Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Austenite-Ferrite phase transformation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Austenite-Ferrite phase transformation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Austenite-Ferrite phase transformation"
Padilha, Angelo Fernando, D. J. M. Aguiar und R. L. Plaut. „Duplex Stainless Steels: A Dozen of Significant Phase Transformations“. Defect and Diffusion Forum 322 (März 2012): 163–74. http://dx.doi.org/10.4028/www.scientific.net/ddf.322.163.
Der volle Inhalt der QuelleVillalobos Vera, Doris Ivette, und Ivan Mendoza Bravo. „Effect of annealing temperature on the microstructure of hyperduplex stainless steels“. Ingeniería Investigación y Tecnología 20, Nr. 2 (01.03.2019): 1–6. http://dx.doi.org/10.22201/fi.25940732e.2019.20n2.024.
Der volle Inhalt der QuelleBräutigam–Matus, Krishna, Gerardo Altamirano, Armando Salinas, Alfredo Flores und Frank Goodwin. „Experimental Determination of Continuous Cooling Transformation (CCT) Diagrams for Dual-Phase Steels from the Intercritical Temperature Range“. Metals 8, Nr. 9 (28.08.2018): 674. http://dx.doi.org/10.3390/met8090674.
Der volle Inhalt der QuelleWang, Qihui, Kun Chen, Kejia Liu, Lianbo Wang, Yu Chu und Bichen Xie. „Study on Characterization of Phase Transition in Continuous Cooling of Carbon Steel Using In Situ Thermovoltage Measurement“. Coatings 14, Nr. 8 (03.08.2024): 980. http://dx.doi.org/10.3390/coatings14080980.
Der volle Inhalt der QuelleCheng, Wei Chun, Kun Hsien Lee, Shu Mao Lin und Shao Yu Chien. „The Observation of Austenite to Ferrite Martensitic Transformation in an Fe-Mn-Al Austenitic Steel after Cooling from High Temperature“. Materials Science Forum 879 (November 2016): 335–38. http://dx.doi.org/10.4028/www.scientific.net/msf.879.335.
Der volle Inhalt der QuelleYu, Dunji, Yan Chen, Lu Huang und Ke An. „Tracing Phase Transformation and Lattice Evolution in a TRIP Sheet Steel under High-Temperature Annealing by Real-Time In Situ Neutron Diffraction“. Crystals 8, Nr. 9 (11.09.2018): 360. http://dx.doi.org/10.3390/cryst8090360.
Der volle Inhalt der QuelleSun, Fei, Yoshihisa Mino, Toshio Ogawa, Ta-Te Chen, Yukinobu Natsume und Yoshitaka Adachi. „Evaluation of Austenite–Ferrite Phase Transformation in Carbon Steel Using Bayesian Optimized Cellular Automaton Simulation“. Materials 16, Nr. 21 (28.10.2023): 6922. http://dx.doi.org/10.3390/ma16216922.
Der volle Inhalt der QuelleHu, Feng, und Kai Ming Wu. „Isothermal Transformation of Low Temperature Super Bainite“. Advanced Materials Research 146-147 (Oktober 2010): 1843–48. http://dx.doi.org/10.4028/www.scientific.net/amr.146-147.1843.
Der volle Inhalt der QuelleZrník, Jozef, O. Muránsky, Petr Lukáš, Petr Šittner und Z. Nový. „In Situ Neutron Diffraction Analysis of Phase Transformation Kinetics in TRIP Steel“. Materials Science Forum 502 (Dezember 2005): 339–44. http://dx.doi.org/10.4028/www.scientific.net/msf.502.339.
Der volle Inhalt der QuelleLee, Sang Hwan, Jong Min Choi, Yeol Rae Cho und Kyung Jong Lee. „The Effects of Si and Deformation on the Phase Transformation in Dual Phase Steels“. Solid State Phenomena 124-126 (Juni 2007): 1617–20. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.1617.
Der volle Inhalt der QuelleDissertationen zum Thema "Austenite-Ferrite phase transformation"
Perevoshchikova, Nataliya. „Modeling of austenite to ferrite transformation in steels“. Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0342/document.
Der volle Inhalt der QuelleTransformation in steels focusing on the thermodynamic and kinetics conditions at the alpha/gamma interfaces during the ferrite growth. The first chapter deals with the determination of thermodynamic equilibria between alpha and gamma with CalPhad thermodynamic description. We have developed a new hybrid algorithm combining the construction of a convex hull to the more classical Newton-Raphson method to compute two phase equilibria in multicomponent alloys with two sublattices. Its capabilities are demonstrated on ternary Fe-C-Cr and quaternary Fe-C-Cr-Mo steels. In the second chapter, we present a thick interface model aiming to predict the whole spectrum of conditions at an alpha/gamma interface during ferrite growth, from full equilibrium to paraequilibrium with intermediate cases as the most interesting feature. The model, despite its numerous simplifying assumptions to facilitate its numerical implementation, allows to predict some peculiar kinetics in Fe-C-X systems with a minimum of fitting parameters, mainly the ratio between the diffusivities of the substitutional element inside the thick interface and in bulk austenite. The third chapter deals with the phase field model of austenite to ferrite transformation in steels. A thorough analysis on the conditions at the interface has been performed using the technique of matched asymptotic expansions. Special attention is given to clarify the role of the interface mobility on the growth regimes both in simple Fe-C alloys and in more complex Fe-C-Mn alloys
Pariser, Gerhard Carolus. „Modeling the austenite to ferrite phase transformation for steel development /“. Aachen : Shaker, 2006. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=014913109&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Der volle Inhalt der QuellePariser, Gerhard C. [Verfasser]. „Modeling the Austenite to Ferrite Phase Transformation for Steel Development / Gerhard C Pariser“. Aachen : Shaker, 2006. http://d-nb.info/1170529216/34.
Der volle Inhalt der QuelleLiebaut, Christophe. „Rhéologie de la déformation plastique d'un acier Fe-C durant sa transformation de phase "austenite-->ferrite + perlite"“. Vandoeuvre-les-Nancy, INPL, 1988. http://www.theses.fr/1988NAN10451.
Der volle Inhalt der QuelleBorges, Gomes Lima Yuri. „Μοdélisatiοn atοmistique de la transfοrmatiοn de phase austénite-ferrite dans les aciers“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR086.
Der volle Inhalt der QuelleThis thesis applies the Quasiparticle Approach (QA) to investigate the atomic scale mechanisms driving the phase transformation from FCC to BCC structures in iron. Initially, the study focuses on pure iron, providing detailed results into the nature and role of dislocations, at the FCC-BCC interface. It was shown that the FCC-BCC interface is semi-coherent and stepped, with two sets of transformations dislocations at the interface. The QA framework reveals how each orientation relationship (OR) influences the interface characteristics. Although the ORs displayed different interface structures, all were ultimately found to follow the same atomic transformation path, driven by the glide of transformation dislocations at the interface. It was concluded that the complete FCC to BCC phase transformation involves the action of the Kurdjumov-Sachs (KS) transformation mechanism in two variants along the two sets of dislocations, with the Kurdjumov-Sachs-Nishiyama (KSN) mechanism emerging as the average of the two KS mechanisms. This detailed description served as a basis for the study of Fe-C systems, where carbon segregation at the interface was observed. Moreover, it was shown that the carbon concentration profiles were consistent with local equilibrium conditions at the interface
Wang, Li. „Effects of niobium on phase transformations from austenite to ferrite in low carbon steels“. Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/12012.
Der volle Inhalt der QuelleKim, Yoon-Jun. „Phase Transformations in Cast Duplex Stainless Steels“. Ames, Iowa : Oak Ridge, Tenn. : Ames Laboratory ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2004. http://www.osti.gov/servlets/purl/837274-V0QAJQ/webviewable/.
Der volle Inhalt der QuellePublished through the Information Bridge: DOE Scientific and Technical Information. "IS-T 2322" Yoon-Jun Kim. US Department of Energy 12/19/2004. Report is also available in paper and microfiche from NTIS.
Dalton, John Christian. „Surface Hardening of Duplex Stainless Steel 2205“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1480696856644048.
Der volle Inhalt der QuelleBuchteile zum Thema "Austenite-Ferrite phase transformation"
An, Dong, Shiyan Pan, Qing Yu, Chen Lin, Ting Dai, Bruce Krakauer und Mingfang Zhu. „Modeling of Ferrite-Austenite Phase Transformation“. In TMS2015 Supplemental Proceedings, 791–98. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093466.ch96.
Der volle Inhalt der QuelleAn, Dong, Shiyan Pan, Qing Yu, Chen Lin, Ting Dai, Bruce Krakauer und Mingfang Zhu. „Modeling of Ferrite-Austenite Phase Transformation“. In TMS 2015 144th Annual Meeting & Exhibition, 791–98. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48127-2_96.
Der volle Inhalt der QuelleLópez-Baltazar, Alejandro, Armando Salinas-Rodríguez und Enrique Nava-Vázquez. „Austenite-Ferrite Transformation in Hot Rolled Mn-Cr-Mo Dual Phase Steels“. In Advanced Structural Materials III, 79–84. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-446-4.79.
Der volle Inhalt der QuelleGamsjäger, Ernst. „Kinetics of the Austenite-to-Ferrite Phase Transformation - From the Intrinsic to an Effective Interface Mobility“. In THERMEC 2006, 2570–75. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.2570.
Der volle Inhalt der Quelle„Isothermal and Continuous Cooling Transformation Diagrams“. In Steels, 197–211. 2. Aufl. ASM International, 2015. http://dx.doi.org/10.31399/asm.tb.spsp2.t54410197.
Der volle Inhalt der QuelleSietsma, J. „Nucleation and growth during the austenite-to-ferrite phase transformation in steels after plastic deformation“. In Phase Transformations in Steels, 505–26. Elsevier, 2012. http://dx.doi.org/10.1533/9780857096104.4.505.
Der volle Inhalt der QuelleTabiyeva, Yerkezhan, Bauyrzhan Rakhadilov, Gulzhaz Uazyrkhanova und Waqar Ahmed. „Surface Hardening on Wheel Steel Using Electrolytic Plasma“. In Innovations in Materials Chemistry, Physics, and Engineering Research, 197–210. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-6830-2.ch005.
Der volle Inhalt der Quelle„Pearlite, Ferrite, and Cementite“. In Steels, 39–62. 2. Aufl. ASM International, 2015. http://dx.doi.org/10.31399/asm.tb.spsp2.t54410039.
Der volle Inhalt der QuelleLiu, Y., P. R. China, F. Sommer und E. J. Mittemeijer. „Nature and kinetics of the massive austenite-ferrite phase transformations in steels“. In Phase Transformations in Steels, 311–81. Elsevier, 2012. http://dx.doi.org/10.1533/9780857096104.2.311.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Austenite-Ferrite phase transformation"
Hatakeyama, Tomotaka, Kota Sawada, Masaru Suzuki und Makoto Watanabe. „Microstructure of Modified 9Cr-1Mo Steel Manufactured via Laser Powder Bed Fusion“. In AM-EPRI 2024, 365–72. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.am-epri-2024p0365.
Der volle Inhalt der QuelleLi, Zhichao (Charlie), B. Lynn Ferguson, Edward Lee, Stefan Habean und Jason Meyer. „Sources of Heat Treatment Distortion and Approaches for Distortion Reduction during Quench Hardening Process“. In IFHTSE 2024, 132–38. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.ifhtse2024p0132.
Der volle Inhalt der QuelleToloui, Morteza, und Matthias Militzer. „Phase Field Modelling of Microstructure Evolution in the HAZ of X80 Linepipe Steel“. In 2012 9th International Pipeline Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ipc2012-90378.
Der volle Inhalt der QuelleLiu, Dehao, Gang Wang, Zhenguo Nie und Yiming (Kevin) Rong. „Numerical Simulation of the Austenitizing Process in Hypoeutectoid Fe-C Steels“. In ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/msec2014-3948.
Der volle Inhalt der QuelleGhosh, Suhash, und Chittaranjan Sahay. „Modeling Phase Transformation Kinetics and Their Effect on Hardness and Hardness Depth in Laser Hardening of Hypoeutectoid Steel“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50175.
Der volle Inhalt der QuelleYuan, Zhetao, Satoru Kobayashi und Masao Takeyama. „Microstructure Control Using the Formation of Laves Phase through Interphase Precipitation in Ferritic Heat Resistant Steels“. In AM-EPRI 2019, herausgegeben von J. Shingledecker und M. Takeyama. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.am-epri-2019p0090.
Der volle Inhalt der QuelleSilwal, Bishal, und Michael Santangelo. „Vibration Assisted Hot-Wire Gas-Tungsten Arc Welding of Duplex Stainless Steel 2205“. In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67665.
Der volle Inhalt der QuelleKim, Jeong-Tae, Yeong-Soo Lee, Byeong-Ook Kong und Seog-Hyeon Ryu. „Thermal Histories Causing Low Hardness and the Minimum Hardness Requirement in a MOD.9Cr1Mo Steel for Boiler“. In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71255.
Der volle Inhalt der QuellePolishetty, Ashwin, Guy Littlefair, Thomas Musselwhite und Chinmay Sonavane. „A Preliminary Study on Machinability Assessment of Nanobainite Steel“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64004.
Der volle Inhalt der QuelleMusonda, Vincent, und Esther T. Akinlabi. „Quantitative Characterisation of Pearlite Morphology in Hot-Rolled Carbon Steel“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10690.
Der volle Inhalt der Quelle