Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Attention based models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Attention based models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Attention based models"
Qin, Chu-Xiong, und Dan Qu. „Towards Understanding Attention-Based Speech Recognition Models“. IEEE Access 8 (2020): 24358–69. http://dx.doi.org/10.1109/access.2020.2970758.
Der volle Inhalt der QuelleSteelman, Kelly S., Jason S. McCarley und Christopher D. Wickens. „Theory-based Models of Attention in Visual Workspaces“. International Journal of Human–Computer Interaction 33, Nr. 1 (16.09.2016): 35–43. http://dx.doi.org/10.1080/10447318.2016.1232228.
Der volle Inhalt der QuelleHashemi, Seyyed Mohammad Reza. „A Survey of Visual Attention Models“. Ciência e Natura 37 (19.12.2015): 297. http://dx.doi.org/10.5902/2179460x20786.
Der volle Inhalt der QuelleZhou, Qifeng, Xiang Liu und Qing Wang. „Interpretable duplicate question detection models based on attention mechanism“. Information Sciences 543 (Januar 2021): 259–72. http://dx.doi.org/10.1016/j.ins.2020.07.048.
Der volle Inhalt der QuelleKramer, Arthur F., und Andrew Jacobson. „A comparison of Space-Based and Object-Based Models of Visual Attention“. Proceedings of the Human Factors Society Annual Meeting 34, Nr. 19 (Oktober 1990): 1489–93. http://dx.doi.org/10.1177/154193129003401915.
Der volle Inhalt der QuelleWang, Lei, Ed X. Wu und Fei Chen. „EEG-based auditory attention decoding using speech-level-based segmented computational models“. Journal of Neural Engineering 18, Nr. 4 (25.05.2021): 046066. http://dx.doi.org/10.1088/1741-2552/abfeba.
Der volle Inhalt der QuelleRosenberg, Monica D., Wei-Ting Hsu, Dustin Scheinost, R. Todd Constable und Marvin M. Chun. „Connectome-based Models Predict Separable Components of Attention in Novel Individuals“. Journal of Cognitive Neuroscience 30, Nr. 2 (Februar 2018): 160–73. http://dx.doi.org/10.1162/jocn_a_01197.
Der volle Inhalt der QuelleKristensen, Terje. „Towards Spike based Models of Visual Attention in the Brain“. International Journal of Adaptive, Resilient and Autonomic Systems 6, Nr. 2 (Juli 2015): 117–38. http://dx.doi.org/10.4018/ijaras.2015070106.
Der volle Inhalt der QuelleTiawongsombat, Prasertsak, Mun-Ho Jeong, Alongkorn Pirayawaraporn, Joong-Jae Lee und Joo-Seop Yun. „Vision-Based Attentiveness Determination Using Scalable HMM Based on Relevance Theory“. Sensors 19, Nr. 23 (03.12.2019): 5331. http://dx.doi.org/10.3390/s19235331.
Der volle Inhalt der QuelleSi, Nianwen, Wenlin Zhang, Dan Qu, Xiangyang Luo, Heyu Chang und Tong Niu. „Spatial-Channel Attention-Based Class Activation Mapping for Interpreting CNN-Based Image Classification Models“. Security and Communication Networks 2021 (31.05.2021): 1–13. http://dx.doi.org/10.1155/2021/6682293.
Der volle Inhalt der QuelleDissertationen zum Thema "Attention based models"
Belkacem, Thiziri. „Neural models for information retrieval : towards asymmetry sensitive approaches based on attention models“. Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30167.
Der volle Inhalt der QuelleThis work is situated in the context of information retrieval (IR) using machine learning (ML) and deep learning (DL) techniques. It concerns different tasks requiring text matching, such as ad-hoc research, question answering and paraphrase identification. The objective of this thesis is to propose new approaches, using DL methods, to construct semantic-based models for text matching, and to overcome the problems of vocabulary mismatch related to the classical bag of word (BoW) representations used in traditional IR models. Indeed, traditional text matching methods are based on the BoW representation, which considers a given text as a set of independent words. The process of matching two sequences of text is based on the exact matching between words. The main limitation of this approach is related to the vocabulary mismatch. This problem occurs when the text sequences to be matched do not use the same vocabulary, even if their subjects are related. For example, the query may contain several words that are not necessarily used in the documents of the collection, including relevant documents. BoW representations ignore several aspects about a text sequence, such as the structure the context of words. These characteristics are important and make it possible to differentiate between two texts that use the same words but expressing different information. Another problem in text matching is related to the length of documents. The relevant parts can be distributed in different ways in the documents of a collection. This is especially true in large documents that tend to cover a large number of topics and include variable vocabulary. A long document could thus contain several relevant passages that a matching model must capture. Unlike long documents, short documents are likely to be relevant to a specific subject and tend to contain a more restricted vocabulary. Assessing their relevance is in principle simpler than assessing the one of longer documents. In this thesis, we have proposed different contributions, each addressing one of the above-mentioned issues. First, in order to solve the problem of vocabulary mismatch, we used distributed representations of words (word embedding) to allow a semantic matching between the different words. These representations have been used in IR applications where document/query similarity is computed by comparing all the term vectors of the query with all the term vectors of the document, regardless. Unlike the models proposed in the state-of-the-art, we studied the impact of query terms regarding their presence/absence in a document. We have adopted different document/query matching strategies. The intuition is that the absence of the query terms in the relevant documents is in itself a useful aspect to be taken into account in the matching process. Indeed, these terms do not appear in documents of the collection for two possible reasons: either their synonyms have been used or they are not part of the context of the considered documents. The methods we have proposed make it possible, on the one hand, to perform an inaccurate matching between the document and the query, and on the other hand, to evaluate the impact of the different terms of a query in the matching process. Although the use of word embedding allows semantic-based matching between different text sequences, these representations combined with classical matching models still consider the text as a list of independent elements (bag of vectors instead of bag of words). However, the structure of the text as well as the order of the words is important. Any change in the structure of the text and/or the order of words alters the information expressed. In order to solve this problem, neural models were used in text matching
Saifullah, Mohammad. „Biologically-Based Interactive Neural Network Models for Visual Attention and Object Recognition“. Doctoral thesis, Linköpings universitet, Institutionen för datavetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-79336.
Der volle Inhalt der QuelleBorba, Gustavo Benvenutti. „Automatic extraction of regions of interest from images based on visual attention models“. Universidade Tecnológica Federal do Paraná, 2010. http://repositorio.utfpr.edu.br/jspui/handle/1/1295.
Der volle Inhalt der QuelleEsta tese apresenta um método para a extração de regiões de interesse (ROIs) de imagens. No contexto deste trabalho, ROIs são definidas como os objetos semânticos que se destacam em uma imagem, podendo apresentar qualquer tamanho ou localização. O novo método baseia-se em modelos computacionais de atenção visual (VA), opera de forma completamente bottom-up, não supervisionada e não apresenta restrições com relação à categoria da imagem de entrada. Os elementos centrais da arquitetura são os modelos de VA propostos por Itti-Koch-Niebur e Stentiford. O modelo de Itti-Koch-Niebur considera as características de cor, intensidade e orientação da imagem e apresenta uma resposta na forma de coordenadas, correspondentes aos pontos de atenção (POAs) da imagem. O modelo Stentiford considera apenas as características de cor e apresenta a resposta na forma de áreas de atenção na imagem (AOAs). Na arquitetura proposta, a combinação de POAs e AOAs permite a obtenção dos contornos das ROIs. Duas implementações desta arquitetura, denominadas 'primeira versão' e 'versão melhorada' são apresentadas. A primeira versão utiliza principalmente operações tradicionais de morfologia matemática. Esta versão foi aplicada em dois sistemas de recuperação de imagens com base em regiões. No primeiro, as imagens são agrupadas de acordo com as ROIs, ao invés das características globais da imagem. O resultado são grupos de imagens mais significativos semanticamente, uma vez que o critério utilizado são os objetos da mesma categoria contidos nas imagens. No segundo sistema, á apresentada uma combinação da busca de imagens tradicional, baseada nas características globais da imagem, com a busca de imagens baseada em regiões. Ainda neste sistema, as buscas são especificadas através de mais de uma imagem exemplo. Na versão melhorada da arquitetura, os estágios principais são uma análise de coerência espacial entre as representações de ambos modelos de VA e uma representação multi-escala das AOAs. Se comparada à primeira versão, esta apresenta maior versatilidade, especialmente com relação aos tamanhos das ROIs presentes nas imagens. A versão melhorada foi avaliada diretamente, com uma ampla variedade de imagens diferentes bancos de imagens públicos, com padrões-ouro na forma de bounding boxes e de contornos reais dos objetos. As métricas utilizadas na avaliação foram presision, recall, F1 e area of overlap. Os resultados finais são excelentes, considerando-se a abordagem exclusivamente bottom-up e não-supervisionada do método.
This thesis presents a method for the extraction of regions of interest (ROIs) from images. By ROIs we mean the most prominent semantic objects in the images, of any size and located at any position in the image. The novel method is based on computational models of visual attention (VA), operates under a completely bottom-up and unsupervised way and does not present con-straints in the category of the input images. At the core of the architecture is de model VA proposed by Itti, Koch and Niebur and the one proposed by Stentiford. The first model takes into account color, intensity, and orientation features and provides coordinates corresponding to the points of attention (POAs) in the image. The second model considers color features and provides rough areas of attention (AOAs) in the image. In the proposed architecture, the POAs and AOAs are combined to establish the contours of the ROIs. Two implementations of this architecture are presented, namely 'first version' and 'improved version'. The first version mainly on traditional morphological operations and was applied in two novel region-based image retrieval systems. In the first one, images are clustered on the basis of the ROIs, instead of the global characteristics of the image. This provides a meaningful organization of the database images, since the output clusters tend to contain objects belonging to the same category. In the second system, we present a combination of the traditional global-based with region-based image retrieval under a multiple-example query scheme. In the improved version of the architecture, the main stages are a spatial coherence analysis between both VA models and a multiscale representation of the AOAs. Comparing to the first one, the improved version presents more versatility, mainly in terms of the size of the extracted ROIs. The improved version was directly evaluated for a wide variety of images from different publicly available databases, with ground truth in the form of bounding boxes and true object contours. The performance measures used were precision, recall, F1 and area overlap. Experimental results are of very high quality, particularly if one takes into account the bottom-up and unsupervised nature of the approach.
Kliegl, Reinhold, Ping Wei, Michael Dambacher, Ming Yan und Xiaolin Zhou. „Experimental effects and individual differences in linear mixed models: Estimating the relationship between spatial, object, and attraction effects in visual attention“. Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5685/.
Der volle Inhalt der QuelleDimitriadis, Spyridon. „Multi-task regression QSAR/QSPR prediction utilizing text-based Transformer Neural Network and single-task using feature-based models“. Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177186.
Der volle Inhalt der QuelleHolmström, Oskar. „Exploring Transformer-Based Contextual Knowledge Graph Embeddings : How the Design of the Attention Mask and the Input Structure Affect Learning in Transformer Models“. Thesis, Linköpings universitet, Artificiell intelligens och integrerade datorsystem, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-175400.
Der volle Inhalt der QuelleKlamser, Pascal. „Collective Information Processing and Criticality, Evolution and Limited Attention“. Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/23099.
Der volle Inhalt der QuelleIn the first part, I focus on the self-organization to criticality (here an order-disorder phase transition) and investigate if evolution is a possible self-tuning mechanism. Does a simulated cohesive swarm that tries to avoid a pursuing predator self-tunes itself by evolution to the critical point to optimize avoidance? It turns out that (i) the best group avoidance is at criticality but (ii) not due to an enhanced response but because of structural changes (fundamentally linked to criticality), (iii) the group optimum is not an evolutionary stable state, in fact (iv) it is an evolutionary accelerator due to a maximal spatial self-sorting of individuals causing spatial selection. In the second part, I model experimentally observed differences in collective behavior of fish groups subject to multiple generation of different types of size-dependent selection. The real world analog to this experimental evolution is recreational fishery (small fish are released, large are consumed) and commercial fishing with large net widths (small/young individuals can escape). The results suggest that large harvesting reduces cohesion and risk taking of individuals. I show that both findings can be mechanistically explained based on an attention trade-off between social and environmental information. Furthermore, I numerically analyze how differently size-harvested groups perform in a natural predator and fishing scenario. In the last part of the thesis, I quantify the collective information processing in the field. The study system is a fish species adapted to sulfidic water conditions with a collective escape behavior from aerial predators which manifests in repeated collective escape dives. These fish measure about 2 centimeters, but the collective wave spreads across meters in dense shoals at the surface. I find that wave speed increases weakly with polarization, is fastest at an optimal density and depends on its direction relative to shoal orientation.
Wennerholm, Pia. „The Role of High-Level Reasoning and Rule-Based Representations in the Inverse Base-Rate Effect“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2001. http://publications.uu.se/theses/91-554-5178-0/.
Der volle Inhalt der QuelleDesai, Anver. „Policy agenda-setting and the use of analytical agenda-setting models for school sport and physical education in South Africa“. Thesis, University of the Western Cape, 2011. http://hdl.handle.net/11394/3596.
Der volle Inhalt der QuellePhilosophiae Doctor - PhD
Ungruh, Joachim. „A neurally based vision model for line extraction and attention“. Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/8303.
Der volle Inhalt der QuelleBücher zum Thema "Attention based models"
Sokol'skaya, Elena, und Boris Kochurov. Geoecology of the city: models of environmental quality. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1205961.
Der volle Inhalt der QuelleOdincov, Boris. Models and intelligent systems. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1060845.
Der volle Inhalt der QuelleBabeshko, Lyudmila, und Irina Orlova. Econometrics and econometric modeling in Excel and R. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1079837.
Der volle Inhalt der QuelleVavrenyuk, Aleksandr, Viktor Makarov und Stanislav Kutepov. Operating systems. UNIX bases. ru: INFRA-M Academic Publishing LLC., 2016. http://dx.doi.org/10.12737/11186.
Der volle Inhalt der QuelleNaumov, Vladimir. Consumer behavior. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1014653.
Der volle Inhalt der QuelleSazhina, Muza. Management of economic crises: problems of theory and practice. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1111365.
Der volle Inhalt der QuelleHmara, Ivan, und Viktor Strel'nikov. Environmental epidemiology and risk assessment. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1019063.
Der volle Inhalt der QuelleKanke, Viktor. History of Philosophy. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/929952.
Der volle Inhalt der QuelleKrivoyekov, Syergyey, und Roman Ayzman. Psychophysiology. ru: INFRA-M Academic Publishing LLC., 2015. http://dx.doi.org/10.12737/10884.
Der volle Inhalt der QuelleKsenofontov, Boris, Gennadiy Pavlihin und Elena Simakova. Industrial ecology. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1017514.
Der volle Inhalt der QuelleBuchteile zum Thema "Attention based models"
Hommel, Sebastian, Ahmad Rabie und Uwe Handmann. „Attention and Emotion Based Adaption of Dialog Systems“. In Intelligent Systems: Models and Applications, 215–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33959-2_12.
Der volle Inhalt der QuelleMilanova, Mariofanna, und Engin Mendi. „Attention in Image Sequences: Biology, Computational Models, and Applications“. In Advances in Reasoning-Based Image Processing Intelligent Systems, 147–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24693-7_6.
Der volle Inhalt der QuelleRoussinov, Dmitri, Serge Sharoff und Nadezhda Puchnina. „Recognizing Semantic Relations: Attention-Based Transformers vs. Recurrent Models“. In Lecture Notes in Computer Science, 561–74. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45439-5_37.
Der volle Inhalt der QuelleGajbhiye, Amit, Thomas Winterbottom, Noura Al Moubayed und Steven Bradley. „Bilinear Fusion of Commonsense Knowledge with Attention-Based NLI Models“. In Artificial Neural Networks and Machine Learning – ICANN 2020, 633–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61609-0_50.
Der volle Inhalt der QuelleKazi, Anees, Shadi Albarqouni, Amelia Jimenez Sanchez, Sonja Kirchhoff, Peter Biberthaler, Nassir Navab und Diana Mateus. „Automatic Classification of Proximal Femur Fractures Based on Attention Models“. In Machine Learning in Medical Imaging, 70–78. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67389-9_9.
Der volle Inhalt der QuelleLi, Caizi, Qianqian Tong, Xiangyun Liao, Weixin Si, Yinzi Sun, Qiong Wang und Pheng-Ann Heng. „Attention Based Hierarchical Aggregation Network for 3D Left Atrial Segmentation“. In Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges, 255–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12029-0_28.
Der volle Inhalt der QuelleZhou, Yuncheng, Ke Zhang, Xinzhe Luo, Sihan Wang und Xiahai Zhuang. „Anatomy Prior Based U-net for Pathology Segmentation with Attention“. In Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges, 392–99. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68107-4_41.
Der volle Inhalt der QuelleKnoop, Dennis, Bertram Wortelen und Marcus Behrendt. „Semi-automatic Aggregation of Multiple Models of Visual Attention for Model-Based User Interface Evaluation“. In Engineering Psychology and Cognitive Ergonomics, 187–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22507-0_15.
Der volle Inhalt der QuelleVaca-Recalde, Myriam E., Joshué Pérez und Javier Echanobe. „Driver Monitoring System Based on CNN Models: An Approach for Attention Level Detection“. In Lecture Notes in Computer Science, 575–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62365-4_56.
Der volle Inhalt der QuelleBai, Ching-Yuan, Buo-Fu Chen und Hsuan-Tien Lin. „Benchmarking Tropical Cyclone Rapid Intensification with Satellite Images and Attention-Based Deep Models“. In Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track, 497–512. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67667-4_30.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Attention based models"
Ji Wan Han, P. C. R. Lane, N. Davey und Yi Sun. „Attention mechanisms and component-based face detection“. In 2009 International Conference on Methods and Models in Computer Science (ICM2CS). IEEE, 2009. http://dx.doi.org/10.1109/icm2cs.2009.5397992.
Der volle Inhalt der QuelleFornaciari, Tommaso, und Dirk Hovy. „Geolocation with Attention-Based Multitask Learning Models“. In Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019). Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/d19-5528.
Der volle Inhalt der QuelleHaque, Albert, Alexandre Alahi und Li Fei-Fei. „Recurrent Attention Models for Depth-Based Person Identification“. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016. http://dx.doi.org/10.1109/cvpr.2016.138.
Der volle Inhalt der QuelleRezaur rahman Chowdhury, F. A., Quan Wang, Ignacio Lopez Moreno und Li Wan. „Attention-Based Models for Text-Dependent Speaker Verification“. In ICASSP 2018 - 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018. http://dx.doi.org/10.1109/icassp.2018.8461587.
Der volle Inhalt der QuelleZapotoczny, Michał, Piotr Pietrzak, Adrian Łańcucki und Jan Chorowski. „Lattice Generation in Attention-Based Speech Recognition Models“. In Interspeech 2019. ISCA: ISCA, 2019. http://dx.doi.org/10.21437/interspeech.2019-2667.
Der volle Inhalt der QuelleTapu, R., und T. Zaharia. „Salient object detection based on spatiotemporal attention models“. In 2013 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2013. http://dx.doi.org/10.1109/icce.2013.6486786.
Der volle Inhalt der QuelleShafiq, Muhammad Amir, Zhiling Long, Haibin Di, Ghassan AI Regib und Mohammed Deriche. „Fault Detection Using Attention Models Based on Visual Saliency“. In ICASSP 2018 - 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018. http://dx.doi.org/10.1109/icassp.2018.8461508.
Der volle Inhalt der QuelleAwad, Dounia, Matei Mancas, Nicolas Riche, Vincent Courboulay und Arnaud Revel. „A CBIR-based evaluation framework for visual attention models“. In 2015 23rd European Signal Processing Conference (EUSIPCO). IEEE, 2015. http://dx.doi.org/10.1109/eusipco.2015.7362639.
Der volle Inhalt der QuelleYu, Xiang, Ngoc Thang Vu und Jonas Kuhn. „Learning the Dyck Language with Attention-based Seq2Seq Models“. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/w19-4815.
Der volle Inhalt der QuelleArvanitis, Nikolaos, Constantinos Constantinopoulos und Dimitrios Kosmopoulos. „Translation of Sign Language Glosses to Text Using Sequence-to-Sequence Attention Models“. In 2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS). IEEE, 2019. http://dx.doi.org/10.1109/sitis.2019.00056.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Attention based models"
Yan, Yujie, und Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, Mai 2021. http://dx.doi.org/10.17760/d20410114.
Der volle Inhalt der QuelleRusk, Todd, Ryan Siegel, Linda Larsen, Tim Lindsey und Brian Deal. Technical and Financial Feasibility Study for Installation of Solar Panels at IDOT-owned Facilities. Illinois Center for Transportation, August 2021. http://dx.doi.org/10.36501/0197-9191/21-024.
Der volle Inhalt der QuelleScoular, Claire, und Ian Teo. Developing strategic plans for an aligned approach to 21st century skills integration. Australian Council for Educational Research, März 2021. http://dx.doi.org/10.37517/978-1-74286-626-0.
Der volle Inhalt der QuelleNagahi, Morteza, Raed Jaradat, Mohammad Nagahisarchoghaei, Ghodsieh Ghanbari, Sujan Poudyal und Simon Goerger. Effect of individual differences in predicting engineering students' performance : a case of education for sustainable development. Engineer Research and Development Center (U.S.), Mai 2021. http://dx.doi.org/10.21079/11681/40700.
Der volle Inhalt der Quelle