Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Aromaticita“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Aromaticita" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Aromaticita"
Gore, P. H. „Aromaticity“. Endeavour 11, Nr. 1 (Januar 1987): 54. http://dx.doi.org/10.1016/0160-9327(87)90182-7.
Der volle Inhalt der QuelleStojanović, Milovan, Jovana Aleksić und Marija Baranac-Stojanović. „Singlet/Triplet State Anti/Aromaticity of CyclopentadienylCation: Sensitivity to Substituent Effect“. Chemistry 3, Nr. 3 (21.07.2021): 765–82. http://dx.doi.org/10.3390/chemistry3030055.
Der volle Inhalt der QuelleBernasconi, Claude F. „Proton transfers in aromatic systems: How aromatic is the transition state?“ Pure and Applied Chemistry 81, Nr. 4 (01.01.2009): 649–65. http://dx.doi.org/10.1351/pac-con-08-08-27.
Der volle Inhalt der QuelleZong, He-Hou, Chuang Yao, Chang Q. Sun, Jian-Guo Zhang und Lei Zhang. „Structure and Stability of Aromatic Nitrogen Heterocycles Used in the Field of Energetic Materials“. Molecules 25, Nr. 14 (15.07.2020): 3232. http://dx.doi.org/10.3390/molecules25143232.
Der volle Inhalt der QuelleYun, Bi Xiao, und Ablikim Kerim. „A study on the aromaticity and ring currents of dithienopyridines and dithienobenzene“. Journal of Theoretical and Computational Chemistry 17, Nr. 01 (Februar 2018): 1850006. http://dx.doi.org/10.1142/s0219633618500062.
Der volle Inhalt der QuelleKalpana, Padmanaban, und Lakshminarayanan Akilandeswari. „Can Aromaticity of Fused Aromatic Ring in 1,3-Pentadiene Modulate its Reactivity towards [1,5]-Halo Shift? - A DFT Study“. Asian Journal of Chemistry 33, Nr. 2 (2021): 447–52. http://dx.doi.org/10.14233/ajchem.2021.23092.
Der volle Inhalt der QuelleBrown, Paul A., Caleb D. Martin und Kevin L. Shuford. „Aromaticity of unsaturated BEC4 heterocycles (E = N, P, As, Sb, O, S, Se, Te)“. Physical Chemistry Chemical Physics 21, Nr. 34 (2019): 18458–66. http://dx.doi.org/10.1039/c9cp02387a.
Der volle Inhalt der QuelleAcke, Guillaume, Sofie Van Damme, Remco W. A. Havenith und Patrick Bultinck. „Quantifying the conceptual problems associated with the isotropic NICS through analyses of its underlying density“. Physical Chemistry Chemical Physics 21, Nr. 6 (2019): 3145–53. http://dx.doi.org/10.1039/c8cp07343k.
Der volle Inhalt der QuelleWoon, Kai Lin, Azhar Ariffin, Kar Wei Ho und Show-An Chen. „Effect of conjugation and aromaticity of 3,6 di-substituted carbazoles on triplet energy and the implication of triplet energy in multiple-cyclic aromatic compounds“. RSC Advances 8, Nr. 18 (2018): 9850–57. http://dx.doi.org/10.1039/c8ra00674a.
Der volle Inhalt der QuelleHoward, S. T., und T. M. Krygowski. „Benzenoid hydrocarbon aromaticity in terms of charge density descriptors“. Canadian Journal of Chemistry 75, Nr. 9 (01.09.1997): 1174–81. http://dx.doi.org/10.1139/v97-141.
Der volle Inhalt der QuelleDissertationen zum Thema "Aromaticita"
Feixas, Geronès Ferran. „Analysis of chemical bonding and aromaticity from electronic delocalization descriptors“. Doctoral thesis, Universitat de Girona, 2011. http://hdl.handle.net/10803/37471.
Der volle Inhalt der QuelleLes interaccions entre electrons determinen l’estructura i propietats de la matèria. Per tant, la comprensió de l’estructura electrònica de les molècules ens permetrà extreure informació química rellevant. En la primera part d’aquesta tesi, centrem la nostra atenció en l’anàlisi de l’enllaç químic per mitjà de la funció de localització electrònica (ELF) i l’anàlisi dels anomenats domain averaged Fermi holes (DAFH). En la segona part, s’avalua el comportament d’alguns indicadors d’aromaticitat analitzant els seus avantatges i inconvenients. Al llarg d’aquesta part, es proposen una sèrie de tests basats en tendències d’aromaticitat conegudes que es poden aplicar per avaluar el comportament dels indicadors actuals en espècies tan orgàniques com inorgàniques. A més a més, s’investiga la naturalesa de la deslocalització d’electrons en sistemes aromàtics i antiaromàtics que segueixen la regla 4n+2 que proposà Hückel. Finalment, analitzem el fenomen de l’aromaticitat múltiple en sistemes metàl•lics
Yang, Yuheng. „Study on novel photochromic systems based on chromophores with six-membered ring as central ethene bridge“. Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00846636.
Der volle Inhalt der QuelleKrist, Tomáš. „Sekvenční frakcionace organické hmoty huminové kyseliny izolované z Leonarditu“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-445142.
Der volle Inhalt der QuelleBenchouaïa, Rajaa. „Vers de nouveaux métallo-récepteurs : synthèse et études de ligands hybrides hexaphyrine-cyclodextrine“. Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1S116.
Der volle Inhalt der QuelleHexaphyrins are constituted by six pyrrole units and present different types of aromaticity at the origin of their remarkable coordination properties. However, complexes are mainly described on “naked” hexaphyrins. Besides, the induction of chirality on a Möbius ring is still in its infancy. In this context, we explore the coordination properties of ''capped'' hexaphyrins. More particularly, our objective consist to develop hybrid ligands, where hexaphyrin and cyclodextrin units are covalently linked. For these hybrids, the hexaphyrin can be capped by one or two cyclodextrins, until six linkages. First, coordination studies realized on the triply linked ligands, enabled to show the strong rigidity of the system, avoiding any adaptation for the incorporation of metal ions such as ZnII, CdII, HgII, PdII. Thus, the unprecedented synthesis, of the doubly linked ligands, enabled to have access to the first Möbius ring capped by a cavity. Moreover, complexes of ZnII and HgII were obtained. Interestingly, these ligands present three sources of chirality as a totem. We succeeded to obtain a diastereomeric exces of 94%, for the communication between the planar chirality and the Möbius ring, on the complexes. Besides, these complexes enabled to have a communication from the cyclodextrin quantified by a d.e. of 60%. Then, the functionalisation became more sophisticated by modifiying the hexaphyrin core, the meso positions, and the cyclodextrin. These hybrids have hence a coordination sphere which is more favorable to metal ions coordination. These first tests are really encouraging. Ultimately, these hybrid ligands would lead to allosteric receptors and catalysts, which is the concern of our researches
Deyris, Pierre-Alexandre. „Convergent assembly of natural benzophenanthridines and the chemistry of stable all-metal aromatic complexes“. Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS109/document.
Der volle Inhalt der QuelleRecent developments on dual palladium/norbornene catalytic reactions led to one-pot synthesis of complexes polyheterocyclic molecules. By extension of this reaction, the coupling of aryl triflates and bromobenzylamines permitted us to synthesize natural benzophenanthridine. In parallel, a new family of triangular palladium complexes has been isolated in our research group. These 44 valence electrons complexes possessing a positive charge delocalized on the trimetallic core were the first stable compounds which presented δ-type aromaticity. After optimization of a new synthetic route, we could be able to isolate platinum analogues and also heterometallic clusters which interestingly had the same asymmetric unit than their homonuclear peers. Despite the unavoidable charge repulsion, the Lewis basic character revealed to be strong enough to bind other cationic species. Indeed, we reached to synthesize tetrahedral [M”(M₃)(Ln)]²⁺ complexes. In another side, we wondered if the stability and special properties of [Pd₃]⁺ clusters could confer to it some catalytic activities. Our studies were focused on semi-reduction reactions of alkynes. After optimization process, the catalyst [Pd₃(SMe)₃{P(C₇H)₃)₃}]⁺ showed results beyond our greatest expectations. Indeed, this cluster selectively produced thermodynamically less stable Z-alkene without traces of over-reduced compound. Total chemioselectivity towards alkynes was proved by the reaction on several molecules bearing functional groups which are sensitive to hydrogenation conditions
Cocq, Kévin. „Synthèse et propriétés de nouvelles molécules carbo-mères : carbo-quinoïdes et carbo-benzénoïdes“. Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30212/document.
Der volle Inhalt der QuelleFollowing numerous illustrations and validations at the fundamental level, the chemistry of carbo-meric molecules was recently directed towards functional targets in terms of application prospects (molecular "carbo-materials'). Such carbon-expanded molecules have indeed recently been shown to exhibit remarkable properties in the areas of single molecule conductivity (SMC) or two-photon absorption efficiency (TPA). The consideration of target of fundamentally "new types" remains necessary in view of the study of new properties as well. The work described in this manuscript focus mainly on results concerning the synthesis of carbo-quinoids and carbo-benzenoids, two types of carbo-meric structures that had not been considered hitherto. The first chapter is a bibliographic summary describing the synthesis and properties of carbo-meric molecules, either aromatic or, more generally, highly pi-conjugated (carbo-benzenes, carbo-cyclohexadienes, carbo-oligoacetylenes...) The second chapter focuses on the complete study of the three regioisomers, "ortho", "para" and "meta" of tetraphenyl-carbo-benzene, the first two representatives having been partly described previously. The third chapter describes the synthesis and study of the first example of carbo-quinoid and its reversible redox transformation to carbo-benzenes, illustrating the "redox pro-aromaticity" of carbo-quinoid with respect to their oxidized carbo-benzenic analogues. The fourth and final chapter is devoted to the synthesis and study of a carbo-benzenoid, carbo-naphthalene, which can be regarded as the smallest condensed polycyclic fragment of alpha-graphyne, a material widely studied at the theoretical level but remaining unknown experimentally to date. The physicochemical and spectroscopic properties of carbo-naphthalene are compared to that of the corresponding monocyclic carbo-benzene, the synthesis of which is also detailed
Szücs, Rózsa. „Phosphorus modified PAHs : tunable π-systems for optoelectronic applications“. Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S022/document.
Der volle Inhalt der QuellePolycyclic aromatic hydrocarbons (PAHs) are important targets of experimental and theoretical studies, because of their potential use in optical and electronic devices, such as light-emitting diodes, field-effect transistors or photovoltaics. The properties of PAH systems can be modified by embedding heteroatoms into the sp2 backbone, however for P-modified PAHs, only a few examples exist. During my PhD research, I studied the properties of P-containing extended π-systems. It has been revealed by density functional calculations that the incorporation of phosphorus at the edge position of a PAH has a significant effect on the electronic structure of the entire π-system, as can be seen through the HOMO and LUMO. On the one hand, both orbitals keep the spatial characteristics of the parent heterocycle, on the other hand, the reduced HOMO-LUMO gap compared to the parent heterocycle is a consequence of the interaction between the phosphole unit and the extended aromatic system, as the molecular orbitals are delocalized through the sp2 carbon skeleton. We investigated the effect of chemical modification (including complexation) at the phosphorus atom, and found that due to the variation of the hyperconjugative interaction it can be used to fine-tune the optical properties. Aromaticity is one of the key characteristics of π-systems. During its investigation we have established that the local aromaticities in the investigated ring system could be best described by the NICS(1) values. The modification of the local aromaticity of the five-membered ring (by the variation of the heteroatom) has a significant impact on the local aromaticities of some of the other rings as well. It has been shown that the Diels-Alder cycloaddition of the P-embedded PAHs proceeds at those rings which exhibit the lowest aromaticity
El, Bakouri El Farri Ouissam. „Electronic structure, chemical bonding, and electronic delocalization of organic and inorganic systems with three-dimensional or excited state aromaticity“. Doctoral thesis, Universitat de Girona, 2017. http://hdl.handle.net/10803/565444.
Der volle Inhalt der QuelleL'aromaticitat és un concepte clau en química, utilitzat pels químics per explicar l'estructura, l'estabilitat i la reactivitat de molts compostos. Els compostos aromàtics estan presents tant en els processos industrials com en sistemes vius. Al principi, l’àmbit de les molècules aromàtiques estava limitat a sistemes benzenoids cíclics. Amb el pas del temps, aquest concepte s'ha ampliat a sistemes heterocíclics, clústers metàl·lics, ful·lerens i altres molècules més exòtiques. En aquesta tesi, l'anàlisi de l'estructura electrònica, l'enllaç químic i la deslocalització electrònica de sistemes orgànics i inorgànics que posseeixen aromaticitat tridimensional o en estat excitat són estudiats amb detall utilitzant eines computacionals d'última generació. Ens centrem principalment en l’estudi de l'aromaticitat de diferents hidrocarburs policíclics conjugats, ful·lerens i petits clústers inorgànics. Tanmateix, també analitzem l'enllaç químic dels diferents clústers inorgànics
Inoue, Mitsunori. „Studies on Möbius Aromaticity of Hexaphyrins“. 京都大学 (Kyoto University), 2011. http://hdl.handle.net/2433/142391.
Der volle Inhalt der QuelleMatito, i. Gras Eduard. „Development, implementation and application of electronic structural descriptors to the analysis of the chemical bonding, aromaticity and chemical reactivity“. Doctoral thesis, Universitat de Girona, 2006. http://hdl.handle.net/10803/7940.
Der volle Inhalt der QuelleL'objectiu d'aquesta tesi és explorar descriptors de la densitat basats en particions de l'espai molecular del tipus AIM, ELF o àtoms difusos, analitzar els descriptors existents amb diferents nivells de teoria, proposar nous descriptors d'aromaticitat, així com estudiar l'habilitat de totes aquestes eines per discernir entre diferents mecanismes de reacció.
In the literature, several electronic descriptors based in the pair density or the density have been proposed with more or less success in their pratical applications. In order to be chemically meaningful the descriptor must give a definition of an "atom" in a molecule, or instead be able to identify some chemical interesting regions (such as lone pair, bonding region, among others). In this line, several molecular partition schemes have been put forward: atoms in molecules (AIM), electron localization function (ELF), Voronoi cells, Hirshfeld atoms, fuzzy atoms, etc.
The goal of this thesis is to explore the density descriptors based on the molecular partitions of AIM, ELF and fuzzy atom, analyze the existing decriptors at several levels of theory, propose new aromaticity descriptors, and study its ability to discern between different mechanisms of reaction.
Bücher zum Thema "Aromaticita"
Aromaticity. New York: Wiley, 1986.
Den vollen Inhalt der Quelle findenAromaticity and metal clusters. Boca Raton: Taylor & Francis, 2011.
Den vollen Inhalt der Quelle findenCyrański, Michał K. (Michał Ksawery), Krygowski Tadeusz Marek und SpringerLink (Online service), Hrsg. Aromaticity in Heterocyclic Compounds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Den vollen Inhalt der Quelle findenKrygowski, Tadeusz M., und Michał K. Cyrański, Hrsg. Aromaticity in Heterocyclic Compounds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-68343-8.
Der volle Inhalt der QuelleMinkin, V. I. Aromaticity and antiaromaticity: Electronic and structural aspects. New York: Wiley, 1994.
Den vollen Inhalt der Quelle findenHepworth, John D. Aromatic chemistry. New York: Wiley-Interscience, 2002.
Den vollen Inhalt der Quelle findenStefano, Antonio Di. Dottore, ho i dolori aromatici. Milano: Mondadori, 2000.
Den vollen Inhalt der Quelle findenAromaticity. Elsevier, 2021. http://dx.doi.org/10.1016/c2019-0-04193-3.
Der volle Inhalt der QuelleKrygowski, Tadeusz M. Aromaticity in Heterocyclic Compounds. Springer Verlag, 2009.
Den vollen Inhalt der Quelle findenCocina Aromatica. Albatros, 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Aromaticita"
Putz, Mihai V., und Marina A. Tudoran. „Aromaticity“. In New Frontiers in Nanochemistry, 29–43. Includes bibliographical references and indexes. | Contents: Volume 1. Structural nanochemistry – Volume 2. Topological nanochemistry – Volume 3. Sustainable nanochemistry.: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9780429022937-4.
Der volle Inhalt der QuelleCarey, Francis A., und Richard J. Sundberg. „Aromaticity“. In Advanced Organic Chemistry, 499–538. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-9795-3_9.
Der volle Inhalt der QuelleVollhardt, Peter, und Neil Schore. „Benzene and Aromaticity“. In Organic Chemistry, 1134–227. New York: Macmillan Learning, 2014. http://dx.doi.org/10.1007/978-1-319-19197-9_15.
Der volle Inhalt der QuelleFeixas, Ferran, Eduard Matito, Jordi Poater und Miquel Solà. „Rules of Aromaticity“. In Challenges and Advances in Computational Chemistry and Physics, 321–35. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29022-5_12.
Der volle Inhalt der QuelleChen, Zhongfang, Andreas Hirsch und Haijun Jiao. „Spherical Aromaticity — An Overview“. In Fullerenes: From Synthesis to Optoelectronic Properties, 121–35. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9902-3_4.
Der volle Inhalt der QuelleBalaban, Alexandru T., und Milan Randić. „Structural Approach to Aromaticity and Local Aromaticity in Conjugated Polycyclic Systems“. In Carbon Bonding and Structures, 159–204. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1733-6_8.
Der volle Inhalt der QuelleChen, Zhongfang, Thomas Heine, Paul v. R. Schleyer und Dage Sundholm. „Aromaticity Indices from Magnetic Shieldings“. In Calculation of NMR and EPR Parameters, 395–407. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2004. http://dx.doi.org/10.1002/3527601678.ch24.
Der volle Inhalt der QuelleKhare, C. P. „Curcuma aromatica Salisb.“ In Indian Medicinal Plants, 1. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-70638-2_434.
Der volle Inhalt der QuelleGhiron, Chiara, und Russell J. Thomas. „Stereoselektive Synthese von (±)-Aromaticin“. In Teubner Studienbücher Chemie, 74–75. Wiesbaden: Vieweg+Teubner Verlag, 1993. http://dx.doi.org/10.1007/978-3-322-80121-0_36.
Der volle Inhalt der QuelleBerkowitz, N. „Coal Aromaticity and Average Molecular Structure“. In Advances in Chemistry, 217–33. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/ba-1988-0217.ch013.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Aromaticita"
Kocheril, G., Lai-Sheng Wang, Joseph Czekner und Ling Cheung. „AROMATICITY IN METALLABORON CLUSTERS“. In 2020 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2020. http://dx.doi.org/10.15278/isms.2020.te01.
Der volle Inhalt der QuelleFowler, P. W., George Maroulis und Theodore E. Simos. „Molecular Currents and Aromaticity“. In Computational Methods in Science and Engineering. AIP, 2007. http://dx.doi.org/10.1063/1.2827030.
Der volle Inhalt der QuelleKrygowski, Tadeusz M., Halina Szatyłowicz, Theodore E. Simos und George Maroulis. „Aromaticity—What Does It Mean?“ In COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING: Theory and Computation: Old Problems and New Challenges. Lectures Presented at the International Conference on Computational Methods in Science and Engineering 2007 (ICCMSE 2007): VOLUME 1. AIP, 2007. http://dx.doi.org/10.1063/1.2836133.
Der volle Inhalt der QuelleGumus, Selcuk. „The Aromaticity of Diamino-Dinitro-Diaza-Benzenes“. In The 14th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2010. http://dx.doi.org/10.3390/ecsoc-14-00389.
Der volle Inhalt der QuelleKorkin, A. A., M. L. McKee und P. v. R. Schleyer. „The aromaticity in three membered boron species“. In The first European conference on computational chemistry (E.C.C.C.1). AIP, 1995. http://dx.doi.org/10.1063/1.47687.
Der volle Inhalt der Quelle„Assessment of Formula-Based Structural Annotation of Humic Substances by Mild Chemical Derivatization and Mass Spectrometry“. In Sixth International Conference on Humic Innovative Technologies "Humic Substances and Eco-Adaptive Technologies ”(HIT – 2021). Non-Commercial Partnership "Center for Biogenic Resources "Humus Sapiens" (NP CBR "Humus Sapiens"), 2021. http://dx.doi.org/10.36291/hit.2021.mikhnevich.002.
Der volle Inhalt der QuelleGümüş, Selçuk, und Ayşegül Gümüş. „Substituent Effect on the Aromaticity of Phosphazene“. In The 21st International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/ecsoc-21-04791.
Der volle Inhalt der QuellePapadopoulos, A. G., N. D. Charistos und M. P. Sigalas. „Aromaticity variation in BN substituted triphenylene: A theoretical study“. In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009: (ICCMSE 2009). AIP, 2012. http://dx.doi.org/10.1063/1.4772148.
Der volle Inhalt der QuelleGümüş, Selçuk, und Lemi Türker. „Substituent Effect on the Aromaticity of 1,3-Azole Systems“. In The 15th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2011. http://dx.doi.org/10.3390/ecsoc-15-00771.
Der volle Inhalt der QuelleSOLÀ, MIQUEL. „EXCITED-STATE AROMATICITY FOR THE DESIGN OF NEW FUNCTIONAL MATERIALS“. In 25th Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2021. http://dx.doi.org/10.1142/9789811228216_0009.
Der volle Inhalt der Quelle