
Wang, Han Yi, Xujin Liu, Pulkit Grover und Alireza Chamanzar. „A Spatial-Temporal Graph Attention Network for Automated Detection and Width Estimation of Cortical Spreading Depression Using Scalp EEG“. In 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2023. http://dx.doi.org/10.1109/embc40787.2023.10340281.
Der volle Inhalt der QuelleGabín, Jorge, Anxo Pérez und Javier Parapar. „Multiple-Choice Question Answering Models for Automatic Depression Severity Estimation“. In XoveTIC Conference. Basel Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/engproc2021007023.
Der volle Inhalt der QuelleGabín, Jorge, Anxo Pérez und Javier Parapar. „Multiple-Choice Question Answering Models for Automatic Depression Severity Estimation“. In XoveTIC Conference. Basel Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/engproc2021007023.
Der volle Inhalt der QuelleCraiu, Marius, Andreea Craiu, Marmureanu Alexandru, Mihail Diaconescu und Marius Mihai. „NEAR-REAL TIME SOURCE PARAMETERS ESTIMATION OF THE INTENSE SEISMIC SEQUENCE RECORDED IN 2023 - TG. JIU AREA, ROMANIA“. In 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023/1.1/s05.70.
Der volle Inhalt der QuelleLing, Tianfei, Deyuan Chen, Tingshao Zhu und Baobin Li. „Fusing Local-Global Facial Features by NFFT for Automatic Depression Estimation“. In 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2023. http://dx.doi.org/10.1109/bibm58861.2023.10385416.
Der volle Inhalt der QuelleSmailis, Christos, Nikolaos Sarafianos, Theodoros Giannakopoulos und Stavros Perantonis. „Fusing active orientation models and mid-term audio features for automatic depression estimation“. In PETRA '16: 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2910674.2935856.
Der volle Inhalt der QuelleWu, Wen, Chao Zhang und Philip C. Woodland. „Confidence Estimation for Automatic Detection of Depression and Alzheimer’s Disease Based on Clinical Interviews“. In Interspeech 2024, 3160–64. ISCA: ISCA, 2024. http://dx.doi.org/10.21437/interspeech.2024-546.
Der volle Inhalt der Quelle