Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Atomic pair“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Atomic pair" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Atomic pair"
YONEDA, Yasuhiro. „Atomic Pair Distribution Function (PDF) Analysis of Ferroelectric Materials“. Nihon Kessho Gakkaishi 54, Nr. 3 (2012): 155–58. http://dx.doi.org/10.5940/jcrsj.54.155.
Der volle Inhalt der QuelleVolz, Jürgen, Xinxin Hu, Gabriele Maron, Luke Masters, Lucas Pache und Arno Rauschenbeutel. „Single atom photon pair source“. EPJ Web of Conferences 266 (2022): 08016. http://dx.doi.org/10.1051/epjconf/202226608016.
Der volle Inhalt der QuelleFULDE, P. „COOPER PAIR BREAKING“. Modern Physics Letters B 24, Nr. 26 (20.10.2010): 2601–24. http://dx.doi.org/10.1142/s021798491002519x.
Der volle Inhalt der QuelleShamoto, S., K. Kodama, S. Iikubo und T. Taguchi. „Atomic pair distribution function analysis on nanomaterials“. Acta Crystallographica Section A Foundations of Crystallography 64, a1 (23.08.2008): C73—C74. http://dx.doi.org/10.1107/s0108767308097651.
Der volle Inhalt der QuelleRosenberg, Leonard. „Virtual-pair effects in atomic structure theory“. Physical Review A 39, Nr. 9 (01.05.1989): 4377–86. http://dx.doi.org/10.1103/physreva.39.4377.
Der volle Inhalt der QuelleDzero, M., E. A. Yuzbashyan und B. L. Altshuler. „Cooper pair turbulence in atomic Fermi gases“. EPL (Europhysics Letters) 85, Nr. 2 (Januar 2009): 20004. http://dx.doi.org/10.1209/0295-5075/85/20004.
Der volle Inhalt der QuelleBelkacem, Ali, und Allan H. Sørensen. „The pair-production channel in atomic processes“. Radiation Physics and Chemistry 75, Nr. 6 (Juni 2006): 656–95. http://dx.doi.org/10.1016/j.radphyschem.2005.03.003.
Der volle Inhalt der QuellePetkov, V. „Atomic-scale structure of nanocrystals by the atomic pair distribution function technique“. Molecular Simulation 31, Nr. 2-3 (15.02.2005): 101–5. http://dx.doi.org/10.1080/08927020412331308485.
Der volle Inhalt der QuelleVitek, V. „Pair Potentials in Atomistic Computer Simulations“. MRS Bulletin 21, Nr. 2 (Februar 1996): 20–23. http://dx.doi.org/10.1557/s088376940004625x.
Der volle Inhalt der QuelleHoubiers, M., und H. T. C. Stoof. „Cooper-pair formation in trapped atomic Fermi gases“. Physical Review A 59, Nr. 2 (01.02.1999): 1556–61. http://dx.doi.org/10.1103/physreva.59.1556.
Der volle Inhalt der QuelleDissertationen zum Thema "Atomic pair"
Jakubassa-Amundsen, Doris. „Spectral Theory of the Atomic Dirac Operator in the No-Pair Formalism“. Diss., lmu, 2004. http://nbn-resolving.de/urn:nbn:de:bvb:19-23824.
Der volle Inhalt der QuelleMasadeh, Ahmad Salah. „Quantitative structure determination of nanostructured materials using the atomic pair distribution function analysis“. Diss., Connect to online resource - MSU authorized users, 2008.
Den vollen Inhalt der Quelle findenKerr, Elinor A. „Kinetic and spectroscopic studies of ion-pair states of iodine monochloride“. Thesis, University of Edinburgh, 1989. http://hdl.handle.net/1842/12354.
Der volle Inhalt der QuelleCohen, Offir. „Generation of uncorrelated photon-pairs in optical fibres“. Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:b818b08a-27b5-4296-9f89-befec30b71fc.
Der volle Inhalt der QuelleWang, Ruizhe. „Magnetic fluctuations and clusters in the itinerant ferromagnet Ni-V close to a disordered quantum critical point“. Kent State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=kent1555936445433091.
Der volle Inhalt der QuelleLignier, Hans. „Etude de la localisation dynamique avec des atomes refroidis par laser“. Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2005. http://tel.archives-ouvertes.fr/tel-00011644.
Der volle Inhalt der QuelleAprès avoir retrouvé expérimentalement le phénomène quantique de localisation dynamique, lié au caractère périodique de la séquence de pulses, la destruction de ce phénomène (délocalisation dynamique) par l'utilisation de séquences superposant deux séries de pulses de période (séquence bicolore) est étudiée puis expliquée par un modèle théorique. Cette analyse suggère que la délocalisation est, dans ce contexte, réversible. Il est ainsi montré expérimentalement qu'une séquence bicolore inversée conduit une délocalisation suivie d'une relocalisation.
Lahaye, Thierry. „Refroidissement par évaporation d'un jet atomique guidé magnétiquement“. Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/tel-00011260.
Der volle Inhalt der QuelleNussenzveig, Paulo. „Mesures de champs au niveau du photon par interférométrie atomique“. Phd thesis, Université Pierre et Marie Curie - Paris VI, 1994. http://tel.archives-ouvertes.fr/tel-00011897.
Der volle Inhalt der QuelleLopes, Raphael. „An atomic Hong-Ou-Mandel experiment“. Thesis, Palaiseau, Institut d'optique théorique et appliquée, 2015. http://www.theses.fr/2015IOTA0001/document.
Der volle Inhalt der QuelleIn this thesis, we report the first realisation of the Hong–Ou–Mandel experiment with massive particles in momentum space. This milestone experiment was originally performed in quantum optics: two photons arriving simultaneously at the input ports of a 50:50 beam-splitter always emerge together in one of the output ports. The effect leads to a reduction of coincidence counts which translates into a dip when particles are indistinguishable. We performed the experiment with metastable helium atoms where the specificities of the Micro-Channel-Plate detector allows one to recover the momentum vector of each individual atom.After listing the necessary tools to perform this experiment with atoms, the experimental sequence is discussed and the results are presented. In particular we measured a coincidence count reduction that cannot be explained through any simple classical model. This corresponds to the signature of a two-particle interference, and confirms that our atomic pair source produces beams which have highly correlated populations and are well mode matched. This opens the prospect of testing Bell’s inequalities involving mechanical observables of massive particles, such as momentum, using methods inspired by quantum optics. It also demonstrates a new way to produce and benchmark twin-atom pairs that may be of interest for quantum information processing
Celino, Massimo. „Atomic scale modelling of disordered systems : the Si and SiSe2 case“. Université Louis Pasteur (Strasbourg) (1971-2008), 2002. http://www.theses.fr/2002STR13192.
Der volle Inhalt der QuelleAt room temperature, materials can exists not only in the liquid or in the crystalline phase but also in the amorphous phase. The amorphous materials are characterized by physical and chemical properties that are of great interest from both fundamental and industrial point of view. In this framework several theoretical approaches have been developed but none of them is able to link the intrinsic disordered atomic structure with the macroscopic properties. Among the others the Molecular Dynamics approach is able to tackle this problem. In this thesis the Molecular Dynamics approach has been used to study the structural properties of two amorphous materials: silicon and silicon diselenide (SiSe2). Amorphous silicon has been studied from room temperature till the melting and above. We have developed an approach that combines the Reverse MonteCarlo method and the Molecular Dynamics technique based on the Tight-Binding theory. In the second part of the thesis we have studied the liquid and the amorphous SiSe2. SiSe2 is representative of a class of amorphous binary, semiconducting chalcogenides of technological interest. It belongs to a class of binary systems AX2 (A=Si, Ge, X=Se, O, S) whose structure is characterized by an intermediate range order. This feature is characterized by the presence of a first sharp diffraction peak (FSDP) in the total neutron structure factor. The atomic structure is characterized by the presence of tetrahedral structures centred on silicon atoms. However it is not possible to exclude the presence of a percentage of defects. Classical Molecular Dynamics is not enough accurate to describe the detailed balance between ionic and covalent bonding. For this reason we have resorted to first-principle calculation for the study of the structural features that at the atomistic level determine the presence of intermediate range order
Bücher zum Thema "Atomic pair"
Banerjee, Soham. Improved modeling of nanocrystals from atomic pair distribution function data. [New York, N.Y.?]: [publisher not identified], 2020.
Den vollen Inhalt der Quelle findenShi, Chenyang. Local structure and lattice dynamics study of low dimensional materials using atomic pair distribution function and high energy resolution inelastic x-ray scattering. [New York, N.Y.?]: [publisher not identified], 2015.
Den vollen Inhalt der Quelle findenErnst, Peierls Rudolf. Atomic histories. Woodbury, N.Y: AIP Press, 1997.
Den vollen Inhalt der Quelle findenDonnerberg, Hansjörg. Atomic simulation of electrooptic and magnetooptic oxide materials. Berlin: Springer, 1999.
Den vollen Inhalt der Quelle findenAbraham, Tamir, Hrsg. Mixing and excess thermodynamic properties: A literature source book : supplement 2. Amsterdam: Elsevier, 1986.
Den vollen Inhalt der Quelle findenAn introduction to inertial confinement fusion. Boca Raton: Taylor & Francis, 2006.
Den vollen Inhalt der Quelle findenGlenn, Healey, Shafer Steven A und Wolff Lawrence, Hrsg. Color. Boston: Jones and Bartlett, 1992.
Den vollen Inhalt der Quelle findenHines, James R. Recovery in Europe, Pair Skating, and Ice Dancing. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252039065.003.0010.
Der volle Inhalt der QuellePacheco, Leonardo Lessa, und Ivoni Freitas-Reis. Gilbert Lewis e a delicada tessitura da teoria do par compartilhado. Brazil Publishing, 2020. http://dx.doi.org/10.31012/978-65-5861-092-2.
Der volle Inhalt der QuelleScerri, Eric. A Tale of Seven Elements. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780195391312.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Atomic pair"
Rau, A. R. P. „States of an Atomic Electron Pair“. In Atoms in Unusual Situations, 383–95. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-9337-6_17.
Der volle Inhalt der QuelleLindgren, Ingvar, und John Morrison. „The Pair-Correlation Problem and the Coupled-Cluster Approach“. In Atomic Many-Body Theory, 381–423. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-61640-2_15.
Der volle Inhalt der QuelleGrosser, J., O. Hoffmann und F. Rebentrost. „Direct Observation of Collisions by Laser Excitation of the Collision Pair“. In Atomic and Molecular Beams, 485–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56800-8_32.
Der volle Inhalt der QuelleOhashi, Tetsuya. „Generation of Atomic Vacancies by Dislocation Pair Annihilation“. In Synthesis Lectures on Mechanical Engineering, 57–66. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37893-5_5.
Der volle Inhalt der QuelleBerakdar, J. „Electron-Pair Emission from Solids and Clean Surfaces Upon Electron and Photon Impact“. In New Directions in Atomic Physics, 309–13. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4721-1_34.
Der volle Inhalt der QuelleLaing, Michael. „Effective Atomic Number and Valence-Shell Electron-Pair Repulsion“. In ACS Symposium Series, 193–98. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1994-0565.ch015.
Der volle Inhalt der QuelleMomberger, K., N. Grün und W. Scheid. „Coupled channel analysis of electron-positron pair production in relativistic heavy ion collisions“. In Atomic Physics of Highly Charged Ions, 183–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76658-9_43.
Der volle Inhalt der QuelleVoitkiv, A. B., und B. Najjari. „Electron Loss, Excitation, and Pair Production in Relativistic Collisions of Heavy Atomic Particles“. In Atomic Processes in Basic and Applied Physics, 153–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25569-4_7.
Der volle Inhalt der QuelleThiel, Joachim, Johannes Hoffstadt, Norbert Grün und Werner Scheid. „Electron-Positron Pair Creation in Relativistic Atomic Heavy Ion Collisions“. In NATO ASI Series, 453–64. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2568-4_61.
Der volle Inhalt der QuelleEdkins, Stephen. „Atomic-Scale Electronic Structure of the Cuprate d-Symmetry Form Factor Charge Density Wave“. In Visualising the Charge and Cooper-Pair Density Waves in Cuprates, 59–88. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65975-6_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Atomic pair"
Güçlü, M. C. „Atomic Collisions and free Lepton Pair Production“. In LOW ENERGY ANTIPROTON PHYSICS: Eighth International Conference on Low Energy Antiproton Physics (LEAP '05). AIP, 2005. http://dx.doi.org/10.1063/1.2130191.
Der volle Inhalt der QuelleStrayer, M. R. „Thirteen years of pair production“. In Atomic collisions: A symposium in honor of Christopher Bottcher (1945−1993). AIP, 1995. http://dx.doi.org/10.1063/1.49189.
Der volle Inhalt der QuelleVestergaard, B., und K. Molmer. „Atomic Pair Correlations and Propagation of Incoherent Light“. In EQEC'96. 1996 European Quantum Electronic Conference. IEEE, 1996. http://dx.doi.org/10.1109/eqec.1996.561614.
Der volle Inhalt der QuelleGould, Harvey, A. Belkacem, B. Feinberg, R. Bossingham und W. E. Meyerhof. „Electron capture from electron-positron pair production“. In Atomic collisions: A symposium in honor of Christopher Bottcher (1945−1993). AIP, 1995. http://dx.doi.org/10.1063/1.49186.
Der volle Inhalt der QuelleBulanin, M. O. „Collision-induced absorption intensity redistribution and the atomic pair polarizabilities“. In The 13th international conference on spectral line shapes. AIP, 1997. http://dx.doi.org/10.1063/1.51802.
Der volle Inhalt der QuelleHua, Xiao, Sandy Sanchez und Ullrich Steiner. „Phase Evolution During Perovskite Formation – An Insight from Pair Distribution Function“. In Online Conference on Atomic-level Characterisation of Hybrid Perovskites. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.hpatom.2022.008.
Der volle Inhalt der QuellePan, Li, Don R. Metzger und Marek Niewczas. „The Meshless Dynamic Relaxation Techniques for Simulating Atomic Structures of Materials“. In ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1284.
Der volle Inhalt der QuelleVane, C. R., S. Datz, P. F. Dittner, H. F. Krause, C. Bottcher, M. Strayer, R. Schuch, H. Gao und R. Hutton. „Electron-positron pair production in Coulomb collisions at ultrarelativistic energies“. In The eighteenth international conference on the physics of electronic and atomic collisions. AIP, 1993. http://dx.doi.org/10.1063/1.45265.
Der volle Inhalt der QuelleKoch, Karl, Stephen H. Chakmakjian, C. R. Stroud und Lloyd W. Hillman. „Broadband atomic response to incommensurate modulation frequencies“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.wf6.
Der volle Inhalt der QuelleDeb, Bimalendu. „Pair-correlation in Bose-Einstein Condensate and Fermi Superfluid of Atomic Gases“. In Invited Lectures of TC-2005. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772510_0005.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Atomic pair"
Billinge, S. J. L., und M. F. Thorpe. Local Atomic Structure of Semiconductor Alloys Using Pair Distribution Function Analysis. Office of Scientific and Technical Information (OSTI), Juni 2002. http://dx.doi.org/10.2172/795601.
Der volle Inhalt der QuelleTurner Streets, Kathleen Ruth. The Atomic Weight Dependence and Mass Cross-Sections of Massive Hadron Pair Production in Proton - Nucleus Collisions at 800-GeV/c. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/1427792.
Der volle Inhalt der QuelleHeinola, K. Summary Report of the Second Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices. IAEA Nuclear Data Section, Februar 2021. http://dx.doi.org/10.61092/iaea.gd9j-0nr6.
Der volle Inhalt der QuelleMunger, Charles T. Proposal for the Detection of Relativistic Anti-Hydrogen Atoms Produced by Pair Production with Positron Capture. Office of Scientific and Technical Information (OSTI), Juli 2003. http://dx.doi.org/10.2172/813309.
Der volle Inhalt der QuelleYourshaw, Ivan. Study of Pair and many-body interactions in rare-gas halide atom clusters using negative ion zero electron kinetic energy (ZEKE) and threshold photodetachment spectroscopy. Office of Scientific and Technical Information (OSTI), Juli 1998. http://dx.doi.org/10.2172/760297.
Der volle Inhalt der Quelle