Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Artificial intelligence and machine learning“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Artificial intelligence and machine learning" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Artificial intelligence and machine learning"
Григоров, Отто Володимирович, Галина Оттівна Аніщенко, Всеволод Вікторович Стрижак, Надія Олександрівна Петренко, Ольга Володимирівна Турчин, Антон Олександрович Окунь und Олег Ернестович Пономарьов. „Artificial intelligence. Machine learning“. Vehicle and Electronics. Innovative Technologies, Nr. 15 (02.06.2019): 17. http://dx.doi.org/10.30977/veit.2226-9266.2019.15.0.17.
Der volle Inhalt der QuelleTiwari, Ashutosh. „Artificial Intelligence And Machine Learning Empowering The Mass Medicine“. Advanced Materials Letters 10, Nr. 5 (01.02.2019): 302. http://dx.doi.org/10.5185/amlett.2019.1005.
Der volle Inhalt der QuellePedoia, V. „Machine Learning and Artificial Intelligence“. Osteoarthritis and Cartilage 28 (April 2020): S16. http://dx.doi.org/10.1016/j.joca.2020.02.010.
Der volle Inhalt der QuelleYakovlev, Igor. „Thesaurus Artificial Intelligence: Machine Learning“. Upravlenie Megapolisom, Nr. 5 (2014): 18–33. http://dx.doi.org/10.14570/issn.2073-2724/um-5-2014/02-yakovlev.
Der volle Inhalt der QuelleWolfgang, Kelly. „Artificial Intelligence and Machine Learning“. Hearing Journal 72, Nr. 3 (März 2019): 26. http://dx.doi.org/10.1097/01.hj.0000554346.30951.8d.
Der volle Inhalt der QuelleMashita, Tomohiro. „Artificial Intelligence and Machine Learning“. Journal of The Institute of Image Information and Television Engineers 72, Nr. 3 (2018): 235–40. http://dx.doi.org/10.3169/itej.72.235.
Der volle Inhalt der QuelleBratko, Ivan. „Machine learning in artificial intelligence“. Artificial Intelligence in Engineering 8, Nr. 3 (Januar 1993): 159–64. http://dx.doi.org/10.1016/0954-1810(93)90002-w.
Der volle Inhalt der QuelleLawlor, Bonnie. „Artificial Intelligence and Machine Learning“. Chemistry International 43, Nr. 1 (01.01.2021): 8–13. http://dx.doi.org/10.1515/ci-2021-0103.
Der volle Inhalt der QuelleAryal, Gopi. „Artificial intelligence in surgical pathology“. Journal of Pathology of Nepal 9, Nr. 1 (02.04.2019): I. http://dx.doi.org/10.3126/jpn.v9i1.23444.
Der volle Inhalt der QuelleGhahramani, Zoubin. „Probabilistic machine learning and artificial intelligence“. Nature 521, Nr. 7553 (Mai 2015): 452–59. http://dx.doi.org/10.1038/nature14541.
Der volle Inhalt der QuelleDissertationen zum Thema "Artificial intelligence and machine learning"
林謀楷 und Mau-kai Lam. „Inductive machine learning with bias“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1994. http://hub.hku.hk/bib/B31212426.
Der volle Inhalt der QuelleForsman, Robin, und Jimmy Jönsson. „Artificial intelligence and Machine learning : a diabetic readmission study“. Thesis, Högskolan Kristianstad, Avdelningen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-19412.
Der volle Inhalt der QuelleZhang, Sixiao. „Classifier Privacy in Machine Learning Markets“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1586460332748024.
Der volle Inhalt der QuelleLu, Yibiao. „Statistical methods with application to machine learning and artificial intelligence“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44730.
Der volle Inhalt der QuelleConway, Jennifer (Jennifer Elizabeth). „Artificial intelligence and machine learning : current applications in real estate“. Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120609.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 113-117).
Real estate meets machine learning: real contribution or just hype? Creating and managing the built environment is a complicated task fraught with difficult decisions, challenging relationships, and a multitude of variables. Today's technology experts are building computers and software that can help resolve many of these challenges, some of them using what is broadly called artificial intelligence and machine learning. This thesis will define machine learning and artificial intelligence for the investor and real estate audience, examine the ways in which these new analytic, predictive, and automating technologies are being used in the real estate industry, and postulate potential future applications and associated challenges. Machine learning and artificial intelligence can and will be used to facilitate real estate investment in myriad ways, spanning all aspects of the real estate profession -- from property management, to investment decisions, to development processes -- transforming real estate into a more efficient and data-driven industry.
by Jennifer Conway.
