Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Auditory perception.

Zeitschriftenartikel zum Thema „Auditory perception“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Auditory perception" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Deny Nitalia Mindrawati, Grahita Chandrarin und Harianto Respati. „The Determinant Of Auditor Career Survivability Adopting The Blockchain Technology“. Brilliant International Journal Of Management And Tourism 4, Nr. 1 (26.01.2024): 151–73. http://dx.doi.org/10.55606/bijmt.v4i1.2758.

Der volle Inhalt der Quelle
Annotation:
This empirical study examined the influence of the auditor perspective on the supportive factors of blockchain technology adoption and the implication on auditory career survivability. The current research population consisted of all auditors in Indonesia, 6.034 individuals. The researchers used the Slovin formula to take 375 respondents. The researchers analyzed the obtained data with a validity test, reliability test, and path analysis. The results found the perception of the auditor about the positive and significant influencing factors toward the blockchain technology adoption and survivability of the auditor's career. Blockchain technology adoption could not moderate the survivability of an auditor's career. The current research novelty dealt with the examined variables, from the qualitative study. Then, the researchers developed the research into quantitative research to provide significant evidence.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Haas, Ellen C. „Auditory Perception“. Proceedings of the Human Factors Society Annual Meeting 36, Nr. 3 (Oktober 1992): 247. http://dx.doi.org/10.1518/107118192786751817.

Der volle Inhalt der Quelle
Annotation:
Auditory perception involves the human listener's awareness or apprehension of auditory stimuli in the environment. Auditory stimuli, which include speech communications as well as non-speech signals, occur in the presence and absence of environmental noise. Non-speech auditory signals range from simple pure tones to complex signals found in three-dimensional auditory displays. Special hearing protection device (HPD) designs, as well as additions to conventional protectors, have been developed to improve speech communication and auditory perception capabilities of those exposed to noise. The thoughtful design of auditory stimuli and the proper design, selection, and use of HPDs within the environment can improve human performance and reduce accidents. The purpose of this symposium will be to discuss issues in auditory perception and to describe methods to improve the perception of auditory stimuli in environments with and without noise. The issues of interest include the perception of non-speech auditory signals and the improvement of auditory perception capabilities of persons exposed to noise. The first three papers of this symposium describe the perception of non-speech auditory signals. Ellen Haas defines the extent to which certain signal elements affect the perceived urgency of auditory warning signals. Michael D. Good and Dr. Robert H. Gilkey investigate free-field masking as a function of the spatial separation between signal and masker sounds within the horizontal and median planes. Jeffrey M. Gerth explores the discrimination of complex auditory signal components that differ by sound category, temporal pattern, density, and component manipulation. The fourth paper of this symposium focuses upon the improvement of auditory perception capabilities of persons exposed to hazardous noise, and who must wear hearing protection. Special HPD designs, as well as additions to conventional protectors, have been developed to improve speech communication and auditory perception capabilities of persons exposed to noise. Dr. John G. Casali reviews several new HPD technologies and describes construction features, empirical performance data, and applications of each device. These papers illustrate current research issues in the perception of auditory signals. The issues are all relevant to the human factors engineering of auditory signals and personal protective gear. The perception of auditory stimuli can be improved by the thoughtful human factors design of auditory stimuli and by the proper use of HPDs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

PURWINS, HENDRIK, BENJAMIN BLANKERTZ und KLAUS OBERMAYER. „Computing auditory perception“. Organised Sound 5, Nr. 3 (Dezember 2000): 159–71. http://dx.doi.org/10.1017/s1355771800005069.

Der volle Inhalt der Quelle
Annotation:
In this paper the ingredients of computing auditory perception are reviewed. On the basic level there is neurophysiology, which is abstracted to artificial neural nets (ANNs) and enhanced by statistics to machine learning. There are high-level cognitive models derived from psychoacoustics (especially Gestalt principles). The gap between neuroscience and psychoacoustics has to be filled by numerics, statistics and heuristics. Computerised auditory models have a broad and diverse range of applications: hearing aids and implants, compression in audio codices, automated music analysis, music composition, interactive music installations, and information retrieval from large databases of music samples.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kiela, Douwe, und Stephen Clark. „Learning Neural Audio Embeddings for Grounding Semantics in Auditory Perception“. Journal of Artificial Intelligence Research 60 (26.12.2017): 1003–30. http://dx.doi.org/10.1613/jair.5665.

