Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Atmospheric methane“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Atmospheric methane" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Atmospheric methane"
Jensen, Sigmund, Anders Priemé und Lars Bakken. „Methanol Improves Methane Uptake in Starved Methanotrophic Microorganisms“. Applied and Environmental Microbiology 64, Nr. 3 (01.03.1998): 1143–46. http://dx.doi.org/10.1128/aem.64.3.1143-1146.1998.
Der volle Inhalt der QuelleBenstead, J., G. M. King und H. G. Williams. „Methanol Promotes Atmospheric Methane Oxidation by Methanotrophic Cultures and Soils“. Applied and Environmental Microbiology 64, Nr. 3 (01.03.1998): 1091–98. http://dx.doi.org/10.1128/aem.64.3.1091-1098.1998.
Der volle Inhalt der QuelleStevens, C. M. „Atmospheric methane“. Chemical Geology 71, Nr. 1-3 (Dezember 1988): 11–21. http://dx.doi.org/10.1016/0009-2541(88)90102-7.
Der volle Inhalt der QuelleZhou, Wencai, Xueying Qiu, Yuheng Jiang, Yingying Fan, Shilei Wei, Dongxue Han, Li Niu und Zhiyong Tang. „Highly selective aerobic oxidation of methane to methanol over gold decorated zinc oxide via photocatalysis“. Journal of Materials Chemistry A 8, Nr. 26 (2020): 13277–84. http://dx.doi.org/10.1039/d0ta02793f.
Der volle Inhalt der QuelleArora, Vivek K., Joe R. Melton und David Plummer. „An assessment of natural methane fluxes simulated by the CLASS-CTEM model“. Biogeosciences 15, Nr. 15 (01.08.2018): 4683–709. http://dx.doi.org/10.5194/bg-15-4683-2018.
Der volle Inhalt der QuelleCatling, D. C., M. W. Claire und K. J. Zahnle. „Anaerobic methanotrophy and the rise of atmospheric oxygen“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365, Nr. 1856 (18.05.2007): 1867–88. http://dx.doi.org/10.1098/rsta.2007.2047.
Der volle Inhalt der QuelleYarakhmedov, M. B., A. G. Kiiamov, M. E. Semenov, A. P. Semenov und A. S. Stoporev. „Peculiarities of Decomposition of Gas Hydrates in the Presence of Methanol at Atmospheric Pressure“. Chemistry and Technology of Fuels and Oils 634, Nr. 6 (2022): 40–43. http://dx.doi.org/10.32935/0023-1169-2022-634-6-40-43.
Der volle Inhalt der QuelleKeppler, Frank, Mihály Boros, Christian Frankenberg, Jos Lelieveld, Andrew McLeod, Anna Maria Pirttilä, Thomas Röckmann und Jörg-Peter Schnitzler. „Methane formation in aerobic environments“. Environmental Chemistry 6, Nr. 6 (2009): 459. http://dx.doi.org/10.1071/en09137.
Der volle Inhalt der QuelleSmith, H. J. „ATMOSPHERIC SCIENCE: Sourcing Methane“. Science 316, Nr. 5826 (11.05.2007): 799b. http://dx.doi.org/10.1126/science.316.5826.799b.
Der volle Inhalt der QuelleWilson, Jason. „Natural atmospheric methane contributions“. Marine Pollution Bulletin 28, Nr. 4 (April 1994): 194–95. http://dx.doi.org/10.1016/0025-326x(94)90085-x.
Der volle Inhalt der QuelleDissertationen zum Thema "Atmospheric methane"
Tice, Dane Steven. „Ground-based near-infrared remote sounding of ice giant clouds and methane“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:4f09f270-a25c-4d36-96d3-13070a594eaa.
Der volle Inhalt der QuelleKnappett, Diane Shirley. „Observing the distribution of atmospheric methane from space“. Thesis, University of Leicester, 2012. http://hdl.handle.net/2381/10928.
Der volle Inhalt der QuelleWarwick, Nicola Julie. „Global modelling of atmospheric methane and methyl bromide“. Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619980.
Der volle Inhalt der QuelleTeama, Doaa Galal. „A 30-Year Record of the Isotopic Composition of Atmospheric Methane“. Thesis, Portland State University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3557627.
Der volle Inhalt der QuelleMethane (CH4) is one of the most important greenhouse gases after water vapor and carbon dioxide due to its high concentration and global warming potential 25 times than that of CO2(based on a 100 year time horizon). Its atmospheric concentration has more than doubled from the preindustrial era due to anthropogenic activities such as rice cultivation, biomass burning, and fossil fuel production. However, the rate of increase of atmospheric CH4 (or the growth rate) slowed from 1980 until present. The main reason for this trend is a slowdown in the trend of CH 4sources. Measuring stable isotopes of atmospheric CH4 can constrain changes of CH4sources. The main goal of this work is to interpret the CH4 trend from 1978-2010 in terms of its sources using measurements of CH4 mixing ratio and its isotopes.
The current work presents the measurements and analysis of CH4 and its isotopes (δ13C and δD) of four air archive sample sets collected by the Oregon Graduate Institute (OGI). CH4 isotope ratios (δ13C and δD) were measured by a continuous flow isotope ratio mass spectrometer technique developed at PSU. The first set is for Cape Meares, Oregon which is the oldest and longest set and spans 1977-1999. The integrity of this sample set was evaluated by comparing between our measured CH4 mixing ratio values with those measured values by OGI and was found to be stable. Resulting CH4 seasonal cycle was evaluated from the Cape Meares data. The CH4 seasonal cycle shows a broad maximum during October-April and a minimum between July and August. The seasonal cycles of δ13C and δD have maximum values in May for δ13C and in July for δD and minimum values between September-October for δ13C and in October for δD. These results indicate a CH4 source that is more enriched January-May (e.g. biomass burning) and a source that is more depleted August-October (e.g. microbial). In addition to Cape Meares, air archive sets were analyzed from: South Pole (SPO), Samoa (SMO), Mauna Loa (MLO) 1992-1996. The presented δD measurements are unique measured values during these time periods at these stations.
To obtain the long-term in isotopic CH4 from 1978-2010, other datasets of Northern Hemisphere mid-latitude sites are included with Cape Meares. These sites are Olympic Peninsula, Washington; Montaña de Oro, California; and Niwot Ridge, Colorado. The seasonal cycles of CH4 and its isotopes from the composite dataset have the same phase and amplitudes as the Cape Meares site. CH4 growth rate shows a decrease over time 1978-2010 with three main spikes in 1992, 1998, and 2003 consistent with the literature from the global trend. CH4 lifetime is estimated to 9.7 yrs. The δ13C trend in the composite data shows a slow increase from 1978-1987, a more rapid rate of change 1987-2005, and a gradual depletion during 2005-2010. The δD trend in the composite data shows a gradual increase during 1978-2001 and decrease from 2001-2005. From these results, the global CH4 emissions are estimated and show a leveling off sources 1982-2010 with two large peak anomalies in 1998 and 2003. The global average δ13C and δD of CH 4 sources are estimated from measured values. The results of these calculations indicate that there is more than one source which controls the decrease in the global CH4 trend. From 1982-2001, δ13C and δD of CH4 sources becomes more depleted due to a decrease in fossil and/or biomass burning sources relative to microbial sources. From 2005-2010, δ 13C of CH4 sources returns to its 1981 value. There are two significant peaks in δ13C and δD of CH 4 sources in 1998 and 2003 due to the wildfire emissions in boreal areas and in Europe.
Butterworth, Anna Lucy. „Determination of the combined isotopic composition of atmospheric methane“. Thesis, Open University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264463.
Der volle Inhalt der QuelleButenhoff, Christopher Lee. „Investigation of the sources and sinks of atmospheric methane“. PDXScholar, 2010. https://pdxscholar.library.pdx.edu/open_access_etds/2813.
Der volle Inhalt der QuelleWecht, Kevin James. „Quantifying Methane Emissions Using Satellite Observations“. Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11252.
Der volle Inhalt der QuelleEarth and Planetary Sciences
Srong, E. Kimberley. „Spectral parameters of methane for remote sounding of the Jovian atmosphere“. Thesis, University of Oxford, 1992. http://ora.ox.ac.uk/objects/uuid:0f870f86-c546-461d-aca7-61f1ccc249df.
Der volle Inhalt der QuelleSnover, Amy Katherine. „The stable hydrogen isotopic composition of methane emitted from biomass burning and removed by oxic soils : application to the atmospheric methane budget /“. Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/11570.
Der volle Inhalt der QuelleBräunlich, Maya. „Study of atmospheric carbon monoxide and methane Untersuchung von atmosphärischen Kohlenmonoxid und Methan anhand von Isotopenmessungen /“. [S.l. : s.n.], 2000. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB8832641.
Der volle Inhalt der QuelleBücher zum Thema "Atmospheric methane"
Khalil, Mohammad Aslam Khan, Hrsg. Atmospheric Methane. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1.
Der volle Inhalt der QuelleKhalil, M. A. K. 1950-, North Atlantic Treaty Organization. Scientific Affairs Division. und NATO Advanced Research Workshop on the Atmospheric Methane Cycle: Sources, Sinks, Distributions, and Role in Global Change (1991 : Portland, Or.), Hrsg. Atmospheric methane: Sources, sinks, and role in global change. Berlin: Springer-Verlag, 1993.
Den vollen Inhalt der Quelle findenM, Bruhl Christoph, Thompson Anne M und United States. National Aeronautics and Space Administration., Hrsg. The current and future environmental role of atmospheric methane: Model studies and uncertainties. [Washington, DC: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenH, Bruhl Christoph, Thompson Anne M und United States. Environmental Protection Agency., Hrsg. The current and future environmental role of atmospheric methane: Model studies and uncertainties. [Washington, D.C: U.S. Environmental Protection Agency, 1992.
Den vollen Inhalt der Quelle findenM, McIntosh Catherine, und Environmental Research Laboratories (U.S.), Hrsg. Atmospheric CH₄ seasonal cycles and latitude gradient from the NOAA CMDL cooperative air sampling network : Forecast Systems Laboratory, Boulder, Colorado, August 1996. Boulder, Colo: United States Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1996.
Den vollen Inhalt der Quelle findenKhalil, M. A. K., Hrsg. Atmospheric Methane: Sources, Sinks, and Role in Global Change. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84605-2.
Der volle Inhalt der QuelleWorkshop, WMO/UNEP Intergovernmental Panel on Climate Change International IPCC. Methane and nitrous oxide: Methods in national emissions inventories and options for control : proceedings, Euroase Hotel, Amersfoort, the Netherlands, 3-5 February 1993. Bilthoven, the Netherlands: National Institute of Public Health and Environmental Protection, 1993.
Den vollen Inhalt der Quelle findenSteele, L. Paul. Atmospheric methane concentrations: The NOAA/CMDL Global Cooperative Flask Sampling Network, 1983-1988. Oak Ridge, Tenn: Oak Ridge National Laboratory, 1991.
Den vollen Inhalt der Quelle findenLang, Patricia M. Atmospheric methane data for the period 1986-1986 from the NOAA/CMDL global cooperative flask sampling network. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Climate Monitoring and Diagnostics Laboratory, 1990.
Den vollen Inhalt der Quelle findenLang, Patricia M. Atmospheric methane data for the period 1986-1986 from the NOAA/CMDL global cooperative flask sampling network. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Climate Monitoring and Diagnostics Laboratory, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Atmospheric methane"
Khalil, M. A. K. „Atmospheric Methane: An Introduction“. In Atmospheric Methane, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_1.
Der volle Inhalt der QuelleShearer, M. J., und M. A. K. Khalil. „Rice Agriculture: Emissions“. In Atmospheric Methane, 170–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_10.
Der volle Inhalt der QuelleLevine, Joel S., Wesley R. Cofer und Joseph P. Pinto. „Biomass Burning“. In Atmospheric Methane, 190–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_11.
Der volle Inhalt der QuelleMatthews, Elaine. „Wetlands“. In Atmospheric Methane, 202–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_12.
Der volle Inhalt der QuelleThorneloe, Susan A., Morton A. Barlaz, Rebecca Peer, L. C. Huff, Lee Davis und Joe Mangino. „Waste Management“. In Atmospheric Methane, 234–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_13.
Der volle Inhalt der QuelleKirchgessner, David A. „Fossil Fuel Industries“. In Atmospheric Methane, 263–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_14.
Der volle Inhalt der QuelleJudd, A. G. „Geological Sources of Methane“. In Atmospheric Methane, 280–303. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_15.
Der volle Inhalt der QuelleWuebbles, Donald J., Katharine A. S. Hayhoe und Rao Kotamarthi. „Methane in the Global Environment“. In Atmospheric Methane, 304–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_16.
Der volle Inhalt der QuelleChappellaz, J., D. Raynaud, T. Blunier und B. Stauffer. „The Ice Core Record of Atmospheric Methane“. In Atmospheric Methane, 9–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_2.
Der volle Inhalt der QuelleStevens, C. M., und M. Wahlen. „The Isotopic Composition of Atmospheric Methane and Its Sources“. In Atmospheric Methane, 25–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Atmospheric methane"
Tsvetova, Elena A. „Modeling of hydrodynamics of water-methane heterogeneous system“. In XXI International Symposium Atmospheric and Ocean Optics. Atmospheric Physics, herausgegeben von Oleg A. Romanovskii. SPIE, 2015. http://dx.doi.org/10.1117/12.2205998.
Der volle Inhalt der QuelleMeng, Lichun, Andreas Fix, Lasse Høgstedt, Peter Tidemand-Lichtenberg, Christian Pedersen und Peter John Rodrigo. „Upconversion Detector for Methane Atmospheric Sensor“. In Optics and Photonics for Energy and the Environment. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/ee.2017.ew4b.2.
Der volle Inhalt der QuelleJarem, John M., Joseph H. Pierluissi und William W. Ng. „A Transmittance Model For Atmospheric Methane“. In 28th Annual Technical Symposium, herausgegeben von Richard A. Mollicone und Irving J. Spiro. SPIE, 1985. http://dx.doi.org/10.1117/12.945011.
Der volle Inhalt der QuelleFiedler, Michael, C. Goelz und Ulrich Platt. „Nonresonant photoacoustic monitoring of atmospheric methane“. In Environmental Sensing '92, herausgegeben von Harold I. Schiff und Ulrich Platt. SPIE, 1993. http://dx.doi.org/10.1117/12.140227.
Der volle Inhalt der QuelleTanichev, Aleksandr S. „Method for fast modeling ν2 Raman band of methane“. In 27th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, herausgegeben von Oleg A. Romanovskii und Gennadii G. Matvienko. SPIE, 2021. http://dx.doi.org/10.1117/12.2603359.
Der volle Inhalt der QuelleVoitsekhovskaya, Olga, Vitaliy Loskutov, Olga V. Shefer und Danila Kashirskii. „Transmission of radiant energy by gas-aerosol medium containing methane“. In XXIII International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, herausgegeben von Oleg A. Romanovskii und Gennadii G. Matvienko. SPIE, 2017. http://dx.doi.org/10.1117/12.2284933.
Der volle Inhalt der QuelleAgeev, Boris, und Yury Ponomarev. „Estimate of methane-capacity of aerogel samples of different compositions“. In XXIV International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, herausgegeben von Oleg A. Romanovskii und Gennadii G. Matvienko. SPIE, 2018. http://dx.doi.org/10.1117/12.2503956.
Der volle Inhalt der QuelleGong, Weihua, Qinduan Zhang, Tingting Zhang, TONGYU LIU, ZHAOWEI WANG und YUBIN WEI. „Study on laser methane remote sensor based on TDLAS“. In Atmospheric and Environmental Optics, herausgegeben von Liang Xu, Jianguo Liu und Jian Gao. SPIE, 2023. http://dx.doi.org/10.1117/12.2651953.
Der volle Inhalt der QuellePestunov, Dmitriy A., Valentina M. Domysheva, Maria V. Sakirko, Artem M. Shamrin und Mikhail V. Panchenko. „Methane in the atmosphere and surface water of Lake Baikal“. In 27th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, herausgegeben von Oleg A. Romanovskii und Gennadii G. Matvienko. SPIE, 2021. http://dx.doi.org/10.1117/12.2603722.
Der volle Inhalt der QuellePetrov, Dmitry V., Ivan I. Matrosov, Danila O. Sedinkin und Alexey R. Zaripov. „Raman spectra of n-pentane and isopentane in a methane environment“. In XXIII International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, herausgegeben von Oleg A. Romanovskii und Gennadii G. Matvienko. SPIE, 2017. http://dx.doi.org/10.1117/12.2286321.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Atmospheric methane"
Strand, Stuart, Neil Bruce, Liz Rylott und Long Zhang. Phytoremediation of Atmospheric Methane. Fort Belvoir, VA: Defense Technical Information Center, April 2013. http://dx.doi.org/10.21236/ada579442.
Der volle Inhalt der QuelleButenhoff, Christopher. Investigation of the sources and sinks of atmospheric methane. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.2807.
Der volle Inhalt der QuelleSafta, Cosmin, Ray Bambha und Hope Michelsen. Estimating Regional Methane Emissions Through Atmospheric Measurements and Inverse Modeling. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1569345.
Der volle Inhalt der QuelleTeama, Doaa. A 30-Year Record of the Isotopic Composition of Atmospheric Methane. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.642.
Der volle Inhalt der QuelleCostigan, Keeley Rochelle, und Manvendra Krishna Dubey. Multi-scale Atmospheric Modeling of Green House Gas Dispersion in Complex Terrain. Atmospheric Methane at Four Corners. Office of Scientific and Technical Information (OSTI), Juli 2015. http://dx.doi.org/10.2172/1193618.
Der volle Inhalt der QuelleLauvaux, Thomas. TA [2] Continuous, regional methane emissions estimates in northern Pennsylvania gas fields using atmospheric inversions. Office of Scientific and Technical Information (OSTI), Dezember 2017. http://dx.doi.org/10.2172/1417183.
Der volle Inhalt der QuelleMcFarlane, Karis J. Final Report for Wetlands as a Source of Atmospheric Methane: A Multiscale and Multidisciplinary Approach. Office of Scientific and Technical Information (OSTI), Oktober 2016. http://dx.doi.org/10.2172/1333394.
Der volle Inhalt der QuelleJacobson, A. R., J. B. Miller, A. Ballantyne, S. Basu, L. Bruhwiler, A. Chatterjee, S. Denning und L. Ott. Chapter 8: Observations of Atmospheric Carbon Dioxide and Methane. Second State of the Carbon Cycle Report. Herausgegeben von N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. Najjar, S. Reed, P. Romero-Lankao und Z. Zhu. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.ch8.
Der volle Inhalt der QuelleBarns, D., und J. Edmonds. An evaluation of the relationship between the production and use of energy and atmospheric methane emissions. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/6970106.
Der volle Inhalt der QuelleBostrom, Gregory. Development of a Portable Cavity Ring-Down Spectroscopic Technique for Measuring Stable Isotopes in Atmospheric Methane. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.51.
Der volle Inhalt der Quelle