S.M. in Real Estate Development
Carlucci, Lorenzo. „Some cognitively-motivated learning paradigms in Algorithmic Learning Theory“. Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 0.68 Mb., p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3220797.
Der volle Inhalt der QuelleRose, Lydia M. „Modernizing Check Fraud Detection with Machine Learning“. Thesis, Utica College, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=13421455.
Der volle Inhalt der QuelleEven as electronic payments and virtual currencies become more popular, checks are still the nearly ubiquitous form of payment for many situations in the United States such as payroll, purchasing a vehicle, paying rent, and hiring a contractor. Fraud has always plagued this form of payment, and this research aimed to capture the scope of this 15th century problem in the 21st century. Today, counterfeit checks originating from overseas are the scourge of online dating sites, classifieds forums, and mailboxes throughout the country. Additional frauds including alteration, theft, and check kiting also exploit checks. Check fraud is causing hundreds of millions in estimated losses to both financial institutions and consumers annually, and the problem is growing. Fraud investigators and financial institutions must be better educated and armed to successfully combat it. This research study collected information on the history of checks, forms of check fraud, victimization, and methods for check fraud prevention and detection. Check fraud is not only a financial issue, but also a social one. Uneducated and otherwise vulnerable consumers are particularly targeted by scammers exploiting this form of fraud. Racial minorities, elderly, mentally ill, and those living in poverty are disproportionately affected by fraud victimization. Financial institutions struggle to strike a balance between educating customers, complying with regulations, and tailoring alerts that are both valuable and fast. Applications of artificial intelligence including machine learning and computer vision have many recent advancements, but financial institution anti-fraud measures have not kept pace. This research concludes that the onus rests on financial institutions to take a modern approach to check fraud, incorporating machine learning into real-time reviews, to adequately protect victims.
Townsend, Larry. „Wireless Sensor Network Clustering with Machine Learning“. Diss., NSUWorks, 2018. https://nsuworks.nova.edu/gscis_etd/1042.
Der volle Inhalt der QuelleAbdul-hadi, Omar. „Machine Learning Applications to Robot Control“. Thesis, University of California, Berkeley, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10817183.
Der volle Inhalt der QuelleControl of robot manipulators can be greatly improved with the use of velocity and torque feedforward control. However, the effectiveness of feedforward control greatly relies on the accuracy of the model. In this study, kinematics and dynamics analysis is performed on a six axis arm, a Delta2 robot, and a Delta3 robot. Velocity feedforward calculation is performed using the traditional means of using the kinematics solution for velocity. However, a neural network is used to model the torque feedforward equations. For each of these mechanisms, we first solve the forward and inverse kinematics transformations. We then derive a dynamic model. Later, unlike traditional methods of obtaining the dynamics parameters of the dynamics model, the dynamics model is used to infer dependencies between the input and output variables for neural network torque estimation. The neural network is trained with joint positions, velocities, and accelerations as inputs, and joint torques as outputs. After training is complete, the neural network is used to estimate the feedforward torque effort. Additionally, an investigation is done on the use of neural networks for deriving the inverse kinematics solution of a six axis arm. Although the neural network demonstrated outstanding ability to model complex mathematical equations, the inverse kinematics solution was not accurate enough for practical use.
Cox, Michael Thomas. „Introspective multistrategy learning : constructing a learning strategy under reasoning failure“. Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/10074.
Der volle Inhalt der QuelleBücher zum Thema "Artificial intelligence and machine learning"
BOOKS, Editors of TIME-LIFE. Artificial intelligence. Herausgegeben von Time-Life Books. Alexandra, Va: Time-Life Books, 1991.
Den vollen Inhalt der Quelle findenJoshi, Ameet V. Machine Learning and Artificial Intelligence. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-26622-6.
Der volle Inhalt der QuelleBogaerts, Bart, Gianluca Bontempi, Pierre Geurts, Nick Harley, Bertrand Lebichot, Tom Lenaerts und Gilles Louppe, Hrsg. Artificial Intelligence and Machine Learning. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65154-1.
Der volle Inhalt der QuelleBaratchi, Mitra, Lu Cao, Walter A. Kosters, Jefrey Lijffijt, Jan N. van Rijn und Frank W. Takes, Hrsg. Artificial Intelligence and Machine Learning. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76640-5.
Der volle Inhalt der QuelleFurukawa, Kōichi. Machine intelligence 14: Applied machine intelligence. Oxford: Clarendon Press, 2002.
Den vollen Inhalt der Quelle findenOn machine intelligence. 2. Aufl. Chichester: E. Horwood, 1986.
Den vollen Inhalt der Quelle findenArtificial Intelligence and Intelligent Systems. Oxford: Oxford University Press, 2005.
Den vollen Inhalt der Quelle findenRamanna, Sheela. Emerging Paradigms in Machine Learning. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Den vollen Inhalt der Quelle findenArtificial intelligence: How machines think. New York, N.Y: Baen Books, 1985.
Den vollen Inhalt der Quelle findenSaxena, Ankur, und Shivani Chandra. Artificial Intelligence and Machine Learning in Healthcare. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0811-7.
Der volle Inhalt der QuelleBuchteile zum Thema "Artificial intelligence and machine learning"
Michalewicz, Zbigniew. „Machine Learning“. In Artificial Intelligence, 215–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02830-8_13.
Der volle Inhalt der QuelleVermeulen, Andreas François. „Industrialized Artificial Intelligence“. In Industrial Machine Learning, 533–56. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-5316-8_14.
Der volle Inhalt der QuelleTaulli, Tom. „Machine Learning“. In Artificial Intelligence Basics, 39–67. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-5028-0_3.
Der volle Inhalt der QuelleChowdhary, K. R. „Machine Learning“. In Fundamentals of Artificial Intelligence, 375–413. New Delhi: Springer India, 2020. http://dx.doi.org/10.1007/978-81-322-3972-7_13.
Der volle Inhalt der QuelleAkerkar, Rajendra. „Machine Learning“. In Artificial Intelligence for Business, 19–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97436-1_2.
Der volle Inhalt der QuelleAggarwal, Charu C. „Machine Learning: The Inductive View“. In Artificial Intelligence, 167–210. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72357-6_6.
Der volle Inhalt der QuelleLee, Raymond S. T. „Machine Learning“. In Artificial Intelligence in Daily Life, 41–70. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7695-9_3.
Der volle Inhalt der QuelleKumar, Rajul, Karan Sehgal und Ankit Lal Meena. „Artificial Intelligence“. In Artificial Intelligence, Machine Learning, and Data Science Technologies, 155–71. New York: CRC Press, 2021. http://dx.doi.org/10.1201/9781003153405-8.
Der volle Inhalt der QuelleKumar, Rohit. „Artificial Intelligence—Basics“. In Machine Learning and Cognition in Enterprises, 33–49. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-3069-5_3.
Der volle Inhalt der QuelleMaria, Italia Joseph, und T. Devi. „Machine Learning“. In Artificial Intelligence Theory, Models, and Applications, 241–80. Boca Raton: Auerbach Publications, 2021. http://dx.doi.org/10.1201/9781003175865-14.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Artificial intelligence and machine learning"
Villamil, Valentina, Rochelle Deloria und Gregor Wolbring. „Artificial intelligence and machine learning“. In REHAB 2019: 5th Workshop on ICTs for improving Patients Rehabilitation Research Techniques. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3364138.3364158.
Der volle Inhalt der QuelleOngsulee, Pariwat. „Artificial intelligence, machine learning and deep learning“. In 2017 15th International Conference on ICT and Knowledge Engineering (ICT&KE). IEEE, 2017. http://dx.doi.org/10.1109/ictke.2017.8259629.
Der volle Inhalt der QuelleLeduc, Jean-Pierre. „Sensor networks and artificial intelligence for real time motion analysis“. In Applications of Machine Learning, herausgegeben von Michael E. Zelinski, Tarek M. Taha, Jonathan Howe, Abdul A. Awwal und Khan M. Iftekharuddin. SPIE, 2019. http://dx.doi.org/10.1117/12.2529424.
Der volle Inhalt der QuelleSclavounos, Paul D., und Yu Ma. „Artificial Intelligence Machine Learning in Marine Hydrodynamics“. In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77599.
Der volle Inhalt der QuellePandey, Anand, Pragyadeep Manglik und Punit Taluja. „Pollution Control Machine Using Artificial Intelligence And Machine Learning“. In 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). IEEE, 2019. http://dx.doi.org/10.1109/iccike47802.2019.9004288.
Der volle Inhalt der Quelle„SECTION 3: Artificial Intelligence and Machine Learning“. In 2020 10th International Conference on Advanced Computer Information Technologies (ACIT). IEEE, 2020. http://dx.doi.org/10.1109/acit49673.2020.9208952.