Der volle Inhalt der Quelle
Annotation:
Multi-modal semantics, which aims to ground semantic representations in perception, has relied on feature norms or raw image data for perceptual input. In this paper we examine grounding semantic representations in raw auditory data, using standard evaluations for multi-modal semantics. After having shown the quality of such auditorily grounded representations, we show how they can be applied to tasks where auditory perception is relevant, including two unsupervised categorization experiments, and provide further analysis. We find that features transfered from deep neural networks outperform bag of audio words approaches. To our knowledge, this is the first work to construct multi-modal models from a combination of textual information and auditory information extracted from deep neural networks, and the first work to evaluate the performance of tri-modal (textual, visual and auditory) semantic models.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zahorik, Pavel. „Auditory/visual distance perception“. Journal of the Acoustical Society of America 137, Nr. 4 (April 2015): 2374. http://dx.doi.org/10.1121/1.4920626.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Merchel, Sebastian, und M. Ercan Altinsoy. „Auditory-tactile music perception“. Journal of the Acoustical Society of America 133, Nr. 5 (Mai 2013): 3256. http://dx.doi.org/10.1121/1.4805254.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hirsh, Ira J. „Timing in auditory perception“. Journal of the Acoustical Society of America 81, S1 (Mai 1987): S90. http://dx.doi.org/10.1121/1.2024468.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hirsh, Ira J., und Charles S. Watson. „AUDITORY PSYCHOPHYSICS AND PERCEPTION“. Annual Review of Psychology 47, Nr. 1 (Februar 1996): 461–84. http://dx.doi.org/10.1146/annurev.psych.47.1.461.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Specht, Karsten, C. Paul Stracke und Jürgen Reul. „Laterality of auditory perception“. NeuroImage 13, Nr. 6 (Juni 2001): 942. http://dx.doi.org/10.1016/s1053-8119(01)92284-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Munkong, Rungsun, und Biing-Hwang Juang. „Auditory perception and cognition“. IEEE Signal Processing Magazine 25, Nr. 3 (Mai 2008): 98–117. http://dx.doi.org/10.1109/msp.2008.918418.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Recanzone, Gregg H. „Perception of auditory signals“. Annals of the New York Academy of Sciences 1224, Nr. 1 (April 2011): 96–108. http://dx.doi.org/10.1111/j.1749-6632.2010.05920.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Sloos, Marjoleine, und Denis McKeown. „Bias in Auditory Perception“. i-Perception 6, Nr. 5 (13.10.2015): 204166951560715. http://dx.doi.org/10.1177/2041669515607153.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Blauert, Jens, und Jonas Braasch. „Auditory perception in rooms“. Journal of the Acoustical Society of America 141, Nr. 5 (Mai 2017): 3498. http://dx.doi.org/10.1121/1.4987317.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Povel, D. J. „Auditory perception and speech“. Acta Psychologica 75, Nr. 2 (November 1990): 176–77. http://dx.doi.org/10.1016/0001-6918(90)90091-s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Lotto, Andrew, und Lori Holt. „Psychology of auditory perception“. Wiley Interdisciplinary Reviews: Cognitive Science 2, Nr. 5 (15.10.2010): 479–89. http://dx.doi.org/10.1002/wcs.123.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Waterlot, Muriel. „Welke aanpak voor de Nederlandse vertaling van Poolse auditieve verba sentiendi?“ Neerlandica Wratislaviensia 33 (17.11.2022): 139–49. http://dx.doi.org/10.19195/0860-0716.33.10.

Der volle Inhalt der Quelle
Annotation:
When translating verbs from auditory perception, the translator often limits himself to a semantic and syntactic analysis of the predicates in a sentence. However, there is also an enunciative dimension (i.e. the relationship between the speaker and the subject of auditory perception) to be taken into account. Linguists divide the verbs of auditory perception into two groups according to cognitive criteria: verbs of passive and active perception. In Polish, many auditory perception verbs have a prefi x. In this article, we analyse how Polish passive auditory perception verbs and active auditory perception verbs are to be translated into Dutch.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Bernard, Corentin, Richard Kronland-Martinet, Madeline Fery, Sølvi Ystad und Etienne Thoret. „Tactile perception of auditory roughness“. JASA Express Letters 2, Nr. 12 (Dezember 2022): 123201. http://dx.doi.org/10.1121/10.0016603.

Der volle Inhalt der Quelle
Annotation:
Auditory roughness resulting from fast temporal beatings is often studied by summing two pure tones with close frequencies. Interestingly, the tactile counterpart of auditory roughness can be provided through touch with vibrotactile actuators. However, whether auditory roughness could also be perceived through touch and whether it exhibits similar characteristics are unclear. Here, auditory roughness perception and its tactile counterpart were evaluated using pairs of pure tone stimuli. Results revealed similar roughness curves in both modalities, suggesting similar sensory processing. This study attests to the relevance of such a paradigm for investigating auditory and tactile roughness in a multisensory fashion.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Crommett, Lexi E., Alexis Pérez-Bellido und Jeffrey M. Yau. „Auditory adaptation improves tactile frequency perception“. Journal of Neurophysiology 117, Nr. 3 (01.03.2017): 1352–62. http://dx.doi.org/10.1152/jn.00783.2016.

Der volle Inhalt der Quelle
Annotation:
Our ability to process temporal frequency information by touch underlies our capacity to perceive and discriminate surface textures. Auditory signals, which also provide extensive temporal frequency information, can systematically alter the perception of vibrations on the hand. How auditory signals shape tactile processing is unclear; perceptual interactions between contemporaneous sounds and vibrations are consistent with multiple neural mechanisms. Here we used a crossmodal adaptation paradigm, which separated auditory and tactile stimulation in time, to test the hypothesis that tactile frequency perception depends on neural circuits that also process auditory frequency. We reasoned that auditory adaptation effects would transfer to touch only if signals from both senses converge on common representations. We found that auditory adaptation can improve tactile frequency discrimination thresholds. This occurred only when adaptor and test frequencies overlapped. In contrast, auditory adaptation did not influence tactile intensity judgments. Thus auditory adaptation enhances touch in a frequency- and feature-specific manner. A simple network model in which tactile frequency information is decoded from sensory neurons that are susceptible to auditory adaptation recapitulates these behavioral results. Our results imply that the neural circuits supporting tactile frequency perception also process auditory signals. This finding is consistent with the notion of supramodal operators performing canonical operations, like temporal frequency processing, regardless of input modality. NEW & NOTEWORTHY Auditory signals can influence the tactile perception of temporal frequency. Multiple neural mechanisms could account for the perceptual interactions between contemporaneous auditory and tactile signals. Using a crossmodal adaptation paradigm, we found that auditory adaptation causes frequency- and feature-specific improvements in tactile perception. This crossmodal transfer of aftereffects between audition and touch implies that tactile frequency perception relies on neural circuits that also process auditory frequency.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Pudov, V. I., und O. V. Zontova. „Hearing perception by cochlear implantation“. Сенсорные системы 37, Nr. 4 (01.10.2023): 320–29. http://dx.doi.org/10.31857/s0235009223040066.

Der volle Inhalt der Quelle
Annotation:
Cochlear implantation is a unique development in the field of prosthetics of human sensory systems. Due to the electrical stimulation of the auditory nerve, auditory sensations close to natural occur. Despite significant progress in the engineering design of cochlear implants (CI), the quality of auditory perception when used is significantly limited. CI users experience the greatest difficulties in communication tasks such as understanding speech in noise or in multi-talkers environment. There are many factors, both technical and physiological, to reduce speech intelligibility in CI users. Speech perception in CI users is limited due to low frequency resolution, perceptual distortion of pitch, and compression of dynamic range. Low frequency resolution is the reason a decrease in speech intelligibility and the ability to perceive music. To realize these ability the question about the state of central hearing mechanisms, especially for children with congenital deafness, is crucial Neuroplasticity with ages decreases and the central auditory processing deficiency develops, therefore, it is desirable to carry out cochlear implantation as early as possible after hearing loss identification. Analysis of the auditory perception features in case of the auditory nerve is electrically excited allows not only to propose innovative approaches to improve the auditory abilities of CI users, but also to study auditory processing disorders.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Storms, Russell L., und Michael J. Zyda. „Interactions in Perceived Quality of Auditory-Visual Displays“. Presence: Teleoperators and Virtual Environments 9, Nr. 6 (Dezember 2000): 557–80. http://dx.doi.org/10.1162/105474600300040385.

