Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Artificial intelligence and machine learning.

Zeitschriftenartikel zum Thema „Artificial intelligence and machine learning“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Artificial intelligence and machine learning" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Григоров, Отто Володимирович, Галина Оттівна Аніщенко, Всеволод Вікторович Стрижак, Надія Олександрівна Петренко, Ольга Володимирівна Турчин, Антон Олександрович Окунь und Олег Ернестович Пономарьов. „Artificial intelligence. Machine learning“. Vehicle and Electronics. Innovative Technologies, Nr. 15 (02.06.2019): 17. http://dx.doi.org/10.30977/veit.2226-9266.2019.15.0.17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tiwari, Ashutosh. „Artificial Intelligence And Machine Learning Empowering The Mass Medicine“. Advanced Materials Letters 10, Nr. 5 (01.02.2019): 302. http://dx.doi.org/10.5185/amlett.2019.1005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Pedoia, V. „Machine Learning and Artificial Intelligence“. Osteoarthritis and Cartilage 28 (April 2020): S16. http://dx.doi.org/10.1016/j.joca.2020.02.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Yakovlev, Igor. „Thesaurus Artificial Intelligence: Machine Learning“. Upravlenie Megapolisom, Nr. 5 (2014): 18–33. http://dx.doi.org/10.14570/issn.2073-2724/um-5-2014/02-yakovlev.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wolfgang, Kelly. „Artificial Intelligence and Machine Learning“. Hearing Journal 72, Nr. 3 (März 2019): 26. http://dx.doi.org/10.1097/01.hj.0000554346.30951.8d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mashita, Tomohiro. „Artificial Intelligence and Machine Learning“. Journal of The Institute of Image Information and Television Engineers 72, Nr. 3 (2018): 235–40. http://dx.doi.org/10.3169/itej.72.235.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bratko, Ivan. „Machine learning in artificial intelligence“. Artificial Intelligence in Engineering 8, Nr. 3 (Januar 1993): 159–64. http://dx.doi.org/10.1016/0954-1810(93)90002-w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lawlor, Bonnie. „Artificial Intelligence and Machine Learning“. Chemistry International 43, Nr. 1 (01.01.2021): 8–13. http://dx.doi.org/10.1515/ci-2021-0103.

Der volle Inhalt der Quelle
Annotation:
Abstract The uses of Artificial Intelligence (AI) and Machine Learning (ML) are topics of presentations at most conferences today across diverse professional disciplines. Why? The following quote says it all:
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Aryal, Gopi. „Artificial intelligence in surgical pathology“. Journal of Pathology of Nepal 9, Nr. 1 (02.04.2019): I. http://dx.doi.org/10.3126/jpn.v9i1.23444.

Der volle Inhalt der Quelle
Annotation:
Artificial intelligence (AI) is machine intelligence that mimics human cognitive function. It denotes the intelligence presented by some artificial entities including computers and robots. In supervised learning, a machine is trained with data that contain pairs of inputs and outputs. In unsupervised learning, machines are given data inputs that are not explicitly programmed.1 Machine learning refines a model that predicts outputs using sample inputs (features) and a feedback loop. It relies heavily on extracting or selecting salient features, which is a combination of art and science (“feature engineering”). A subset of feature learning is deep learning, which harnesses neural networks modeled after the biological nervous system of animals. Deep learning discovers the features from the raw data provided during training. Hidden layers in the artificial neural network represent increasingly more complex features in the data. Convolutional neural network is a type of deep learning commonly used for image analysis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ghahramani, Zoubin. „Probabilistic machine learning and artificial intelligence“. Nature 521, Nr. 7553 (Mai 2015): 452–59. http://dx.doi.org/10.1038/nature14541.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Varshney, Kush R. „Trustworthy machine learning and artificial intelligence“. XRDS: Crossroads, The ACM Magazine for Students 25, Nr. 3 (10.04.2019): 26–29. http://dx.doi.org/10.1145/3313109.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

VanLehn, Kurt. „Machine learning: An artificial intelligence approach“. Artificial Intelligence 25, Nr. 2 (Februar 1985): 233–36. http://dx.doi.org/10.1016/0004-3702(85)90004-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Stefik, Mark J. „Machine learning: An artificial intelligence approach“. Artificial Intelligence 25, Nr. 2 (Februar 1985): 236–38. http://dx.doi.org/10.1016/0004-3702(85)90005-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Agrawal, Prateek. „Artificial Intelligence Applications and Machine Learning“. Recent Advances in Computer Science and Communications 13, Nr. 6 (28.01.2021): 1113–14. http://dx.doi.org/10.2174/266625581306201203092924.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Pokutta, Sebastian. „Mathematik, Machine Learning und Artificial Intelligence“. Mitteilungen der Deutschen Mathematiker-Vereinigung 28, Nr. 4 (01.12.2020): 213–19. http://dx.doi.org/10.1515/dmvm-2020-0067.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Mathur, Pankaj, Shweta Srivastava, Xiaowei Xu und Jawahar L. Mehta. „Artificial Intelligence, Machine Learning, and Cardiovascular Disease“. Clinical Medicine Insights: Cardiology 14 (Januar 2020): 117954682092740. http://dx.doi.org/10.1177/1179546820927404.

Der volle Inhalt der Quelle
Annotation:
Artificial intelligence (AI)-based applications have found widespread applications in many fields of science, technology, and medicine. The use of enhanced computing power of machines in clinical medicine and diagnostics has been under exploration since the 1960s. More recently, with the advent of advances in computing, algorithms enabling machine learning, especially deep learning networks that mimic the human brain in function, there has been renewed interest to use them in clinical medicine. In cardiovascular medicine, AI-based systems have found new applications in cardiovascular imaging, cardiovascular risk prediction, and newer drug targets. This article aims to describe different AI applications including machine learning and deep learning and their applications in cardiovascular medicine. AI-based applications have enhanced our understanding of different phenotypes of heart failure and congenital heart disease. These applications have led to newer treatment strategies for different types of cardiovascular diseases, newer approach to cardiovascular drug therapy and postmarketing survey of prescription drugs. However, there are several challenges in the clinical use of AI-based applications and interpretation of the results including data privacy, poorly selected/outdated data, selection bias, and unintentional continuance of historical biases/stereotypes in the data which can lead to erroneous conclusions. Still, AI is a transformative technology and has immense potential in health care.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Donepudi, Praveen Kumar. „Machine Learning and Artificial Intelligence in Banking“. Engineering International 5, Nr. 2 (2017): 83–86. http://dx.doi.org/10.18034/ei.v5i2.490.

Der volle Inhalt der Quelle
Annotation:
Machine Learning and Artificial Intelligence applications in the financial sector have been thriving in the recent past. Their immense power has been harnessed in these institutions to offer business solutions in front end and back end processes to create efficiency and improve customer experience. This article will lay bare the applications of Machine Learning and Artificial Intelligence and evaluate their utility in different banking industry functional areas and frame how these institutions effectively use computational intelligence to improve their business. While traditional banking institutions are quickly catching up with the computational intelligence technologies with products like Chatbot, fintech companies, which seem to have embrace A.I. a long time ago, plays a critical role through its innovation and contribute substantially to financial intelligence. In conclusion, we can aptly say that Machine Learning and Artificial Intelligence technologies are taking over the banking sector, and it seems like there's nothing we can do about it.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Singla, Rajiv, Ankush Singla, Yashdeep Gupta und Sanjay Kalra. „Artificial intelligence/machine learning in diabetes care“. Indian Journal of Endocrinology and Metabolism 23, Nr. 4 (2019): 495. http://dx.doi.org/10.4103/ijem.ijem_228_19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Forghani, Reza. „Machine Learning and Other Artificial Intelligence Applications“. Neuroimaging Clinics of North America 30, Nr. 4 (November 2020): i. http://dx.doi.org/10.1016/s1052-5149(20)30067-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Sivapalaratnam, Suthesh. „Artificial intelligence and machine learning in haematology“. British Journal of Haematology 185, Nr. 2 (06.02.2019): 207–8. http://dx.doi.org/10.1111/bjh.15774.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Becker, Jan U., David Mayerich, Meghana Padmanabhan, Jonathan Barratt, Angela Ernst, Peter Boor, Pietro A. Cicalese, Chandra Mohan, Hien V. Nguyen und Badrinath Roysam. „Artificial intelligence and machine learning in nephropathology“. Kidney International 98, Nr. 1 (Juli 2020): 65–75. http://dx.doi.org/10.1016/j.kint.2020.02.027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Büyük, Süleyman Kutalmış, und Sedanur Hatal. „Artificial intelligence and machine learning in orthodontics“. Ortadoğu Tıp Dergisi 11, Nr. 4 (01.12.2019): 517–23. http://dx.doi.org/10.21601/ortadogutipdergisi.547782.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Riedl, Mark O. „Human‐centered artificial intelligence and machine learning“. Human Behavior and Emerging Technologies 1, Nr. 1 (Januar 2019): 33–36. http://dx.doi.org/10.1002/hbe2.117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Wichmann, Julian L., Martin J. Willemink und Carlo N. De Cecco. „Artificial Intelligence and Machine Learning in Radiology“. Investigative Radiology 55, Nr. 9 (29.07.2020): 619–27. http://dx.doi.org/10.1097/rli.0000000000000673.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Connor, Christopher W. „Artificial Intelligence and Machine Learning in Anesthesiology“. Anesthesiology 131, Nr. 6 (01.12.2019): 1346–59. http://dx.doi.org/10.1097/aln.0000000000002694.

Der volle Inhalt der Quelle
Annotation:
Abstract Commercial applications of artificial intelligence and machine learning have made remarkable progress recently, particularly in areas such as image recognition, natural speech processing, language translation, textual analysis, and self-learning. Progress had historically languished in these areas, such that these skills had come to seem ineffably bound to intelligence. However, these commercial advances have performed best at single-task applications in which imperfect outputs and occasional frank errors can be tolerated. The practice of anesthesiology is different. It embodies a requirement for high reliability, and a pressured cycle of interpretation, physical action, and response rather than any single cognitive act. This review covers the basics of what is meant by artificial intelligence and machine learning for the practicing anesthesiologist, describing how decision-making behaviors can emerge from simple equations. Relevant clinical questions are introduced to illustrate how machine learning might help solve them—perhaps bringing anesthesiology into an era of machine-assisted discovery.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Siswoyo, Bambang. „MultiClass Decision Forest Machine Learning Artificial Intelligence“. Journal of Applied Informatics and Computing 4, Nr. 1 (23.01.2020): 1–7. http://dx.doi.org/10.30871/jaic.v4i1.1155.

Der volle Inhalt der Quelle
Annotation:
Kecerdasan buatan merupakan solusi yang terbaik dalam menangai berbagai bidang. Algoritma Multi Class Decesion Forest Machine Learning yang merupakan bagian dari kecerdasan buatan adalah bidang yang menarik untuk diterapkan dalam bidang perbankan. Penelitian ini dikembangkan untuk membangun model yang dapat memprediksi dan mengevaluasi kebangkrutan industri perbankan. Variabel prediktor adalah rasio keuangan yang didapatkan dari publikasi situs http://www.idx.co.id. Modeling machine learning dengan enam variabel, dimana lima variabel sebagai input dan satu variabel sebagai target. Secara keseluruhan, Multi Class Decistion Forest Machine Learning mampu melatih data hubungan input-output dan perilaku pemodelan dengan baik, nilai accuracy 92%, nilai precision 92% dan nilai under area curve 90%.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Sana, Munib. „Machine Learning and Artificial Intelligence in Radiology“. Journal of the American College of Radiology 15, Nr. 8 (August 2018): 1139–42. http://dx.doi.org/10.1016/j.jacr.2017.11.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Westcott, R. Jeffrey, und James E. Tcheng. „Artificial Intelligence and Machine Learning in Cardiology“. JACC: Cardiovascular Interventions 12, Nr. 14 (Juli 2019): 1312–14. http://dx.doi.org/10.1016/j.jcin.2019.03.026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

ŞCHEAU, Mircea Constantin, Adrian Liviu ARSENE und Gabriel POPESCU. „Artificial Intelligence/Machine Learning Challenges and Evolution“. International Journal of Information Security and Cybercrime 7, Nr. 1 (29.06.2018): 11–22. http://dx.doi.org/10.19107/ijisc.2018.01.01.

Der volle Inhalt der Quelle
Annotation:
For 2018, one of the big challenges is the construction of security systems based on AI. However, it should take time and considerable resources to verify the effect of technologies involving machine learning and driving patterns. We can say that these structures are, conceptually, a computerized replica of their developers. While the trend is interesting, it does not provide any real guarantee as long as the same steps can be performed by criminals. The two armies faced in the virtual environment are in a continuous arms race, as faithful copies of their creators. Even if efforts seem to be hampered by the dynamics of the criminal spectrum, they are necessary precisely because of their mobility. Malware and ransomware attacks have targeted disparate and seemingly unrelated targets, globally. Condensing huge amounts of data at certain points or in mega-cloud spaces offers management advantages, but it can also be the premise of future offensive, not at all desirable. The confrontation engages the brightest minds on the planet, from both camps.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Wei, Xian Min. „Analysis of Machine Learning Research and Application“. Advanced Materials Research 171-172 (Dezember 2010): 740–43. http://dx.doi.org/10.4028/www.scientific.net/amr.171-172.740.

Der volle Inhalt der Quelle
Annotation:
The artificial intelligence is an important branch of computer science, in recent years with the development of computer technology, artificial intelligence has also been in good development. Machine learning is a core part of artificial intelligence, machine learning background, research status, and applications in network intrusion detection, text categorization and data mining were studied in this paper.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Anjum, Uzma. „Artificial Intelligence, Machine Learning and Deep Learning In Healthcare“. Bioscience Biotechnology Research Communications 14, Nr. 7 (25.06.2021): 144–48. http://dx.doi.org/10.21786/bbrc/14.7.36.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Barash, Guy, Mauricio Castillo-Effen, Niyati Chhaya, Peter Clark, Huáscar Espinoza, Eitan Farchi, Christopher Geib et al. „Reports of the Workshops Held at the 2019 AAAI Conference on Artificial Intelligence“. AI Magazine 40, Nr. 3 (30.09.2019): 67–78. http://dx.doi.org/10.1609/aimag.v40i3.4981.

Der volle Inhalt der Quelle
Annotation:
The workshop program of the Association for the Advancement of Artificial Intelligence’s 33rd Conference on Artificial Intelligence (AAAI-19) was held in Honolulu, Hawaii, on Sunday and Monday, January 27–28, 2019. There were fifteen workshops in the program: Affective Content Analysis: Modeling Affect-in-Action, Agile Robotics for Industrial Automation Competition, Artificial Intelligence for Cyber Security, Artificial Intelligence Safety, Dialog System Technology Challenge, Engineering Dependable and Secure Machine Learning Systems, Games and Simulations for Artificial Intelligence, Health Intelligence, Knowledge Extraction from Games, Network Interpretability for Deep Learning, Plan, Activity, and Intent Recognition, Reasoning and Learning for Human-Machine Dialogues, Reasoning for Complex Question Answering, Recommender Systems Meet Natural Language Processing, Reinforcement Learning in Games, and Reproducible AI. This report contains brief summaries of the all the workshops that were held.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Tiwari, Tanya, Tanuj Tiwari und Sanjay Tiwari. „How Artificial Intelligence, Machine Learning and Deep Learning are Radically Different?“ International Journal of Advanced Research in Computer Science and Software Engineering 8, Nr. 2 (06.03.2018): 1. http://dx.doi.org/10.23956/ijarcsse.v8i2.569.

Der volle Inhalt der Quelle
Annotation:
There is a lot of confusion these days about Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL). A computer system able to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages. Artificial Intelligence has made it possible. Deep learning is a subset of machine learning, and machine learning is a subset of AI, which is an umbrella term for any computer program that does something smart. In other words, all machine learning is AI, but not all AI is machine learning, and so forth. Machine Learning represents a key evolution in the fields of computer science, data analysis, software engineering, and artificial intelligence. Machine learning (ML)is a vibrant field of research, with a range of exciting areas for further development across different methods and applications. These areas include algorithmic interpretability, robustness, privacy, fairness, inference of causality, human-machine interaction, and security. The goal of ML is never to make “perfect” guesses, because ML deals in domains where there is no such thing. The goal is to make guesses that are good enough to be useful. Deep learning is a particular kind of machine learning that achieves great power and flexibility by learning to represent the world as nested hierarchy of concepts, with each concept defined in relation to simpler concepts, and more abstract representations computed in terms of less abstract ones. This paper gives an overview of artificial intelligence, machine learning & deep learning techniques and compare these techniques.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Gigan, Sylvain, Florent Krzakala, Laurent Daudet und Igor Carron. „Artificial intelligence: From electronics to optics“. Photoniques, Nr. 104 (September 2020): 49–52. http://dx.doi.org/10.1051/photon/202010449.

Der volle Inhalt der Quelle
Annotation:
Machine Learning and big data are currently revolutionizing our way of life, in particular with the recent emergence of deep learning. Powered by CPU and GPU, they are currently hardware limited and extremely energy intensive. Photonics, either integrated or in free space, offers a very promising alternative for realizing optically machine learning tasks at high speed and low consumption. We here review the history and current state of the art of optical computing and optical machine learning.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Patil, Mrs Pushpalata S. „Artificial Intelligence and Machine Learning’s Impact on Market Design“. International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (30.06.2018): 2232–37. http://dx.doi.org/10.31142/ijtsrd14534.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Hashimoto, Daniel A., Elan Witkowski, Lei Gao, Ozanan Meireles und Guy Rosman. „Artificial Intelligence in Anesthesiology“. Anesthesiology 132, Nr. 2 (01.02.2020): 379–94. http://dx.doi.org/10.1097/aln.0000000000002960.

Der volle Inhalt der Quelle
Annotation:
Abstract Artificial intelligence has been advancing in fields including anesthesiology. This scoping review of the intersection of artificial intelligence and anesthesia research identified and summarized six themes of applications of artificial intelligence in anesthesiology: (1) depth of anesthesia monitoring, (2) control of anesthesia, (3) event and risk prediction, (4) ultrasound guidance, (5) pain management, and (6) operating room logistics. Based on papers identified in the review, several topics within artificial intelligence were described and summarized: (1) machine learning (including supervised, unsupervised, and reinforcement learning), (2) techniques in artificial intelligence (e.g., classical machine learning, neural networks and deep learning, Bayesian methods), and (3) major applied fields in artificial intelligence. The implications of artificial intelligence for the practicing anesthesiologist are discussed as are its limitations and the role of clinicians in further developing artificial intelligence for use in clinical care. Artificial intelligence has the potential to impact the practice of anesthesiology in aspects ranging from perioperative support to critical care delivery to outpatient pain management.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Wang, Renjie, Wei Pan, Lei Jin, Yuehan Li, Yudi Geng, Chun Gao, Gang Chen, Hui Wang, Ding Ma und Shujie Liao. „Artificial intelligence in reproductive medicine“. Reproduction 158, Nr. 4 (Oktober 2019): R139—R154. http://dx.doi.org/10.1530/rep-18-0523.

Der volle Inhalt der Quelle
Annotation:
Artificial intelligence (AI) has experienced rapid growth over the past few years, moving from the experimental to the implementation phase in various fields, including medicine. Advances in learning algorithms and theories, the availability of large datasets and improvements in computing power have contributed to breakthroughs in current AI applications. Machine learning (ML), a subset of AI, allows computers to detect patterns from large complex datasets automatically and uses these patterns to make predictions. AI is proving to be increasingly applicable to healthcare, and multiple machine learning techniques have been used to improve the performance of assisted reproductive technology (ART). Despite various challenges, the integration of AI and reproductive medicine is bound to give an essential direction to medical development in the future. In this review, we discuss the basic aspects of AI and machine learning, and we address the applications, potential limitations and challenges of AI. We also highlight the prospects and future directions in the context of reproductive medicine.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Abhinav, G. V. K. S., und S. Naga Subrahmanyam. „Artificial Intelligence in Healthcare“. Journal of Drug Delivery and Therapeutics 9, Nr. 5-s (15.10.2019): 164–66. http://dx.doi.org/10.22270/jddt.v9i5-s.3634.

Der volle Inhalt der Quelle
Annotation:
Artificial intelligence is to reduce human cognitive functions. It is bringing an approach to healthcare, powdered by increasing the availability of healthcare data and rapid progress of analyst techniques. We can survey the current status of Artificial intelligence applications in healthcare and discuss its future uses. It is the most transformative technology of the 21th century. Healthcare has been identified as an early candidate to be revolutized by artificial intelligence technologies. This article aims for providing an early stage contribution with the decision making capacities of artificial intelligence technologies. The possible ethical and legally complex backdrop of the existing framework. I will conclude the present structures are largely fit to deal with the challenge of artificial intelligence are present will discuss clearly about the artificial intelligence contribution to the present health care. Artificial intelligence, machine learning, deep learning can assist with proactive patient care, reduced future risk and streamlined work processes. Keywords: Artificial intelligence, machine learning, clinical decision support.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

KIM, Kyungmin. „Artificial Intelligence in Gravitational-Wave Science“. Physics and High Technology 30, Nr. 6 (30.06.2021): 14–19. http://dx.doi.org/10.3938/phit.30.018.

Der volle Inhalt der Quelle
Annotation:
Artificial intelligence gaining popularity not only in the computational engineering industry but also in fundamental science. For the realization of artificial intelligence, numerous machine learning algorithms have been introduced and tested for their applicability. Even in the field of gravitational-wave science, the application of machine learning has been widely studied to enhance conventional analyses in all disciplines from searching for gravitational-wave signals to characterizing noise transients. In this article, I briefly introduce the current status of gravitational-wave science and summarize research topics in which machine learning is applied to each discipline of gravitational-wave science.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Milojević, Nenad, und Srdjan Redzepagic. „Prospects of Artificial Intelligence and Machine Learning Application in Banking Risk Management“. Journal of Central Banking Theory and Practice 10, Nr. 3 (01.09.2021): 41–57. http://dx.doi.org/10.2478/jcbtp-2021-0023.

Der volle Inhalt der Quelle
Annotation:
Abstract Artificial intelligence and machine learning have increasing influence on the financial sector, but also on economy as a whole. The impact of artificial intelligence and machine learning on banking risk management has become particularly interesting after the global financial crisis. The research focus is on artificial intelligence and machine learning potential for further banking risk management improvement. The paper seeks to explore the possibility for successful implementation yet taking into account challenges and problems which might occur as well as potential solutions. Artificial intelligence and machine learning have potential to support the mitigation measures for the contemporary global economic and financial challenges, including those caused by the COVID-19 crisis. The main focus in this paper is on credit risk management, but also on analysing artificial intelligence and machine learning application in other risk management areas. It is concluded that a measured and well-prepared further application of artificial intelligence, machine learning, deep learning and big data analytics can have further positive impact, especially on the following risk management areas: credit, market, liquidity, operational risk, and other related areas.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Kocsis, Zoltan Tamas. „Artificial Neural Networks in Medicine“. Acta Technica Jaurinensis 12, Nr. 2 (26.04.2019): 117–29. http://dx.doi.org/10.14513/actatechjaur.v12.n2.497.

Der volle Inhalt der Quelle
Annotation:
In recent years, Information Technology has been developed in a way that applications based on Artificial Intelligence have emerged. This development has resulted in machines being able to perform increasingly complex learning processes. The use of Information Technology, including Artificial Intelligence is becoming more and more widespread in all fields of life. Some common examples are face recognition in smartphones, or the programming of washing machines. As you may think, Artificial Intelligence can also be used in medicine. In this study I am presenting the relationship between machine learning and neural networks and their possible use in medicine.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

L, Anusha, und Nagaraja G. S. „Outlier Detection in High Dimensional Data“. International Journal of Engineering and Advanced Technology 10, Nr. 5 (30.06.2021): 128–30. http://dx.doi.org/10.35940/ijeat.e2675.0610521.

Der volle Inhalt der Quelle
Annotation:
Artificial intelligence (AI) is the science that allows computers to replicate human intelligence in areas such as decision-making, text processing, visual perception. Artificial Intelligence is the broader field that contains several subfields such as machine learning, robotics, and computer vision. Machine Learning is a branch of Artificial Intelligence that allows a machine to learn and improve at a task over time. Deep Learning is a subset of machine learning that makes use of deep artificial neural networks for training. The paper proposed on outlier detection for multivariate high dimensional data for Autoencoder unsupervised model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Mori, Kensaku. „Computer Aided Surgery and Artificial Intelligence/Machine Learning“. Journal of Japan Society of Computer Aided Surgery 19, Nr. 3 (2017): 147–50. http://dx.doi.org/10.5759/jscas.19.147.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Aminzadeh, Fred. „Energy Sustainability with Artificial Intelligence and Machine Learning“. Journal of Sustainable Energy Engineering 6, Nr. 2 (23.08.2018): 99–100. http://dx.doi.org/10.7569/jsee.2018.629508.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Balasubramanian, Natarajan, Evan Penniman Starr, Alexander Oettl, Christian Catalini, Prithwiraj Choudhury und Jorge Guzman. „Machine Learning and Artificial Intelligence in Strategy Research“. Academy of Management Proceedings 2018, Nr. 1 (August 2018): 12214. http://dx.doi.org/10.5465/ambpp.2018.12214symposium.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Lebedev, G. S., A. P. Maslyukov, I. A. Shaderkin und A. I. Shaderkina. „Deep machine learning (artificial intelligence) in ultrasound diagnostics“. Journal of Telemedicine and E-Health 2020, Nr. 2 (30.06.2020): 22–29. http://dx.doi.org/10.29188/2542-2413-2020-6-2-22-29.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Chen, Xue, Shiyuan Xu, Yibo Cao, Jiahuan He und Yang Jiao. „Application of artificial intelligence based on machine learning“. Journal of Physics: Conference Series 1693 (Dezember 2020): 012084. http://dx.doi.org/10.1088/1742-6596/1693/1/012084.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Matava, Clyde, Evelina Pankiv, Luis Ahumada, Benjamin Weingarten und Allan Simpao. „Artificial intelligence, machine learning and the pediatric airway“. Pediatric Anesthesia 30, Nr. 3 (März 2020): 264–68. http://dx.doi.org/10.1111/pan.13792.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Mekov, Evgeni, Marc Miravitlles und Rosen Petkov. „Artificial intelligence and machine learning in respiratory medicine“. Expert Review of Respiratory Medicine 14, Nr. 6 (17.03.2020): 559–64. http://dx.doi.org/10.1080/17476348.2020.1743181.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Galbusera, Fabio, Gloria Casaroli und Tito Bassani. „Artificial intelligence and machine learning in spine research“. JOR SPINE 2, Nr. 1 (März 2019): e1044. http://dx.doi.org/10.1002/jsp2.1044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie