Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Artificial nanochannels“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Artificial nanochannels" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Artificial nanochannels"
Zhao, Yuanyuan, Jin Wang, Xiang-Yu Kong, Weiwen Xin, Teng Zhou, Yongchao Qian, Linsen Yang, Jinhui Pang, Lei Jiang und Liping Wen. „Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion“. National Science Review 7, Nr. 8 (02.04.2020): 1349–59. http://dx.doi.org/10.1093/nsr/nwaa057.
Der volle Inhalt der QuelleLiu, Jie, Tao Zhang und Shuyu Sun. „Molecular Dynamics Simulations of Ion Transport through Protein Nanochannels in Peritoneal Dialysis“. International Journal of Molecular Sciences 24, Nr. 12 (13.06.2023): 10074. http://dx.doi.org/10.3390/ijms241210074.
Der volle Inhalt der QuelleKaya, Dila, Vanina M. Cayón, Christina Trautmann und Maria Eugenia Toimil Molares. „Biosensing with Tailored Track-Etched Nanochannels“. ECS Meeting Abstracts MA2023-02, Nr. 57 (22.12.2023): 2785. http://dx.doi.org/10.1149/ma2023-02572785mtgabs.
Der volle Inhalt der QuelleShen, Yigang, Xin Wang, Jinmei Lei, Shuli Wang, Yaqi Hou und Xu Hou. „Catalytic confinement effects in nanochannels: from biological synthesis to chemical engineering“. Nanoscale Advances 4, Nr. 6 (2022): 1517–26. http://dx.doi.org/10.1039/d2na00021k.
Der volle Inhalt der QuelleYang, Lingling, Kuanzhi Qu, Junli Guo, Huijie Xu, Zhenqing Dai, Zhi-Da Gao und Yan-Yan Song. „Asymmetric coupling of Au nanospheres on TiO2 nanochannel membranes for NIR-gated artificial ionic nanochannels“. Chemical Communications 55, Nr. 97 (2019): 14625–28. http://dx.doi.org/10.1039/c9cc08317k.
Der volle Inhalt der QuelleHan, Cuiping, Xu Hou, Huacheng Zhang, Wei Guo, Haibing Li und Lei Jiang. „Enantioselective Recognition in Biomimetic Single Artificial Nanochannels“. Journal of the American Chemical Society 133, Nr. 20 (25.05.2011): 7644–47. http://dx.doi.org/10.1021/ja2004939.
Der volle Inhalt der QuelleSutisna, B., G. Polymeropoulos, E. Mygiakis, V. Musteata, K. V. Peinemann, D. M. Smilgies, N. Hadjichristidis und S. P. Nunes. „Artificial membranes with selective nanochannels for protein transport“. Polymer Chemistry 7, Nr. 40 (2016): 6189–201. http://dx.doi.org/10.1039/c6py01401a.
Der volle Inhalt der QuelleZhang, Qianqian, Zhaoyue Liu und Jin Zhai. „Photocurrent generation in a light-harvesting system with multifunctional artificial nanochannels“. Chemical Communications 51, Nr. 61 (2015): 12286–89. http://dx.doi.org/10.1039/c5cc04271b.
Der volle Inhalt der QuelleLiu, Shanshan, Rongjie Yang, Xingyu Lin und Bin Su. „Gated thermoelectric sensation by nanochannels grafted with thermally responsive polymers“. Chemical Communications 56, Nr. 91 (2020): 14291–94. http://dx.doi.org/10.1039/d0cc06734b.
Der volle Inhalt der QuelleHsu, Jyh-Ping, Yu-Min Chen, Chih-Yuan Lin und Shiojenn Tseng. „Electrokinetic ion transport in an asymmetric double-gated nanochannel with a pH-tunable zwitterionic surface“. Physical Chemistry Chemical Physics 21, Nr. 15 (2019): 7773–80. http://dx.doi.org/10.1039/c9cp00266a.
Der volle Inhalt der QuelleDissertationen zum Thema "Artificial nanochannels"
Du, Haiqin. „Beta-Cyclodextrin-based artificial nanochannel scaffolds inserted in polymeric membrane“. Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS262.
Der volle Inhalt der QuelleThis PhD project aimed to construct a versatile platform for nanotechnological applications, which was designed as a polyglycidol (PGL)-based polymersomal compartment equipped with beta-cyclodextrin (¦ÂCD)-based artificial nanochannels. Well-defined polymersomes have been produced via self-assembling of linear amphiphilic block copolymers, polyglycidol-block-poly(butylene oxide)-block-polyglycidol (PGL-PBO-PGL), possessing long-term storage stability and antifouling capacity. Well-defined ¦ÂCD-cored star amphiphilic copolymers, ¦ÂCD-(PBO-PGL)14, have also been synthesized with tailor-made length of each block, low polydispersity and high purity. The self-assembly behaviors of the amphiphilic star copolymers were similar to those of their linear counterparts. Additionally, the permeability of the polymeric membrane made of linear or star copolymers to small ions (H+, K+, Cl-) were investigated by fluorescence spectroscopy and BLM-type measurements: different behaviors for linear and star copolymers have been shown. It seems that βCD-(PBO-PGL)14 star copolymers could insert into the planar PGL-PBO-PGL membrane, but further investigations have to be performed
Konferenzberichte zum Thema "Artificial nanochannels"
Duan, Chuanhua, Rohit Karnik, Ming-Chang Lu und Arun Majumdar. „Evaporation Induced Cavitation in Nanochannels“. In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23272.
Der volle Inhalt der QuelleXu, Dongyan, Deyu Li, Yongsheng Leng und Yunfei Chen. „Molecular Dynamics Simulation of Ion Distribution in Nanochannels“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15075.
Der volle Inhalt der QuelleBoone, C., M. Fuest, K. Wellmerling und S. Prakash. „Effect of Time Dependent Excitation Signals on Gating in Nanofluidic Channels“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53038.
Der volle Inhalt der QuelleCaldag, Hakan Osman, und Serhat Yesilyurt. „Dynamics of Artificial Helical Microswimmers Under Confinement“. In ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icnmm2018-7632.
Der volle Inhalt der QuelleKuzma-Kichta, Yu A., A. Lavrikov, S. Afonin und M. Shustov. „Boiling Investigation on a Surface With Artificial and Natural Nucleons Sites“. In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62212.
Der volle Inhalt der QuelleSuciu, Claudiu Valentin. „Energy Dissipation During Liquid Adsorption/Desorption In/From Liquid-Repellent Nanochannels“. In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62040.
Der volle Inhalt der QuelleKim, Seontae, Hyungmo Kim, Hyung Dae Kim, Ho Seon Ahn, Moo Hwan Kim, Joonwon Kim und Goon-Cherl Park. „Experimental Investigation of Critical Heat Flux Enhancement by Micro/Nanoscale Surface Modification in Pool Boiling“. In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62289.
Der volle Inhalt der QuelleNedea, S. V., A. J. Markvoort, P. Spijker und A. A. van Steenhoven. „Heat Transfer Predictions Using Accommodation Coefficients for a Dense Gas in a Micro/Nano-Channel“. In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62179.
Der volle Inhalt der QuelleSato, Takato, Yasuo Koizumi und Hiroyasu Ohtake. „Experimental Study on Behavior of Bubbles and Temperature Fluctuation of Heat Transfer Surface by Using Heat Transfer Surface With Artificial Cavities Created by MEMS Technology“. In ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82276.
Der volle Inhalt der QuelleRostamy, Noorallah, Soheil Akbari, David Sumner und Donald J. Bergstrom. „Calibration of Triple-Wire Probes Using an Artificial Neural Network“. In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31198.
Der volle Inhalt der Quelle