Der volle Inhalt der Quelle
Annotation:
The quality of realism in virtual environments (VEs) is typically considered to be a function of visual and audio fidelity mutually exclusive of each other. However, the VE participant, being human, is multimodal by nature. Therefore, in order to validate more accurately the levels of auditory and visual fidelity that are required in a virtual environment, a better understanding is needed of the intersensory or crossmodal effects between the auditory and visual sense modalities. To identify whether any pertinent auditory-visual cross-modal perception phenomena exist, 108 subjects participated in three experiments which were completely automated using HTML, Java, and JavaScript programming languages. Visual and auditory display quality perceptions were measured intraand intermodally by manipulating the pixel resolution of the visual display and Gaussian white noise level, and by manipulating the sampling frequency of the auditory display and Gaussian white noise level. Statistically significant results indicate that high-quality auditory displays coupled with highquality visual displays increase the quality perception of the visual displays relative to the evaluation of the visual display alone, and that low-quality auditory displays coupled with high-quality visual displays decrease the quality perception of the auditory displays relative to the evaluation of the auditory display alone. These findings strongly suggest that the quality of realism in VEs must be a function of both auditory and visual display fidelities inclusive of each other.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

de Boer, J. N., M. M. J. Linszen, J. de Vries, M. J. L. Schutte, M. J. H. Begemann, S. M. Heringa, M. M. Bohlken et al. „Auditory hallucinations, top-down processing and language perception: a general population study“. Psychological Medicine 49, Nr. 16 (04.01.2019): 2772–80. http://dx.doi.org/10.1017/s003329171800380x.

Der volle Inhalt der Quelle
Annotation:
AbstractBackgroundStudies investigating the underlying mechanisms of hallucinations in patients with schizophrenia suggest that an imbalance in top-down expectations v. bottom-up processing underlies these errors in perception. This study evaluates this hypothesis by testing if individuals drawn from the general population who have had auditory hallucinations (AH) have more misperceptions in auditory language perception than those who have never hallucinated.MethodsWe used an online survey to determine the presence of hallucinations. Participants filled out the Questionnaire for Psychotic Experiences and participated in an auditory verbal recognition task to assess both correct perceptions (hits) and misperceptions (false alarms). A hearing test was performed to screen for hearing problems.ResultsA total of 5115 individuals from the general Dutch population participated in this study. Participants who reported AH in the week preceding the test had a higher false alarm rate in their auditory perception compared with those without such (recent) experiences. The more recent the AH were experienced, the more mistakes participants made. While the presence of verbal AH (AVH) was predictive for false alarm rate in auditory language perception, the presence of non-verbal or visual hallucinations were not.ConclusionsThe presence of AVH predicted false alarm rate in auditory language perception, whereas the presence of non-verbal auditory or visual hallucinations was not, suggesting that enhanced top-down processing does not transfer across modalities. More false alarms were observed in participants who reported more recent AVHs. This is in line with models of enhanced influence of top-down expectations in persons who hallucinate.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Kaga, Makiko, Kaori Kon, Akira Uno, Toshihiro Horiguchi, Hitoshi Yoneyama und Masumi Inagaki. „Auditory perception in auditory neuropathy: Clinical similarity with auditory verbal agnosia“. Brain and Development 24, Nr. 3 (April 2002): 197–202. http://dx.doi.org/10.1016/s0387-7604(02)00027-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Leman, Marc. „A Model of Retroactive Tone-Center Perception“. Music Perception 12, Nr. 4 (1995): 439–71. http://dx.doi.org/10.2307/40285676.

Der volle Inhalt der Quelle
Annotation:
In this paper, a model for tone-center perception is developed. It is based on an auditory model and principles of schema dynamics such as self-organization and association. The auditory module simulates virtual-pitch perception by transforming musical signals into auditory images. The schema- based module involves data-driven long-term learning for the self-organization of a schema for tone-center perception. The focus of this paper is on a retroactive process (called perceptual interpretation) by which the sense of tone center is adjusted according to a reconsideration of preceding perceptions in view of new contextual evidence within the schema. To this purpose, a metaphor is introduced, in which perceptual interpretation is described as the movement of a snaillike object in an attractor space. Additionally, the mathematical details of the model are presented, and the results of computer simulations are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

ERDENER, DOĞU, und DENIS BURNHAM. „Auditory–visual speech perception in three- and four-year-olds and its relationship to perceptual attunement and receptive vocabulary“. Journal of Child Language 45, Nr. 2 (06.06.2017): 273–89. http://dx.doi.org/10.1017/s0305000917000174.

Der volle Inhalt der Quelle
Annotation:
AbstractDespite the body of research on auditory–visual speech perception in infants and schoolchildren, development in the early childhood period remains relatively uncharted. In this study, English-speaking children between three and four years of age were investigated for: (i) the development of visual speech perception – lip-reading and visual influence in auditory–visual integration; (ii) the development of auditory speech perception and native language perceptual attunement; and (iii) the relationship between these and a language skill relevant at this age, receptive vocabulary. Visual speech perception skills improved even over this relatively short time period. However, regression analyses revealed that vocabulary was predicted by auditory-only speech perception, and native language attunement, but not by visual speech perception ability. The results suggest that, in contrast to infants and schoolchildren, in three- to four-year-olds the relationship between speech perception and language ability is based on auditory and not visual or auditory–visual speech perception ability. Adding these results to existing findings allows elaboration of a more complete account of the developmental course of auditory–visual speech perception.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Williams, Jamal, Yuri Markov, Natalia Tiurina und Viola Stoermer. „Auditory Context Alters Visual Perception“. Journal of Vision 21, Nr. 9 (27.09.2021): 2796. http://dx.doi.org/10.1167/jov.21.9.2796.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Ottaviani, Laura, und Davide Rocchesso. „Auditory perception of 3D size“. ACM Transactions on Applied Perception 1, Nr. 2 (Oktober 2004): 118–29. http://dx.doi.org/10.1145/1024083.1024086.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

McDermott, Josh H., Michael Schemitsch und Eero P. Simoncelli. „Summary statistics in auditory perception“. Nature Neuroscience 16, Nr. 4 (24.02.2013): 493–98. http://dx.doi.org/10.1038/nn.3347.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Long, Glenis R. „Otoacoustic emissions and auditory perception.“ Journal of the Acoustical Society of America 91, Nr. 4 (April 1992): 2408–9. http://dx.doi.org/10.1121/1.403251.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Moore, Brian C. J. „Comparative Studies of Auditory Perception“. Contemporary Psychology: A Journal of Reviews 36, Nr. 4 (April 1991): 314–15. http://dx.doi.org/10.1037/029630.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Schmuckler, Mark A., und David L. Gilden. „Auditory perception of fractal contours.“ Journal of Experimental Psychology: Human Perception and Performance 19, Nr. 3 (1993): 641–60. http://dx.doi.org/10.1037/0096-1523.19.3.641.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Repp, Bruno H., und Günther Knoblich. „Action Can Affect Auditory Perception“. Psychological Science 18, Nr. 1 (Januar 2007): 6–7. http://dx.doi.org/10.1111/j.1467-9280.2007.01839.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Carlile, Simon, und Johahn Leung. „The Perception of Auditory Motion“. Trends in Hearing 20 (19.04.2016): 233121651664425. http://dx.doi.org/10.1177/2331216516644254.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Pollmann, Stefan, und Marianne Maertens. „Perception modulates auditory cortex activation“. NeuroReport 17, Nr. 17 (November 2006): 1779–82. http://dx.doi.org/10.1097/wnr.0b013e3280107a98.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Griffiths, Timothy D., Virginia Penhune, Isabelle Peretz, Jenny L. Dean, Roy D. Patterson und Gary G. R. Green. „Frontal processing and auditory perception“. NeuroReport 11, Nr. 5 (April 2000): 919–22. http://dx.doi.org/10.1097/00001756-200004070-00004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Houben, Mark, Luuk Franssen, Dik Hermes, Armin Kohlrausch und Berry Eggen. „Auditory perception of rolling balls“. Journal of the Acoustical Society of America 105, Nr. 2 (Februar 1999): 980. http://dx.doi.org/10.1121/1.425353.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Sandvad, Jesper. „Auditory perception of reverberant surroundings“. Journal of the Acoustical Society of America 105, Nr. 2 (Februar 1999): 1193. http://dx.doi.org/10.1121/1.425625.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Hariri, M. A., M. J. Connolly, M. V. Lakshmi und S. Lafner. „Auditory Perception in Stroke Patients“. Age and Ageing 22, suppl 3 (01.01.1993): P23—P24. http://dx.doi.org/10.1093/ageing/22.suppl_3.p23-d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Binder, Jeffrey. „FUNCTIONAL IMAGING OF AUDITORY PERCEPTION“. Journal of Clinical Neurophysiology 13, Nr. 4 (Juli 1996): 351. http://dx.doi.org/10.1097/00004691-199607000-00029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Ortega, L., E. Guzman-Martinez, M. Grabowecky und S. Suzuki. „Auditory dominance in time perception“. Journal of Vision 9, Nr. 8 (22.03.2010): 1086. http://dx.doi.org/10.1167/9.8.1086.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Viveiros, Carla Mherlyn, Liliane Desgualdo Pereira und Gianna Mastroianni Kirsztajn. „Auditory Perception in Alport’s Syndrome“. Brazilian Journal of Otorhinolaryngology 72, Nr. 6 (November 2006): 811–16. http://dx.doi.org/10.1016/s1808-8694(15)31049-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Russell, Michael K. „Auditory Perception of Unimpeded Passage“. Ecological Psychology 11, Nr. 2 (Juni 1999): 175–88. http://dx.doi.org/10.1207/s15326969eco1102_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

JELICIC, MARKO, und BENNO BONKE. „Auditory Perception During General Anesthesia“. Southern Medical Journal 82, Nr. 10 (Oktober 1989): 1220–23. http://dx.doi.org/10.1097/00007611-198910000-00005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Binder, Jeffrey. „Functional imaging of auditory perception“. Electroencephalography and Clinical Neurophysiology 102, Nr. 1 (Januar 1997): P5. http://dx.doi.org/10.1016/s0013-4694(97)86221-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Lebedev, V. G., und N. G. Zagoruiko. „Auditory perception and speech recognition“. Speech Communication 4, Nr. 1-3 (August 1985): 97–103. http://dx.doi.org/10.1016/0167-6393(85)90038-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Alam, Iftekhar, und Ashok Ghatol. „High resolution auditory perception system“. Journal of the Acoustical Society of America 117, Nr. 4 (April 2005): 2483–84. http://dx.doi.org/10.1121/1.4787736.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Nazimek, J. M., M. D. Hunter und P. W. R. Woodruff. „Auditory hallucinations: Expectation–perception model“. Medical Hypotheses 78, Nr. 6 (Juni 2012): 802–10. http://dx.doi.org/10.1016/j.mehy.2012.03.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Bronkhorst, Adelbert W., und Tammo Houtgast. „Auditory distance perception in rooms“. Nature 397, Nr. 6719 (Februar 1999): 517–20. http://dx.doi.org/10.1038/17374.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Sininger, Yvonne S., und Anjali Bhatara. „Laterality of basic auditory perception“. Laterality: Asymmetries of Body, Brain and Cognition 17, Nr. 2 (März 2012): 129–49. http://dx.doi.org/10.1080/1357650x.2010.541464.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Clifton, Rachel K., Eve E. Perris und Andre Bullinger. „Infants' perception of auditory space.“ Developmental Psychology 27, Nr. 2 (1991): 187–97. http://dx.doi.org/10.1037/0012-1649.27.2.187.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Olsho, Lynne Werner. „Infant auditory perception: Tonal masking“. Infant Behavior and Development 8, Nr. 4 (Oktober 1985): 371–84. http://dx.doi.org/10.1016/0163-6383(85)90002-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie