Auswahl der wissenschaftlichen Literatur zum Thema „Astronomical instruments“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Astronomical instruments" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Astronomical instruments"

1

Rifai, Elkhayati. „Observational Instruments in the Arab Scientific Heritage Perspective Ismail ibn Heba Allah al-Hamawi | Al Alät Al Rosydiyyah fi At Thurost Al ‘Ilm Al ‘Aroby ‘Indä Ismäil ibn Hebä Allah al-Hämäwi“. Mantiqu Tayr: Journal of Arabic Language 1, Nr. 2 (31.07.2021): 145–66. http://dx.doi.org/10.25217/mantiqutayr.v1i2.1580.

Der volle Inhalt der Quelle
Annotation:
The article is an edited and critical study of an unpublished astronomical text entitled "The Astronomical Instrument Known as The Two-Pronged Machine" of a Damascene astronomer from the thirteenth century AD, Ismail ibn Heba Allah al-Hamawi. ancient scientific texts on this instrument are written by al-Kindi then Ibn Abbad and al-Nayrizi. Al-Kindi's text is the only text published from ancient texts, and today we present to researchers in the development of astronomical instruments a new text to contribute to enriching our knowledge of the scientific tradition of astronomical instruments in Islamic civilization.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gingerich, Owen. „Book Review: Indian Astronomical Instruments: Astronomical Instruments in the Rampur Raza Library“. Journal for the History of Astronomy 36, Nr. 1 (Februar 2005): 120–21. http://dx.doi.org/10.1177/002182860503600115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

KING, D. A. „Cataloguing Medieval Islamic Astronomical Instruments“. Bibliotheca Orientalis 57, Nr. 3 (01.08.2000): 247–58. http://dx.doi.org/10.2143/bior.57.3.2015769.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Barden, Samuel C. „FIBER OPTICS IN ASTRONOMICAL INSTRUMENTS“. Optics and Photonics News 7, Nr. 2 (01.02.1996): 34. http://dx.doi.org/10.1364/opn.7.2.000034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Heacox, William D., und Pierre Connes. „Optical fibers in astronomical instruments“. Astronomy and Astrophysics Review 3, Nr. 3-4 (1992): 169–99. http://dx.doi.org/10.1007/bf00872526.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Naylor, David A., Brad G. Gom, Matthijs H. D. van der Wiel und Gibion Makiwa. „Astronomical imaging Fourier spectroscopy at far-infrared wavelengths“. Canadian Journal of Physics 91, Nr. 11 (November 2013): 870–78. http://dx.doi.org/10.1139/cjp-2012-0571.

Der volle Inhalt der Quelle
Annotation:
The principles and practice of astronomical imaging Fourier transform spectroscopy (FTS) at far-infrared wavelengths are described. The Mach–Zehnder (MZ) interferometer design has been widely adopted for current and future imaging FTS instruments; we compare this design with two other common interferometer formats. Examples of three instruments based on the MZ design are presented. The techniques for retrieving astrophysical parameters from the measured spectra are discussed using calibration data obtained with the Herschel–SPIRE instrument. The paper concludes with an example of imaging spectroscopy obtained with the SPIRE FTS instrument.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Schmidl, Petra G. „Astronomical Instruments in the Ottoman Empire“. Journal for the History of Astronomy 51, Nr. 4 (November 2020): 497–99. http://dx.doi.org/10.1177/0021828620943749.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

GOLDSTEIN, BERNARD R. „Descriptions of Astronomical Instruments in Hebrew“. Annals of the New York Academy of Sciences 500, Nr. 1 From Deferent (Juni 1987): 105–41. http://dx.doi.org/10.1111/j.1749-6632.1987.tb37198.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Stewart, J. M., S. M. Beard, B. D. Kelly und M. J. Paterson. „Applications of transputers to astronomical instruments“. IEEE Transactions on Nuclear Science 37, Nr. 2 (April 1990): 529–34. http://dx.doi.org/10.1109/23.106672.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Thibodeau, Sharon Gibbs. „Islamic Astronomical Instruments. David A. King“. Isis 81, Nr. 1 (März 1990): 101–2. http://dx.doi.org/10.1086/355272.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Astronomical instruments"

1

饒勇 und Yong Rao. „The astronomical observation system of 12" telescope: its automatic control system and astronomical application“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31214587.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Cochrane, William Andrew. „The design and characterisation of miniature robotics for astronomical instruments“. Thesis, Heriot-Watt University, 2015. http://hdl.handle.net/10399/2916.

Der volle Inhalt der Quelle
Annotation:
Micro robotics has the potential to improve the efficiency and reduce cost of future multi-object instruments for astronomy. This thesis reports on the development and evolution of a micro autonomous pick-off mirror called the Micro Autonomous Positioning System (MAPS) that can be used in a multi-object spectrograph. The design of these micro-autonomous pick-off mirrors is novel as they are capable of high precision positioning using electromagnetic propulsion through utilising non-conventional components and techniques. These devices are self-driven robotic units, which with the help of an external control system are capable of positioning themselves on an instruments focal plane to within 24 μm. This is different from other high precision micro robotics as they normally use piezoelectric actuators for propulsion. Micro robots have been developed that use electromagnetic motors, however they are not used for high precision applications. Although there is a plethora of literature covering design, functionality and capability of precision micro autonomous systems, there is limited research on characterisation methods for their use in astronomical applications. This work contributes not only to the science supporting the design of a micro-autonomous pick-off mirror but also presents a framework for characterising such miniature mechanisms. The majority of instruments are presented with a curved focal plane. Therefore, to ensure that the pick-off mirrors are aligned properly with the receiving optics, either the pick-off mirror needs to be tipped or the receiving optics repositioned. Currently this function is implemented in the beam steering mirror (i.e. the receiving optics). The travel range required by the beam steering mirror is relatively large, and as such, it is more difficult to achieve the positional accuracy and stability. By incorporating this functionality in the pick-off mirror, the instrument can be optimised in terms of size, accuracy and stability. A unique self-adjusting mirror (SAM) is thus proposed as a solution and detailed. As a proof-of-concepts both MAPS and SAM usability in multi-object spectrographs was evaluated and validated. The results indicate their potential to meet the requirements of astronomical instruments and reduce both the size and cost.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Porter, Martin John. „A CCD camera system for use in echelle spectroscopy /“. St. Lucia, Qld, 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17953.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Brooks, Randall Chapman. „The precision screw in scientific instruments of the 17th-19th centuries : with particular reference to astronomical, nautical and surveying instruments“. Thesis, University of Leicester, 1989. http://hdl.handle.net/2381/8446.

Der volle Inhalt der Quelle
Annotation:
Published articles have been removed from the Appendices of the electronic copy of this thesis due to third party copyright restrictions. The complete version can be consulted at the University of Leicester Library.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

McGee, P. K. „Optical studies in high-energy astrophysics /“. Title page, contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phm14485.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

MacLachlan, David Guillaume. „Development of photonic technologies for astronomical instruments using ultrafast laser inscription“. Thesis, Heriot-Watt University, 2017. http://hdl.handle.net/10399/3281.

Der volle Inhalt der Quelle
Annotation:
Recently there has been a desire to apply photonic concepts and technologies to astronomical applications, with the aim of replacing traditional bulk optic instruments. This astrophotonic approach is envisioned to produce compact devices that have the potential to provide the unprecedented precision and stability required for current astronomical goals, such as the detection of Earth-like exoplanets capable of supporting life. The work in this thesis covers the investigation of the technique of Ultrafast Laser Inscription (ULI) to create the building blocks that may lead to a fully integrated compact spectrograph for astronomy. Unlike conventional fabrication technologies, ULI allows custom three-dimensional optical devices to be directly inscribed within a bulk substrate. Volume gratings with high first order diffraction efficiencies optimised for a variety of wavelengths are demonstrated, with a view to providing efficient gratings for the midinfrared wavelength range. Initially the mid infrared transmitting material GLS was used to create gratings with a first order efficiency of 63 % up to a wavelength of 1.35 μm. Anti-reflection coatings were applied to GLS and gratings with an efficiency of 95 % at 1.02 μm were produced. A second material, IG2 was used and diffraction gratings with a first order efficiency of 63 % were produced, which were efficient up to a wavelength of 2.5 μm, with thicker gratings produced which have yet to be characterised in a mid-infrared setup. These developments show that practical mid-infrared volume gratings can be produced by the process of ULI. Photonic reformatters have also been developed to reshape a multimode telescope point spread function into a pseudo-slit, suitable as an input for a diffraction-limited spectrograph. Two device designs were investigated. The first was a fully integrated ULI component which, tested in the laboratory reformatted a multimode input at 1550 nm into a slit, single mode in one axis and highly multimode in the orthogonal axis with an efficiency of 66 %. The device was tested on-sky at the William Herschel Telescope and performed with an efficiency of 19.5 % over the wavelength range 1450 to 1610 nm. The second, improved device combined a ULI component with a multicore fibre component, and performed with a similar performance in the laboratory demonstrating an efficiency of 69 %, but a much improved on sky efficiency of 53 % showing a potential for such devices to be used as an input for a diffraction limited spectrograph.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kenyon, Suzanne Laura Physics Faculty of Science UNSW. „A universe of sky and snow: site-testing for optical astronomy at Dome C, Antarctica“. Awarded by:University of New South Wales. Physics, 2007. http://handle.unsw.edu.au/1959.4/40822.

Der volle Inhalt der Quelle
Annotation:
The unique advantages for astronomy on the Antarctic plateau are now well established. In particular, Dome C, Antarctica is potentially one of the best new sites for optical, infrared and sub-millimeter astronomy, presenting the opportunity to build unique astronomical instruments. Located high on the Antarctic plateau, Dome C offers low wind, clear skies, and negligible precipitation. This thesis addresses three additional properties of the site relevant to optical astronomy-sky brightness, atmospheric extinction and optical turbulence. The sky at an optical astronomy site must be dark, and the atmosphere very clean with minimal light extinction. At present little is known from an astronomer's perspective about the optical sky brightness and atmospheric extinction at most Antarctic sites. The high latitude of Dome C means that the Sun spends a relatively small amount of time far below the horizon, implying longer periods of astronomical twilight and less optical dark time than other sites, especially those close to the equator. We review the contributions to sky brightness at high-latitude sites, and calculate the amount of usable dark time at Dome C. We also explore the implications of the limited sky coverage of high-latitude sites, and review optical extinction data from the South Pole. A proposal to extend the amount of usable dark time through the use of polarising filters is examined, and we present the design and calibration of an instrument (called Nigel) to measure the brightness, spectrum and temporal characteristics of the twilight and night sky. The atmospheric turbulence profile above an astronomical site limits the achievable resolution and sensitivity of a telescope. The atmospheric conditions above high plateau Antarctic sites are different to temperate sites; the boundary layer of turbulence is confined very close to the surface, and the upper atmosphere turbulence very weak. We present the first winter-time turbulence profiles of the atmosphere above Dome C, and characterise the site in terms of the achievable precision for photometry and astrometry, and the isoplanatic angle and coherence time for the adaptive optics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Saklatvala, George. „A functional approach to the analysis of millimetre wave and infrared astronomical instruments“. Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611293.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bilāl, Muḥammad Luʼī Ṣūfī ʻAbd al-Raḥmān ibn ʻUmar. „al-Asṭrūlāb fī al-turāth al-ʻilmī al-ʻArabī risālah fī al-ʻamal bi-al-asṭrūlāb li-ʻAbd al-Raḥmān al-Ṣūfī /“. [Aleppo] : Jāmiʻat Ḥalab, Maʻhad al-Turāth al-ʻIlmī al-ʻArabī, 1994. http://books.google.com/books?id=K8_aAAAAMAAJ.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Robinson, Matthew. „Development of planar technology for focal planes of future radio to sub-millimetre astronomical instruments“. Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/development-of-planar-technology-for-focal-planes-of-future-radio-to-submillimetre-astronomical-instruments(dd2876aa-ff1a-4ae7-903f-a8228f3fc85f).html.

Der volle Inhalt der Quelle
Annotation:
Receiver systems utilising planar technologies are prevalent in telescopes observing at radio to sub-millimetre wavelengths. Receiver components using planar technologies are generally smaller, have reduced mass and are cheaper to manufacture than waveguide-based alternatives. Given that modern-day detectors are capable of reaching the fundamental photon noise limit, increases in the sensitivity of telescopes are frequently attained by increasing the total number of detectors in the receivers. The development of components utilising planar technologies facilitates the demand for large numbers of detectors, whilst minimising the size, mass and manufacturing cost of the receiver. After a review and study of existing concepts in radio to sub-mm telescopes and their receivers, this thesis develops planar components that couple the radiation from the telescope's optics onto the focal plane. Two components are developed; a W- band (75-110 GHz) planar antenna-coupled flat mesh lens designed for the receiver of a Cosmic Microwave Background (CMB) B-mode experiment, and an L-band (1- 2 GHz) horn-coupled planar orthomode transducer designed for the receiver of the FAST telescope. The first developments of a planar antenna-coupled flat mesh lens are presented. The design is driven by the requirement to mitigate beam systematics to prevent pollution of the CMB B-mode signal. In the first instance, a waveguide-coupled mesh lens is characterised. The radiation patterns of the waveguide-coupled mesh lens have -3 dB beam widths between 26 and 19 degrees, beam ellipticity <10%, and cross-polarisation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Astronomical instruments"

1

King, David A. Islamic astronomical instruments. London: Variorum Reprints, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Walker, Gordon Arthur Hunter. Astronomical observations: An optical perspective. Cambridge [Cambridgeshire]: Cambridge University Press, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Walker, Gordon. Astronomical observations: An optical perspective. Cambridge: Cambridge University Press, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Schroeder, Daniel J. Astronomical optics. San Diego: Academic Press, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Schroeder, D. J. Astronomical optics. 2. Aufl. San Diego: Academic Press, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Schroeder, D. J. Astronomical optics. San Diego: Academic Press, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Tinbergen, Jaap. Astronomical polarimetry. New York, N.Y: Cambridge University Press, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Elitzur, Moshe. Astronomical masers. Dordrecht: Kluwer Academic Publishers, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kaye, George Rusby. Astronomical instruments in the Delhi Museum. New Delhi: Archaeological Survey of India, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Mertz, Lawrence. Excursions in astronomical optics. New York: Springer, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Astronomical instruments"

1

Hanslmeier, Arnold. „Astronomical Instruments“. In Introduction to Astronomy and Astrophysics, 117–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64637-3_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Cosci, Matteo. „Astronomical Instruments, Renaissance“. In Encyclopedia of Renaissance Philosophy, 1–4. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-02848-4_899-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Cunningham, Clifford J. „The Astronomical Instruments“. In Bode’s Law and the Discovery of Juno, 239–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-32875-1_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Cosci, Matteo. „Astronomical Instruments, Renaissance“. In Encyclopedia of Renaissance Philosophy, 240–43. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-14169-5_899.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Couprie, Dirk L. „Archaic Astronomical Instruments“. In Heaven and Earth in Ancient Greek Cosmology, 15–49. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8116-5_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lin, Jian-Liang, und Hong-Sen Yan. „Ancient Astronomical Instruments“. In Decoding the Mechanisms of Antikythera Astronomical Device, 21–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48447-0_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Unsöld, Albrecht, und Bodo Baschek. „Astronomical and Astrophysical Instruments“. In Heidelberg Science Library, 75–108. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-02681-6_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Böhme, S., Walter Fricke, H. Hefele, Inge Heinrich, W. Hofmann, D. Krahn, V. R. Matas, Lutz D. Schmadel und G. Zech. „Astronomical Instruments and Techniques“. In Literature 1984, Part 2, 126–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-12346-1_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Böhme, S., U. Esser, W. Fricke, H. Hefele, Inge Heinrich, W. Hofmann, D. Krahn, V. R. Matas, Lutz D. Schmadel und G. Zech. „Astronomical Instruments and Techniques“. In Literature 1985, Part 1, 143–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-12352-2_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wielen, Roland. „Astronomical Instruments and Techniques“. In Astronomy and Astrophysics Abstracts, 133–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-12355-3_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Astronomical instruments"

