Auswahl der wissenschaftlichen Literatur zum Thema „Articular cartilage“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Articular cartilage" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Articular cartilage"

1

Wardale, R. J., und V. C. Duance. „Quantification and immunolocalisation of porcine articular and growth plate cartilage collagens“. Journal of Cell Science 105, Nr. 4 (01.08.1993): 975–84. http://dx.doi.org/10.1242/jcs.105.4.975.

Der volle Inhalt der Quelle
Annotation:
The collagens of growth plate and articular cartilage from 5–6 month old commercial pigs were characterised. Growth plate cartilage was found to contain less total collagen than articular cartilage as a proportion of the dry weight. Collagen types I, II, VI, IX and XI are present in both growth plate and articular cartilage whereas type X is found exclusively in growth plate cartilage. Types III and V collagen could not be detected in either cartilage. Type I collagen makes up at least 10% of the collagenous component of both cartilages. There are significant differences in the ratios of the quantifiable collagen types between growth plate and articular cartilage. Collagen types I, II, and XI were less readily extracted from growth plate than from articular cartilage following pepsin treatment, although growth plate cartilage contains less of the mature collagen cross-links, hydroxylysyl-pyridinoline and lysyl-pyridinoline. Both cartilages contain significant amounts of the divalent reducible collagen cross-links, hydroxylysyl-ketonorleucine and dehydro-hydroxylysinonorleucine. Immunofluorescent localisation indicated that type I collagen is located predominantly at the surface of articular cartilage but is distributed throughout the matrix in growth plate. Types II and XI are located in the matrix of both cartilages whereas type IX is predominantly pericellular in the calcifying region of articular cartilage and the hypertrophic region of the growth plate. Collagen type VI is located primarily as a diffuse area at the articular surface.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wardale, R. J., und V. C. Duance. „Characterisation of articular and growth plate cartilage collagens in porcine osteochondrosis“. Journal of Cell Science 107, Nr. 1 (01.01.1994): 47–59. http://dx.doi.org/10.1242/jcs.107.1.47.

Der volle Inhalt der Quelle
Annotation:
The articular and growth plate cartilages of osteochondrotic pigs were examined and compared with those from clinically normal animals. Both types of osteochondrotic cartilage showed considerable localised thickening apparently due to a lack of ossification. Histological examination of cartilage lesions demonstrated a breakdown in the normal pattern of chondrocyte maturation. Articular cartilage lesions lacked mature clones of chondrocytes in the calcifying region. Growth plate cartilage showed an accumulation of disorganised hypertrophic chondrocytes rather than the well-defined columns seen in normal tissue. The overall percentages of collagen in osteochondrotic lesions from both articular and growth plate cartilage were significantly reduced compared with levels in unaffected cartilage. There were substantial increases in the proportion of type I collagen in lesions from both osteochondrotic articular and growth plate cartilages and a reduction in the proportion of type II collagen. Type X collagen was detected in osteochondrotic but not normal articular cartilage. The proportion of type X collagen was unchanged in osteochondrotic growth plate cartilage. The levels of the collagen cross-links, hydroxylysylpyridinoline, hydroxylysyl-ketonorleucine and dehydrohydroxylysinonorleucine were radically reduced in samples from osteochondrotic growth-plate cartilage lesions when compared with normal tissue. Less dramatic changes were observed in articular cartilage although there was a significant decrease in the level of hydroxylysylketonorleucine in osteochondrotic lesions. Immunofluorescence examination of osteochondrotic lesions showed a considerable disruption of the organisation of the collagenous components within both articular and growth-plate cartilages. Normal patterns of staining of types I and VI collagen seen at the articular surface in unaffected tissue were replaced by a disorganised, uneven stain in osteochondrotic articular cartilage lesions. Incomplete removal of cartilage at the ossification front of osteochondrotic growth plate was demonstrated by immunofluorescence staining of type IX collagen. Type X collagen was produced in the matrix of the calcifying region of osteochondrotic articular cartilage by small groups of hypertrophic chondrocytes, but was not detected in normal articular cartilage. The distribution of type X collagen was unchanged in osteochondrotic growth plate cartilage.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gong, Huchen, Yutao Men, Xiuping Yang, Xiaoming Li und Chunqiu Zhang. „Experimental Study on Creep Characteristics of Microdefect Articular Cartilages in the Damaged Early Stage“. Journal of Healthcare Engineering 2019 (13.11.2019): 1–9. http://dx.doi.org/10.1155/2019/8526436.

Der volle Inhalt der Quelle
Annotation:
Traumatic joint injury is known to cause cartilage deterioration and osteoarthritis. In order to study the mechanical mechanism of damage evolution on articular cartilage, taking the fresh porcine articular cartilage as the experimental samples, the creep experiments of the intact cartilages and the cartilages with different depth defect were carried out by using the noncontact digital image correlation technology. And then, the creep constitutive equations of cartilages were established. The results showed that the creep curves of different layers changed exponentially and were not coincident for the cartilage sample. The defect affected the strain values of the creep curves. The creep behavior of cartilage was dependent on defect depth. The deeper the defect was, the larger the strain value was. The built three-parameter viscoelastic constitutive equation had a good correlation with the experimental results and could predict the creep performance of the articular cartilage. The creep values of the microdefective cartilage in the damaged early stage were different from the diseased articular cartilage. These findings pointed out that defect could accelerate the damage of cartilage. It was helpful to study the mechanical mechanism of damage evolution.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sharifi, Ali Mohammad, Ali Moshiri und Ahmad Oryan. „Articular cartilage“. Current Orthopaedic Practice 27, Nr. 6 (2016): 644–65. http://dx.doi.org/10.1097/bco.0000000000000425.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

McCarty, Eric C. „Articular Cartilage“. Clinics in Sports Medicine 36, Nr. 3 (Juli 2017): i. http://dx.doi.org/10.1016/s0278-5919(17)30039-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Rodkey, William G. „Articular cartilage“. Journal of Equine Veterinary Science 17, Nr. 2 (Februar 1997): 80. http://dx.doi.org/10.1016/s0737-0806(97)80334-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Miller, Mark D. „Articular Cartilage“. Clinics in Sports Medicine 36, Nr. 3 (Juli 2017): xiii—xiv. http://dx.doi.org/10.1016/j.csm.2017.04.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gradisar, Ivan A., und James A. Porterfield. „Articular cartilage“. Topics in Geriatric Rehabilitation 4, Nr. 3 (April 1989): 1–9. http://dx.doi.org/10.1097/00013614-198904000-00004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lees, Deborah, und Paul Partington. „Articular cartilage“. Orthopaedics and Trauma 30, Nr. 3 (Juni 2016): 265–72. http://dx.doi.org/10.1016/j.mporth.2016.04.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Simon, Timothy M., und Douglas W. Jackson. „Articular Cartilage“. Sports Medicine and Arthroscopy Review 26, Nr. 1 (März 2018): 31–39. http://dx.doi.org/10.1097/jsa.0000000000000182.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Articular cartilage"

1

Getgood, Alan Martin John. „Articular cartilage tissue engineering“. Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608764.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gratz, Kenneth R. „Biomechanics of articular cartilage defects“. Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3284116.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph. D.)--University of California, San Diego, 2007.
Title from first page of PDF file (viewed January 9, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Arkill, Kenton Paul. „Mass transport in articular cartilage“. Thesis, University of Exeter, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421565.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Burgin, Leanne Victoria. „Impact loading of articular cartilage“. Thesis, University of Aberdeen, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288339.

Der volle Inhalt der Quelle
Annotation:
Impact loads have been implicated in the initiation of secondary osteoarthritis but in the absence of defined injury this is difficult to rest rigorously.  The response to controlled impacts of samples of cartilage and bone in isolation and together, may yield valuable insights into how tissue properties may influence degenerative changes associated with osteoarthritis. A rigid instrumented drop tower was constructed and interfaced to a LabVIEW software oscilloscope modified to capture and store data to disk.  Controlled impact loads were applied to cores of articular cartilage, both isolated and in situ on the underlying bone or bonded to substrates of different material properties.  Bovine tissue from the carpometacarpal joint and human cartilage from elderly femoral heads was used.  The response of the samples was investigated in terms of a dynamic stiffness, energy absorbed and coefficient of restitution.  In addition the quasistatic modulus was measured from compression tests in order to compare the values for the stiffness of cartilage and bone at different rates of stress and strain.  Composition analysis was then performed on human cartilage samples to investigate if there was any correlation between the biochemical constituents and mechanical factors. The dynamic stiffness of the cartilage samples was governed by peak stress and did not show a high sensitivity to strain rate.  Cartilage had good force attenuating properties in situ on bone and the substrates.  The greater volume of the stiffer underlying substrate dominated the response of the composite samples.  For the human cartilage samples the dynamic stiffness was most correlated to percentage collagen whereas the quasistatic modulus was most correlated with water content.  Overall the biochemical composition was a poor predictor of stiffness which indicates the importance of interactions between the matrix constituents in the tissue response to an applied load.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Rowles, Christopher. „Visualisation of Articular Cartilage Microstructure“. Thesis, Curtin University, 2016. http://hdl.handle.net/20.500.11937/52984.

Der volle Inhalt der Quelle
Annotation:
This thesis developed image processing techniques enabling the detection and segregation of biological three dimensional images into its component features based upon shape and relative size of the features detected. The work used articular cartilage images and separated fibrous components from the cells and background noise. Measurement of individual components and their recombination into a composite image are possible. Developed software was used to analyse the development of hyaline cartilage in developing sheep embryos.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Girdler, N. M. „The role of mandibular condylar cartilage in articular cartilage repair“. Thesis, King's College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309110.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Chan, Alex Dart Ming. „Neurogenic modulation of articular cartilage degeneration“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ41123.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Covert, Rebeccah Jean. „Durability evaluation of articular cartilage prostheses“. Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/17596.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Goldsmith, Andrew Alan John. „Biphasic modelling of synthetic articular cartilage“. Thesis, University of Bath, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321846.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ardill, Jennifer Maureen. „Optical measurement of articular cartilage roughness“. Thesis, Queen's University Belfast, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241325.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Articular cartilage"

1

Smith, David W., Bruce S. Gardiner, Lihai Zhang und Alan J. Grodzinsky. Articular Cartilage Dynamics. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1474-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Cole, Brian J., und M. Mike Malek. Articular Cartilage Lesions. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-0-387-21553-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

E, Kuettner Klaus, Schleyerbach Rudolf und Hascall Vincent C, Hrsg. Articular cartilage biochemistry. New York: Raven Press, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Athanasiou, K. A. Articular cartilage tissue engineering. San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA): Morgan & Claypool Publishers, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gahunia, Harpal K., Allan E. Gross, Kenneth P. H. Pritzker, Paul S. Babyn und Lucas Murnaghan, Hrsg. Articular Cartilage of the Knee. New York, NY: Springer New York, 2020. http://dx.doi.org/10.1007/978-1-4939-7587-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Argatov, Ivan, und Gennady Mishuris. Contact Mechanics of Articular Cartilage Layers. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20083-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Rodrìguez-Merchán, E. Carlos, Hrsg. Articular Cartilage Defects of the Knee. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2727-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

1964-, Hendrich Christian, Nöth Ulrich 1967- und Eulert Jochen, Hrsg. Cartilage surgery and future perspectives. Berlin: Springer, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

D, Brandt Kenneth, Hrsg. Cartilage changes in osteoarthritis. Indianapolis, Ind: Indiana University School of Medicine, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Cartilage tympanoplasty. Stuttgart: Thieme, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Articular cartilage"

1

Flik, Kyle R., Nikhil Verma, Brian J. Cole und Bernard R. Bach. „Articular Cartilage“. In Cartilage Repair Strategies, 1–12. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-343-1_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Pavelka, Margit, und Jürgen Roth. „Articular Cartilage“. In Functional Ultrastructure, 294–95. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-211-99390-3_151.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Smith, David W., Bruce S. Gardiner, Lihai Zhang und Alan J. Grodzinsky. „Cartilage Tissue Homeostasis“. In Articular Cartilage Dynamics, 65–243. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Smith, David W., Bruce S. Gardiner, Lihai Zhang und Alan J. Grodzinsky. „Cartilage Tissue Dynamics“. In Articular Cartilage Dynamics, 245–309. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Smith, David W., Bruce S. Gardiner, Lihai Zhang und Alan J. Grodzinsky. „Introduction to Articular Cartilage“. In Articular Cartilage Dynamics, 1–63. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Smith, David W., Bruce S. Gardiner, Lihai Zhang und Alan J. Grodzinsky. „Lubrication, Friction, and Wear in Diarthrodial Joints“. In Articular Cartilage Dynamics, 311–59. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Smith, David W., Bruce S. Gardiner, Lihai Zhang und Alan J. Grodzinsky. „A Systems Approach to Articular Cartilage“. In Articular Cartilage Dynamics, 361–428. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Smith, David W., Bruce S. Gardiner, Lihai Zhang und Alan J. Grodzinsky. „Osmotic Pressure, Solid Stress, and the Diffuse Double Layer“. In Articular Cartilage Dynamics, 429–67. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Smith, David W., Bruce S. Gardiner, Lihai Zhang und Alan J. Grodzinsky. „Theory for Modeling Articular Cartilage“. In Articular Cartilage Dynamics, 469–560. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Langworthy, Michael J., Fred R. T. Nelson und Richard D. Coutts. „Basic Science“. In Articular Cartilage Lesions, 3–12. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-0-387-21553-2_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Articular cartilage"

1

Goyal, Neeru, und Madhur Gupta. „A Study of Osteoarthritic Human Femoral Articular Cartilage Osteoarthritic Femoral Articular Cartilage“. In Annual International Conference on Microscopic and Macroscopic Anatomy. Global Science & Technology Forum (GSTF), 2014. http://dx.doi.org/10.5176/2382-6096_cmma14.10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zueger, Benno J., Beat Ott, P. M. Mainil-Varlet, Thomas Schaffner, Jean-Francois Clemence, Heinz P. Weber und Martin Frenz. „Laser soldering of articular cartilage“. In BiOS 2001 The International Symposium on Biomedical Optics, herausgegeben von R. Rox Anderson, Kenneth E. Bartels, Lawrence S. Bass, C. Gaelyn Garrett, Kenton W. Gregory, Abraham Katzir, Nikiforos Kollias et al. SPIE, 2001. http://dx.doi.org/10.1117/12.427791.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yang, Xiao-Hong, Timon Cheng-Yi Liu, Shao-Jie Liu, Jian-Rong Tan, Yan Shen und Pie-Hong Liang. „Photobiomodulation on Articular Cartilage Repair“. In 2007 IEEE/ICME International Conference on Complex Medical Engineering. IEEE, 2007. http://dx.doi.org/10.1109/iccme.2007.4381919.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Murakami, Teruo, Nobuo Sakai, Yoshinori Sawae, Itaru Ishikawa, Natsuko Hosoda, Emiko Suzuki und Jun Honda. „Biomechanical Aspects of Natural Articular Cartilage and Regenerated Cartilage“. In In Commemoration of the 1st Asian Biomaterials Congress. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812835758_0028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Melas, I. N., A. D. Chairakaki, A. Mitsos, Z. Dailiana, C. G. Provatidis und L. G. Alexopoulos. „Modeling signaling pathways in articular cartilage“. In 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6090630.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ardill, Jennifer M., N. J. Barton, W. G. Kernohan und R. A. B. Mollan. „Quantitative assessment of articular cartilage roughness“. In OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, herausgegeben von Halina Podbielska. SPIE, 1993. http://dx.doi.org/10.1117/12.155722.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kumar, Rajesh, Catharina Davies, Jon Drogset und Magnus Lilledahl. „Multiphoton microscopy of osteoarthritic articular cartilage“. In Novel Techniques in Microscopy. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/ntm.2017.nw4c.4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rennie, A. C., und W. G. Sawyer. „Tribological Investigation of Porcine Articular Cartilage“. In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-64382.

Der volle Inhalt der Quelle
Annotation:
This poster examines the tribological properties and effective elastic modulus of porcine articular cartilage plugs. Two methods of obtaining an effective elastic modulus are explored for the different initial material conditions during the indentation loading and unloading. The average values of coefficient of friction varied from 0.04–0.14, but ended with a steady-state average of 0.06. It was validated that increasing pressure during sliding produces an increase in friction coefficient. From a contact model fit to the loading region of the indentation curve, effective elastic modulus had an average value of 300 MPa, which agrees with existing literature. From an examination of the linear portion of the unloading region of the indentation curve, the effective elastic modulus was an average of 8.9 MPa. A preliminary explanation for this is that before loading, a bulk material is present, but pressure effects could evacuate some of the interstitial fluid, leaving in the unloading curve an effective matrix without fluid.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Folkesson, Jenny, Erik Dam, Paola Pettersen, Ole F. Olsen, Mads Nielsen und Claus Christiansen. „Locating articular cartilage in MR images“. In Medical Imaging, herausgegeben von J. Michael Fitzpatrick und Joseph M. Reinhardt. SPIE, 2005. http://dx.doi.org/10.1117/12.595665.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Smith, Robert Lane. „Mechanical Loading and Articular Cartilage Metabolism“. In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2520.

Der volle Inhalt der Quelle
Annotation:
Abstract Articular cartilage provides diarthrodial joints with a loading-bearing surface that ensures functional motility. The physical characteristics of articular cartilage originate with the highly organized matrix of extracellular macromolecules that provide structural elements to the tissue. The matrix specialization rests with specific proteins produced by the cartilage cells, the chondrocytes that undergo extensive post-translational modification through addition of sulfated glycosaminoglycan and oligosaccharides. The matrix proteins fall into three major categories, the collagens, the proteoglycans and the glycoproteins, with each group contributing unique properties to cartilage form and function.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Articular cartilage"

1

Huard, Johnny. Articular Cartilage Repair Through Muscle Cell-Based Tissue Engineering. Fort Belvoir, VA: Defense Technical Information Center, März 2011. http://dx.doi.org/10.21236/ada552048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

de Sousa, Eduardo, Renata Matsui, Leonardo Boldrini, Leandra Baptista und José Mauro Granjeiro. Mesenchymal stem cells for the treatment of articular cartilage defects of the knee: an overview of systematic reviews. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Dezember 2022. http://dx.doi.org/10.37766/inplasy2022.12.0114.

Der volle Inhalt der Quelle
Annotation:
Review question / Objective: Population: adults (aged between 18 and 50 years) with traumatic knee lesions who underwent treatment with mesenchymal stem cells; Intervention: defined by the treatment with mesenchymal stem cells; The comparison group: treatment with autologous chondrocytes or microfracture treatments; Primary outcome: formation of cartilage neo tissue in the defect area, determined by magnetic resonance imaging (MRI) or by direct visualization in second-look knee arthroscopy.; Secondary outcomes: based on clinical scores such as visual analog scale (VAS) for pain, Western Ontario and McMaster universities score (WOMAC), knee society score (KSS), Tegner and Lysholm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Guede-Rojas, Francisco, Alexis Benavides-Villanueva, Sergio Salgado-González, Cristhian Mendoza, Gonzalo Arias-Álvarez und Claudio Carvajal-Parodi. Effect of strength training on knee proprioception in patients with knee osteoarthritis. A systematic review and meta-analysis protocol. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Mai 2023. http://dx.doi.org/10.37766/inplasy2023.5.0102.

Der volle Inhalt der Quelle
Annotation:
Review question / Objective: To analyze the effect of strength training (ST) on knee proprioception in patients with knee osteoarthritis (KOA). Condition being studied: KOA is a chronic and degenerative joint disease characterized by articular cartilage loss, marginal bone hypertrophy, and inflammatory involvement of periarticular tissue of the knee. Symptoms of KOA are pain, stiffness, reduced range of motion, and muscle weakness, although proprioception may also be affected, contributing to the associated functional limitation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Cao, Siyang, Yihao Wei, Huihui Xu, Jian Weng, Tiantian Qi, Fei Yu, Su Liu, Ao Xiong, Peng Liu und Hui Zeng. Crosstalk between Ferroptosis and Chondrocytes in Osteoarthritis: A Systematic Review of in-vivo and in-vitro Studies. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, März 2023. http://dx.doi.org/10.37766/inplasy2023.3.0044.

Der volle Inhalt der Quelle
Annotation:
Review question / Objective: For the sake of better apprehending the nexus between ferroptosis and chondrocytes in osteoarthritis (OA), proffering novel insights and opening-up new orientation for in-depth research in both pre-clinical and clinical settings, it is warranted to initiate one rigorous and robust systematic review (SR) based upon up-to-date in-vivo and in-vitro research advances on this topic. To the best our knowledge, no SRs concerning ferroptosis and chondrocytes in OA have been published thus far. Condition being studied: Osteoarthritis (OA) is the most common form of arthritis, which menaces 7% of the human population globally. With the aged tendency of population and higher rates of obesity, the incidence of OA is anticipated to proliferate, which will entail a mounting impact and major challenges for global health care and each country’s public health systems unavoidably. In virtue of the onset of OA is mighty knotty, its etiology and underlying molecular mechanisms have not been expressly expounded. However, the salient role that cartilage degeneration acts in the progression of OA has been widely acknowledged. Chondrocytes are consequential for the safeguard of cartilage homeostasis and the functional integrity of the articular cartilage. Once the homeostatic equilibrium of the extracellular matrix (ECM) synthesis and degradation is smashed, OA comes up.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie