Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Assembly characterization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Assembly characterization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Assembly characterization"
Ghosh, Tarini Shankar, Varun Mehra und Sharmila S. Mande. „Grid-Assembly: An oligonucleotide composition-based partitioning strategy to aid metagenomic sequence assembly“. Journal of Bioinformatics and Computational Biology 13, Nr. 03 (15.05.2015): 1541004. http://dx.doi.org/10.1142/s0219720015410048.
Der volle Inhalt der QuelleDelbianco, Martina, und Peter H. Seeberger. „Materials science based on synthetic polysaccharides“. Materials Horizons 7, Nr. 4 (2020): 963–69. http://dx.doi.org/10.1039/c9mh01936g.
Der volle Inhalt der QuelleRobb, Bruce W., Hiroshi Wachi, Theresa Schaub, Robert P. Mecham und Elaine C. Davis. „Characterization of an In Vitro Model of Elastic Fiber Assembly“. Molecular Biology of the Cell 10, Nr. 11 (November 1999): 3595–605. http://dx.doi.org/10.1091/mbc.10.11.3595.
Der volle Inhalt der QuelleClévy, Cédric, Ion Lungu, Kanty Rabenorosoa und Philippe Lutz. „Positioning accuracy characterization of assembled microscale components for micro-optical benches“. Assembly Automation 34, Nr. 1 (28.01.2014): 69–77. http://dx.doi.org/10.1108/aa-02-2013-011.
Der volle Inhalt der QuelleLiu, Xiao Jun, Li Yun Song, Zong Cheng Zhan, Hong He, Xue Hong Zi und Wen Ge Qiu. „2D Assembly of Palladium Nanoparticles and AFM Characterization“. Advanced Materials Research 887-888 (Februar 2014): 161–66. http://dx.doi.org/10.4028/www.scientific.net/amr.887-888.161.
Der volle Inhalt der QuelleLi, Cai Xia, Qing Lv, Jie Song, Dan Yu Jiang und Qiang Li. „Preparation and Characterization of Nano-Films Materials“. Key Engineering Materials 492 (September 2011): 160–63. http://dx.doi.org/10.4028/www.scientific.net/kem.492.160.
Der volle Inhalt der QuelleReyes-Aldrete, Emilio, Erik A. Dill, Cecile Bussetta, Michal R. Szymanski, Geoffrey Diemer, Priyank Maindola, Mark A. White, Wlodzimierz M. Bujalowski, Kyung H. Choi und Marc C. Morais. „Biochemical and Biophysical Characterization of the dsDNA Packaging Motor from the Lactococcus lactis Bacteriophage Asccphi28“. Viruses 13, Nr. 1 (23.12.2020): 15. http://dx.doi.org/10.3390/v13010015.
Der volle Inhalt der QuelleYu, Fang, Swati M. Joshi, Yu May Ma, Richard L. Kingston, Martha N. Simon und Volker M. Vogt. „Characterization of Rous Sarcoma Virus Gag Particles Assembled In Vitro“. Journal of Virology 75, Nr. 6 (15.03.2001): 2753–64. http://dx.doi.org/10.1128/jvi.75.6.2753-2764.2001.
Der volle Inhalt der QuelleCervantes-Salguero, Keitel, Yair Augusto Gutiérrez Fosado, William Megone, Julien E. Gautrot und Matteo Palma. „Programmed Self-Assembly of DNA Nanosheets with Discrete Single-Molecule Thickness and Interfacial Mechanics: Design, Simulation, and Characterization“. Molecules 28, Nr. 9 (24.04.2023): 3686. http://dx.doi.org/10.3390/molecules28093686.
Der volle Inhalt der QuelleChen, Hui, Xiao Hui Wang, Dong Li, Yan Zhu Guo und Run Cang Sun. „Preparation and Characterization of Quaternary Chitosan/sodium Alginate Self-Assembled Microcapsules“. Advanced Materials Research 554-556 (Juli 2012): 263–67. http://dx.doi.org/10.4028/www.scientific.net/amr.554-556.263.
Der volle Inhalt der QuelleDissertationen zum Thema "Assembly characterization"
Uzo-Okoro, Ezinne(Ezinne Egondu). „Characterization of on-orbit robotic assembly“. Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/130212.
Der volle Inhalt der QuelleCataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 60-68).
On-orbit assembly missions typically involve humans-in-the-loop and use large custom-built robotic arms designed to service existing modules. The concept of on-orbit robotic assembly of modularized CubeSat components supports use cases such as rapidly placing failed nodes within a constellation of satellites and monitoring damaged assets in Low Earth Orbit. Despite the recent proliferation of small satellites, there is a lack of planned demonstrations of spacecraft manufactured through the on-orbit assembly as well as the servicing of small satellites in space. Key gaps limiting in-space assembly of small satellites are (1) the lack of standardization of electromechanical CubeSat components for compatibility with commercial robotic assembly hardware, and (2) testing and modifying commercial robotic assembly hardware suitable for small satellite assembly for space operation. Working towards on-orbit robotic assembly, we report on progress addressing both gaps.
Toward gap (1), the lack of standardization of CubeSat components for compatibility with commercial robotic assembly hardware, we have developed a ground-based robotic assembly of a 1U CubeSat using modular components and Commercial-Off-The-Shelf (COTS) robot arms without humans-in-the-loop. Two 16 in x 7 in x 7 in dexterous robot arms, weighing 2 kg each, are shown to work together to grasp and assemble CubeSat components into a 1U CubeSat. We assess performance for a subset of five commercial robotic arm sensors and find the force-torque (FT) sensor as the most efficient sensor for use at the end-effector and brushless motors as the best sensor for use at other joints. We report on the feasibility of sensing and grasping CubeSat components robotically, while using Inverse Kinematics to target, position and maneuver the robot arms.
Addressing gap (2) in this work, solutions for adapting power-efficient COTS robot arms to assemble highly-capable radiation-tolerant CubeSats are examined. We also analyze the systems engineering process for in-space CubeSat robotic assembly systems. Lessons learned on thermal and power considerations for overheated motors and positioning errors were also encountered and resolved. We find that COTS robot arms with sustained throughput and processing efficiency have the potential to be cost-effective for future space missions.
by Ezinne Uzo-Okoro.
S.M.
S.M. Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences
Jansen, Hailey Janice. „Characterization of chromatin assembly in murine embryos“. Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44768.
Der volle Inhalt der QuelleFontana, Jacob Paul. „Self-assembly and characterization of anisotropic metamaterials“. Kent State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=kent1294175153.
Der volle Inhalt der QuellePellino, Christine A. „Characterization of Shiga Toxin Potency and Assembly“. University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1418909563.
Der volle Inhalt der QuelleTrammell, Matthew A. „Identification and characterization of microtubule assembly factors“. Diss., Search in ProQuest Dissertations & Theses. UC Only, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3261255.
Der volle Inhalt der QuelleO'Kane, Christopher E. „Rational design, assembly and characterization of G-Wires“. Thesis, Ulster University, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.706480.
Der volle Inhalt der QuelleXu, Fei. „Assembly and characterization of supramolecular architectures for biosensor applications“. [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975967894.
Der volle Inhalt der QuelleMüller, Marisa. „Characterization of She2p-dependent mRNP assembly in Saccharomyces cerevisiae“. Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-110919.
Der volle Inhalt der QuelleWaxman, Rachel. „Assembly and mechanical characterization of suspended boron nitride nanotubes“. VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3493.
Der volle Inhalt der QuelleDvorkin, Scarlett Anne. „Rational design, self-assembly and characterization of Guanine quadruplexes“. Thesis, Ulster University, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.737994.
Der volle Inhalt der QuelleBücher zum Thema "Assembly characterization"
Complex macromolecular architectures: Synthesis, characterization, and self-assembly. Hoboken, N.J: Wiley, 2011.
Den vollen Inhalt der Quelle findenLee, Yoon S. Self-assembly and nanotechnology systems: Design, characterization, and applications. Hoboken, N.J: Wiley, 2012.
Den vollen Inhalt der Quelle findenPaul, Bidyut K., und Satya P. Moulik. Ionic liquid-based surfactant science: Formulation, characterization and applications. Hoboken, New Jersey: John Wiley & Sons, 2015.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Electrical characterization of a Space Station Freedom alpha Utility Transfer Assembly. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenE, Ragone Stephen, International Commission on Water Quality. und International Association of Hydrological Sciences. Scientific Assembly, Hrsg. Regional characterization of water quality: Proceedings of a symposium held during the Third Scientific Assembly of the International Association of Hydrological Sciences at Baltimore, Maryland, USA, May 1989. [Wallingford, Oxfordshire: International Association of Hydrological Sciences, 1989.
Den vollen Inhalt der Quelle findenAssembly, COSPAR Scientific. Calibration and characterization of satellite sensors: Proceedings of the A0.2 symposium of COSPAR Scientific Commission A which was held during the thirty-second COSPAR Scientific Assembly, Nagoya, Japan, 12-19 July, 1998. Oxford, England: Pergamon, 1999.
Den vollen Inhalt der Quelle findenAssembly, COSPAR Scientific. Land surface characterization and remote sensing of ocean processes: Proceedings of the A3.2 and A2.1 symposia of COSPAR Scientific Commission A which were held during the Thirty-third COSPAR Scientific Assembly, Warsaw, Poland, July, 2000. Oxford: published for the Committee on Space Research [by] Pergamon, 2002.
Den vollen Inhalt der Quelle findenAssembly, COSPAR Scientific. Calibration and characterization of satellite sensors and accuracy of derived physical parameters: Proceedings of the A0.2 symposium of COSPAR Scientific Commission A which was held during the thirty-third COSPAR Scientific Assembly, Warsaw, Poland, July, 2000. Kidlington, Oxford: Published for the Committee on Space Research [by] Pergamon, 2001.
Den vollen Inhalt der Quelle findenHadjichristidis, Nikos, Akira Hirao, Yasuyuki Tezuka und Filip Du Prez. Complex Macromolecular Architectures: Synthesis, Characterization, and Self-Assembly. Wiley & Sons, Incorporated, John, 2011.
Den vollen Inhalt der Quelle findenHadjichristidis, Nikos, Akira Hirao, Yasuyuki Tezuka und Filip Du Prez. Complex Macromolecular Architectures: Synthesis, Characterization, and Self-Assembly. Wiley & Sons, Incorporated, John, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Assembly characterization"
Wells, Jonathan N., und Joseph A. Marsh. „Experimental Characterization of Protein Complex Structure, Dynamics, and Assembly“. In Protein Complex Assembly, 3–27. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7759-8_1.
Der volle Inhalt der QuelleSusan, Janine M., Bruce Kabakoff, Paul A. Fisher und William J. Lennarz. „Characterization of Polyprenylation of Drosophila Nuclear Lamins“. In Dynamics of Membrane Assembly, 189–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02860-5_14.
Der volle Inhalt der QuelleLau, John H., und Ning-Cheng Lee. „Solder Joint Characterization“. In Assembly and Reliability of Lead-Free Solder Joints, 299–354. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3920-6_5.
Der volle Inhalt der QuelleSlattery, Orla, Ciaran Cahill, John Barrett, Martin O’Flaherty und Kenneth Rodgers. „Thermal Simulation and Characterization of Single Chip Packages“. In Microelectronic Interconnections and Assembly, 33–43. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5135-1_5.
Der volle Inhalt der QuellePourhaghighi, Reza, und Andrew Emili. „Global Characterization of Protein Complexes by Biochemical Purification-Mass Spectrometry (BP/MS)“. In Protein Complex Assembly, 185–91. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7759-8_12.
Der volle Inhalt der QuelleScheible, Max, Ralf Jungmann und Friedrich C. Simmel. „Assembly and Microscopic Characterization of DNA Origami Structures“. In Nano-Biotechnology for Biomedical and Diagnostic Research, 87–96. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2555-3_9.
Der volle Inhalt der QuelleXin, Dongyue, und Michael Hawley. „Application of NMR Spectroscopy in Viral Assembly Characterization“. In Bioprocess and Analytics Development for Virus-based Advanced Therapeutics and Medicinal Products (ATMPs), 357–74. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28489-2_15.
Der volle Inhalt der QuelleEmin, Saim M., Alexandre Loukanov, Surya P. Singh, Seiichiro Nakabayashi und Liyuan Han. „Synthesis, Characterization, and Self-assembly of Colloidal Quantum Dots“. In Intelligent Nanomaterials, 1–37. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118311974.ch1.
Der volle Inhalt der QuelleBaqersad, Javad, Christopher Niezrecki, Peter Avitabile und Micheal Slattery. „Dynamic Characterization of a Free-Free Wind Turbine Blade Assembly“. In Special Topics in Structural Dynamics, Volume 6, 303–12. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6546-1_32.
Der volle Inhalt der QuelleBoissel, Sandrine, und Andrew M. Scharenberg. „Assembly and Characterization of megaTALs for Hyperspecific Genome Engineering Applications“. In Chromosomal Mutagenesis, 171–96. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1862-1_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Assembly characterization"
Dias, Rajen, Deepak Goyal, Shalabh Tandon und Gay Samuelson. „Analytical challenges in next generation packaging/assembly“. In CHARACTERIZATION AND METROLOGY FOR ULSI TECHNOLOGY. ASCE, 1998. http://dx.doi.org/10.1063/1.56847.
Der volle Inhalt der QuelleSamuelson, Gay. „The assembly analytical forum: Addressing the analytical challenges facing packaging and assembly“. In The 2000 international conference on characterization and metrology for ULSI technology. AIP, 2001. http://dx.doi.org/10.1063/1.1354376.
Der volle Inhalt der QuelleMinoni, Umberto, Franco Docchio, Rodolfo Faglia, Giovanni Legnani und Pier L. Magnani. „Optical setup for assembly robot characterization“. In Optical Tools for Manufacturing and Advanced Automation, herausgegeben von Scott S. Breidenthal und Alan A. Desrochers. SPIE, 1993. http://dx.doi.org/10.1117/12.164962.
Der volle Inhalt der QuelleHancock, J., B. Crowther, M. Whiteley, R. Burt, M. Watson, J. Nelson, C. Fellows et al. „OSIRIS-REx OCAMS detector assembly characterization“. In SPIE Optical Engineering + Applications, herausgegeben von Howard A. MacEwen und James B. Breckinridge. SPIE, 2013. http://dx.doi.org/10.1117/12.2024665.
Der volle Inhalt der QuelleS. Limkar, Parikshit. „Novel In-Situ Combustion Technique Using a Semi-Permeable Igniter Assembly“. In SPE/EAGE Reservoir Characterization & Simulation Conference. European Association of Geoscientists & Engineers, 2009. http://dx.doi.org/10.3997/2214-4609-pdb.170.spe125583.
Der volle Inhalt der QuelleHesketh, Peter J., Martha A. Gallivan, Surajit Kumar, Christine J. Erdy und Zhong L. Wang. „Modeling and Characterization of Dielectrophoretic Assembly Process for Nanobelts“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81153.
Der volle Inhalt der QuelleSherehiy, Andriy, Andres Montenegro, Danming Wei und Dan O. Popa. „Adhesive Deposition Process Characterization for Microstructure Assembly“. In ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-63929.
Der volle Inhalt der Quellede Souza, Cesar Roberto, Mauro Sergio Braga und Walter Jaimes Salcedo. „Wind Tunnel Assembly for dynamic pressure characterization“. In 2019 4th International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT). IEEE, 2019. http://dx.doi.org/10.1109/inscit.2019.8868852.
Der volle Inhalt der QuelleLimkar, Parikshit Suryakant. „Novel In-Situ Combustion Technique Using a Semi-Permeable Igniter Assembly“. In SPE/EAGE Reservoir Characterization and Simulation Conference. Society of Petroleum Engineers, 2009. http://dx.doi.org/10.2118/125583-ms.
Der volle Inhalt der QuelleHan, Jiang-Bo. „Thermal characterization of tape BGA package by modeling“. In International Symposium on Microelectronics and Assembly, herausgegeben von Cher Ming Tan, Yeng-Kaung Peng, Mali Mahalingam und Krishnamachar Prasad. SPIE, 2000. http://dx.doi.org/10.1117/12.404880.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Assembly characterization"
Dominick, J. L. Device Assembly Facility (DAF) Glovebox Radioactive Waste Characterization. Office of Scientific and Technical Information (OSTI), Dezember 2001. http://dx.doi.org/10.2172/15005934.
Der volle Inhalt der QuelleYerganian, S. S., und J. V. Grice. Development and characterization for the automated surface mount assembly. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/416991.
Der volle Inhalt der QuelleTse, Stephen D. RI: CCD-FO Assembly for Spectroscopic Characterization of Flame Synthesis Processes. Fort Belvoir, VA: Defense Technical Information Center, Februar 2012. http://dx.doi.org/10.21236/ada557915.
Der volle Inhalt der QuelleRobertson, D., C. Thomas, N. Wynhoff und D. Hetzer. Radionuclide characterization of reactor decommissioning waste and spent fuel assembly hardware. Office of Scientific and Technical Information (OSTI), Januar 1991. http://dx.doi.org/10.2172/6340508.
Der volle Inhalt der QuelleDurkee, Joe W. Jr, Michael Lorne Fensin und Jinsuo Zhang. Characterization of Delayed-Particle Emission Signatures for Pyroprocessing. Part 1: Fuel Assembly. Office of Scientific and Technical Information (OSTI), Oktober 2012. http://dx.doi.org/10.2172/1054244.
Der volle Inhalt der QuelleDurkee, Jr., Joe W. Characterization of Delayed-Particle Emission Signatures for Pyroprocessing. Part 1: ABTR Fuel Assembly. Office of Scientific and Technical Information (OSTI), Juni 2015. http://dx.doi.org/10.2172/1186044.
Der volle Inhalt der QuelleWalker, Preston James. Assembly and characterization of fast neutron detectors for TREAT fuel motion monitoring system. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1546702.
Der volle Inhalt der QuelleDeterman, Michael Duane. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications. Office of Scientific and Technical Information (OSTI), Dezember 2005. http://dx.doi.org/10.2172/861607.
Der volle Inhalt der QuelleArrigo, Leah, Judah Friese und Lori Metz. Fabrication and Characterization of Plutonium Targets for Irradiation in the Flattop Critical Assembly. Office of Scientific and Technical Information (OSTI), Oktober 2020. http://dx.doi.org/10.2172/1879886.
Der volle Inhalt der QuelleArrigo, Leah, Judah Friese und Lori Metz. Fabrication and Characterization of Plutonium Targets for Irradiation in the Flattop Critical Assembly. Office of Scientific and Technical Information (OSTI), Oktober 2020. http://dx.doi.org/10.2172/1879886.
Der volle Inhalt der Quelle