1

Kaeufl, Hans-Ulrich, Karl Kuehl und Steffan Vogel. „Grisms from germanium/silicon for astronomical instruments“. In Astronomical Telescopes & Instrumentation, herausgegeben von Albert M. Fowler. SPIE, 1998. http://dx.doi.org/10.1117/12.317257.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jakob, Gerd, und Jean-Louis Lizon. „Vibration specifications for VLT instruments“. In SPIE Astronomical Telescopes + Instrumentation, herausgegeben von Suzanne K. Ramsay, Ian S. McLean und Hideki Takami. SPIE, 2014. http://dx.doi.org/10.1117/12.2054475.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Iye, M. „Current and future Subaru instruments“. In SPIE Astronomical Telescopes + Instrumentation, herausgegeben von Ian S. McLean und Masanori Iye. SPIE, 2006. http://dx.doi.org/10.1117/12.672806.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ansorge, Wolfgang R. „Safety requirements for scientific instruments“. In Astronomical Telescopes and Instrumentation, herausgegeben von Masanori Iye und Alan F. M. Moorwood. SPIE, 2000. http://dx.doi.org/10.1117/12.395406.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Storey, John W. V., Michael C. B. Ashley und Michael G. Burton. „Novel instruments for site characterization“. In Astronomical Telescopes and Instrumentation, herausgegeben von Masanori Iye und Alan F. M. Moorwood. SPIE, 2000. http://dx.doi.org/10.1117/12.395456.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Rodriguez Espinosa, Jose M., Maria Luisa Garcia-Vargas und Peter L. Hammersley. „Facility instruments for the GTC“. In SPIE Astronomical Telescopes + Instrumentation. SPIE, 2004. http://dx.doi.org/10.1117/12.551387.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Matsuhara, Hideo, und Hirokazu Kataza. „Focal plane instruments onboard SPICA“. In SPIE Astronomical Telescopes + Instrumentation, herausgegeben von Jacobus M. Oschmann, Jr., Mattheus W. M. de Graauw und Howard A. MacEwen. SPIE, 2008. http://dx.doi.org/10.1117/12.788654.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

de Korte, Piet A. J., Lothar Strüder, Didier Barret, Ronaldo Bellazzini, Lionel Duband, Didier Martin, Arvind Parmar, Luigi Piro, Tadayuki Takahashi und Dick Willingale. „The XEUS focal plane instruments“. In SPIE Astronomical Telescopes + Instrumentation, herausgegeben von Martin J. L. Turner und Kathryn A. Flanagan. SPIE, 2008. http://dx.doi.org/10.1117/12.790357.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Tinoco, Silvio J., Carlos Tejada, Fernando Quirós, J. Floriot, D. Corre, M. Ferrari, E. Hugot et al. „Structural design techniques applied in astronomical instruments“. In Ground-based and Airborne Telescopes VII, herausgegeben von Roberto Gilmozzi, Heather K. Marshall und Jason Spyromilio. SPIE, 2018. http://dx.doi.org/10.1117/12.2314539.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bland-Hawthorn, Joss. „Astrophophotonics: a new generation of astronomical instruments“. In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/ofc.2010.otha7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie