Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Attophysics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Attophysics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Attophysics"
Marino, Antigone. „Column: Attophysics Science“. Europhysics News 55, Nr. 1 (2024): 10–11. http://dx.doi.org/10.1051/epn/2024104.
Der volle Inhalt der QuelleKrausz, Ferenc. „From femtochemistry to attophysics“. Physics World 14, Nr. 9 (September 2001): 41–46. http://dx.doi.org/10.1088/2058-7058/14/9/31.
Der volle Inhalt der QuelleAgostini, Pierre. „What future for attophysics?“ Journal of Physics B: Atomic, Molecular and Optical Physics 57, Nr. 16 (25.07.2024): 162501. http://dx.doi.org/10.1088/1361-6455/ad6383.
Der volle Inhalt der QuelleLewenstein, Maciej, und Anna Sanpera. „Experimental attophysics comes of age“. Physics World 15, Nr. 1 (Januar 2002): 25–26. http://dx.doi.org/10.1088/2058-7058/15/1/33.
Der volle Inhalt der QuelleMarciak-Kozłowska, Janina, und Mirosław Kozłowski. „Attophysics and technology with ultra short laser pulses“. Lasers in Engineering 12, Nr. 1 (Januar 2002): 17–25. http://dx.doi.org/10.1080/08981500290022734.
Der volle Inhalt der QuelleCho, A. „ATTOPHYSICS: X-ray Flashes Provide Peek Into Atom Core“. Science 298, Nr. 5594 (25.10.2002): 727. http://dx.doi.org/10.1126/science.298.5594.727.
Der volle Inhalt der QuelleSaldin, E. L., E. A. Schneidmiller und M. V. Yurkov. „Scheme for attophysics experiments at a X-ray SASE FEL“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 507, Nr. 1-2 (Juli 2003): 439–44. http://dx.doi.org/10.1016/s0168-9002(03)00962-8.
Der volle Inhalt der QuelleSaldin, E. L., E. A. Schneidmiller und M. V. Yurkov. „Scheme for attophysics experiments at a X-ray SASE FEL“. Optics Communications 212, Nr. 4-6 (November 2002): 377–90. http://dx.doi.org/10.1016/s0030-4018(02)02008-4.
Der volle Inhalt der QuelleDombi, Peter, und Martin Schultze. „The Nobel Prize in Physics 2023“. Europhysics News 54, Nr. 5 (2023): 8–9. http://dx.doi.org/10.1051/epn/2023501.
Der volle Inhalt der QuelleDombi, Péter, und Reinhard Kienberger. „A nobel prize for attosecond physics based on extreme nonlinear optics“. Europhysics News 55, Nr. 1 (2024): 16–21. http://dx.doi.org/10.1051/epn/2024106.
Der volle Inhalt der QuelleDissertationen zum Thema "Attophysics"
Picot, Corentin. „Génération et caractérisation d'impulsions attosecondes isolées à haute cadence“. Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10161.
Der volle Inhalt der QuelleHigh order harmonic generation is a nonlinear physical phenomenon that occurs by focusing a femtosecond-duration pulse (1 fs = 10^-15 s) in a rare gas. It allows the production of spectra in the UV/XUV range, appearing as a frequency comb. The growing interest in high-order harmonic generation stems from the fact that the generated XUV spectra are compatible, in the time domain, with the production of attosecond pulses (1 as = 10^-18 s). These pulses are of great interest in the study of complex electronic dynamics, photoemission times in atoms or molecules, or even in industrial applications such as lithography studies. Dynamics at the core of atoms occur on atomic time unit scales, with one atomic unit of time equivalent to 24 as. The production of these attosecond pulses is thus relevant for studying these phenomena at the very core of atoms. More specifically, we are interested here in the generation of short attosecond pulse trains and isolated attosecond pulses. High-order harmonic generation allows obtaining attosecond pulse trains, and we seek to isolate one pulse within the pulse train. Spectrally, this translates to the search for a continuous XUV spectrum. In this thesis, we focus on generating these continuous XUV spectra, as well as on the temporal characterization of femtosecond and attosecond pulses. The key aspect lies in the temporal confinement of the XUV emission. In the first part, we demonstrate a robust method to reduce the duration of the fundamental pulses to a few optical cycles. This spectral shaping leads to several subsidiary applications for the spectral shaping of the harmonic spectrum. In the second part, we present a second method to confine the XUV emission by modulating the polarization of the fundamental pulse temporally, using the so-called "polarization gating" method. New configurations of the polarization gate and the spectral effects associated with temporal confinement are described. In the third part, we present the combination of the two methods mentioned in the first two parts to obtain continuous XUV spectra compatible with the generation of isolated attosecond pulses. These continuous spectra were obtained in two laboratories with two different experimental systems. In the final part, we focus on the characterization of femtosecond and attosecond XUV pulses. In particular, we present a classical characterization based on photoelectron signal, allowing the characterization of pulses whose durations are few hundred attoseconds, up to an isolated attosecond pulse. We also propose two new methods based on the observation of the XUV photon signal and the modulation of the polarization of the fundamental pulse. Through these methods, we seek to reconstruct the temporal envelopes of the harmonics
Buchteile zum Thema "Attophysics"
Lewenstein, M., N. Baldelli, U. Bhattacharya, J. Biegert, M. F. Ciappina, T. Grass, P. T. Grochowski et al. „Attosecond Physics and Quantum Information Science“. In Springer Proceedings in Physics, 27–44. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-47938-0_4.
Der volle Inhalt der QuelleSaldin, E. L., E. A. Schneidmiller und M. V. Yurkov. „Scheme for Attophysics experiments at a X-ray SASE FEL“. In Free Electron Lasers 2002, 439–44. Elsevier, 2003. http://dx.doi.org/10.1016/b978-0-444-51417-2.50103-6.
Der volle Inhalt der Quelle