Der volle Inhalt der QuelleLowell, J., und P. Szafian. „Fault detection from 3D seismic data using Artificial Intelligence“. In Second EAGE Workshop on Machine Learning. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202132013.
Der volle Inhalt der QuelleFreeman, Sean. „Artificial intelligence for emergency management“. In Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications II, herausgegeben von Tien Pham, Latasha Solomon und Katie Rainey. SPIE, 2020. http://dx.doi.org/10.1117/12.2561636.
Der volle Inhalt der QuelleGupta, Anitya, Akhilesh Kumar und Vinayak Bhushan. „World of intelligence defense object detection–machine learning (artificial intelligence)“. In INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, MATERIALS AND APPLIED SCIENCE. Author(s), 2018. http://dx.doi.org/10.1063/1.5032027.
Der volle Inhalt der QuelleMeng, Kevin, Cheng Shi und Yu Meng. „Vehicle Action Prediction Using Artificial Intelligence“. In 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2018. http://dx.doi.org/10.1109/icmla.2018.00200.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Artificial intelligence and machine learning"
Byrd, Lexie, Curtis Smith, Ross Kunz, Nancy Lybeck, Ronald Boring, Humberto Garcia, Victor Walker et al. Big Data, Machine Learning, Artificial Intelligence [PowerPoint]. Office of Scientific and Technical Information (OSTI), Mai 2020. http://dx.doi.org/10.2172/1617329.
Der volle Inhalt der QuelleRanderson, James, Efi Georgiou, Padhraic Smyth, Yang Chen, Shane Coffield, Casey Graff, Stijn Hantson et al. Machine learning and artificial intelligence for wildfire prediction. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769739.
Der volle Inhalt der QuelleVecherin, Sergey, Jacob Desmond, Taylor Hodgdon, Jordan Bates, Michael Parker, James Lever, Garett Hoch, Mark Bodie und Sally Shoop. Artificial intelligence and machine learning for autonomous military vehicles. Engineer Research and Development Center (U.S.), August 2020. http://dx.doi.org/10.21079/11681/37943.
Der volle Inhalt der QuelleMilgrom, Paul, und Steven Tadelis. How Artificial Intelligence and Machine Learning Can Impact Market Design. Cambridge, MA: National Bureau of Economic Research, Februar 2018. http://dx.doi.org/10.3386/w24282.
Der volle Inhalt der QuelleBaker, Nathan, Frank Alexander, Timo Bremer, Aric Hagberg, Yannis Kevrekidis, Habib Najm, Manish Parashar et al. Brochure on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence. Office of Scientific and Technical Information (OSTI), Dezember 2018. http://dx.doi.org/10.2172/1484362.
Der volle Inhalt der QuelleAboaba, A., Y. Martinez, S. Mohaghegh, M. Shahnam, C. Guenther und Y. Liu. Smart Proxy Modeling Application of Artificial Intelligence & Machine Learning in Computational Fluid Dynamics. Office of Scientific and Technical Information (OSTI), Juli 2020. http://dx.doi.org/10.2172/1642460.
Der volle Inhalt der QuelleBaker, Nathan, Frank Alexander, Timo Bremer, Aric Hagberg, Yannis Kevrekidis, Habib Najm, Manish Parashar et al. Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence. Office of Scientific and Technical Information (OSTI), Februar 2019. http://dx.doi.org/10.2172/1478744.
Der volle Inhalt der QuelleRatner, Daniel, Bobby Sumpter, Frank Alexander, Jay Jay Billings, Ryan Coffee, Sarah Cousineau, Peter Denes et al. BES Roundtable on Producing and Managing Large Scientific Data with Artificial Intelligence and Machine Learning. Office of Scientific and Technical Information (OSTI), Oktober 2019. http://dx.doi.org/10.2172/1630823.
Der volle Inhalt der QuelleAli, Alee. From the Starship Enterprise to Los Alamos National Laboratory Artificial Intelligence and Machine Learning in the NSRC. Office of Scientific and Technical Information (OSTI), Januar 2021. http://dx.doi.org/10.2172/1760557.
Der volle Inhalt der QuelleDaniels, Matthew, Autumn Toney, Melissa Flagg und Charles Yang. Machine Intelligence for Scientific Discovery and Engineering Invention. Center for Security and Emerging Technology, Mai 2021. http://dx.doi.org/10.51593/20200099.
Der volle Inhalt der Quelle