Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Arctic clouds.

Dissertationen zum Thema „Arctic clouds“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Arctic clouds" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Beesley, John Anthony. „The climatic effects and requirements of arctic clouds /“. Thesis, Connect to this title online; UW restricted, 1997. http://hdl.handle.net/1773/10056.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zygmuntowska, Marta, Thorsten Mauritsen, Johannes Quaas und Lars Kaleschke. „Arctic clouds and surface radiation“. Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-185357.

Der volle Inhalt der Quelle
Annotation:
Clouds regulate the Earth’s radiation budget, both by reflecting part of the incoming sunlight leading to cooling and by absorbing and emitting infrared radiation which tends to have a warming effect. Globally averaged, at the top of the atmosphere the cloud radiative effect is to cool the climate, while at the Arctic surface, clouds are thought to be warming. Here we compare a passive instrument, the AVHRR-based retrieval from CM-SAF, with recently launched active instruments onboard CloudSat and CALIPSO and the widely used ERA-Interim reanalysis. We find that in particular in winter months the three data sets differ significantly. While passive satellite instruments have serious difficulties, detecting only half the cloudiness of the modeled clouds in the reanalysis, the active instruments are in between. In summer, the two satellite products agree having monthly means of 70–80 percent, but the reanalysis are approximately ten percent higher. The monthly mean long- and shortwave components of the surface cloud radiative effect obtained from the ERAInterim reanalysis are about twice that calculated on the basis of CloudSat’s radar-only retrievals, while ground based measurements from SHEBA are in between. We discuss these differences in terms of instrument-, retrieval- and reanalysis characteristics, which differ substantially between the analyzed datasets.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Garrett, Timothy J. „Radiative properties of arctic clouds /“. Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/10090.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lampert, Astrid. „Airborne lidar observations of tropospheric arctic clouds“. Phd thesis, Universität Potsdam, 2009. http://opus.kobv.de/ubp/volltexte/2010/4121/.

Der volle Inhalt der Quelle
Annotation:
Due to the unique environmental conditions and different feedback mechanisms, the Arctic region is especially sensitive to climate changes. The influence of clouds on the radiation budget is substantial, but difficult to quantify and parameterize in models. In the framework of the PhD, elastic backscatter and depolarization lidar observations of Arctic clouds were performed during the international Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) from Svalbard in March and April 2007. Clouds were probed above the inaccessible Arctic Ocean with a combination of airborne instruments: The Airborne Mobile Aerosol Lidar (AMALi) of the Alfred Wegener Institute for Polar and Marine Research provided information on the vertical and horizontal extent of clouds along the flight track, optical properties (backscatter coefficient), and cloud thermodynamic phase. From the data obtained by the spectral albedometer (University of Mainz), the cloud phase and cloud optical thickness was deduced. Furthermore, in situ observations with the Polar Nephelometer, Cloud Particle Imager and Forward Scattering Spectrometer Probe (Laboratoire de Météorologie Physique, France) provided information on the microphysical properties, cloud particle size and shape, concentration, extinction, liquid and ice water content. In the thesis, a data set of four flights is analyzed and interpreted. The lidar observations served to detect atmospheric structures of interest, which were then probed by in situ technique. With this method, an optically subvisible ice cloud was characterized by the ensemble of instruments (10 April 2007). Radiative transfer simulations based on the lidar, radiation and in situ measurements allowed the calculation of the cloud forcing, amounting to -0.4 W m-2. This slight surface cooling is negligible on a local scale. However, thin Arctic clouds have been reported more frequently in winter time, when the clouds' effect on longwave radiation (a surface warming of 2.8 W m-2) is not balanced by the reduced shortwave radiation (surface cooling). Boundary layer mixed-phase clouds were analyzed for two days (8 and 9 April 2007). The typical structure consisting of a predominantly liquid water layer on cloud top and ice crystals below were confirmed by all instruments. The lidar observations were compared to European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological analyses. A change of air masses along the flight track was evidenced in the airborne data by a small completely glaciated cloud part within the mixed-phase cloud system. This indicates that the updraft necessary for the formation of new cloud droplets at cloud top is disturbed by the mixing processes. The measurements served to quantify the shortcomings of the ECMWF model to describe mixed-phase clouds. As the partitioning of cloud condensate into liquid and ice water is done by a diagnostic equation based on temperature, the cloud structures consisting of a liquid cloud top layer and ice below could not be reproduced correctly. A small amount of liquid water was calculated for the lowest (and warmest) part of the cloud only. Further, the liquid water content was underestimated by an order of magnitude compared to in situ observations. The airborne lidar observations of 9 April 2007 were compared to space borne lidar data on board of the satellite Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). The systems agreed about the increase of cloud top height along the same flight track. However, during the time delay of 1 h between the lidar measurements, advection and cloud processing took place, and a detailed comparison of small-scale cloud structures was not possible. A double layer cloud at an altitude of 4 km was observed with lidar at the West coast in the direct vicinity of Svalbard (14 April 2007). The cloud system consisted of two geometrically thin liquid cloud layers (each 150 m thick) with ice below each layer. While the upper one was possibly formed by orographic lifting under the influence of westerly winds, or by the vertical wind shear shown by ECMWF analyses, the lower one might be the result of evaporating precipitation out of the upper layer. The existence of ice precipitation between the two layers supports the hypothesis that humidity released from evaporating precipitation was cooled and consequently condensed as it experienced the radiative cooling from the upper layer. In summary, a unique data set characterizing tropospheric Arctic clouds was collected with lidar, in situ and radiation instruments. The joint evaluation with meteorological analyses allowed a detailed insight in cloud properties, cloud evolution processes and radiative effects.
Die Arktis mit ihren speziellen Umweltbedingungen ist besonders empfindlich gegenüber Klimaveränderungen. Dabei spielen Wolken eine große Rolle im Strahlungsgleichgewicht, die aber nur schwer genau bestimmt und in Klimamodellen dargestellt werden kann. Die Daten für die Promotionsarbeit wurden im Frühjahr 2007 bei Flugzeug-Messungen von Wolken über dem Arktischen Ozean von Spitzbergen aus erhoben. Das dafür verwendete Lidar (Licht-Radar) des Alfred-Wegener-Instituts lieferte ein höhenaufgelöstes Bild der Wolkenstrukturen und ihrer Streu-Eigenschaften, andere Messgeräte ergänzten optische sowie mikrophysikalische Eigenschaften der Wolkenteilchen (Extinktion, Größenverteilung, Form, Konzentration, Flüssigwasser- und Eisgehalt, Messgeräte vom Laboratoire de Météorologie Physique, France) und Strahlungsmessungen (Uni Mainz). Während der Messkampagne herrschte Nordwind vor. Die untersuchten Luftmassen mit Ursprung fern von menschlichen Verschmutzungsquellen war daher sehr sauber. Beim Überströmen der kalten Luft über den offenen warmen Arktischen Ozean bildeten sich in der Grenzschicht (ca. 0-1500 m Höhe) Mischphasenwolken, die aus unterkühlten Wassertröpfchen im oberen Bereich und Eis im unteren Bereich der Wolken bestehen. Mit den Flugzeug-Messungen und numerischen Simulationen des Strahlungstransports wurde der Effekt einer dünnen Eiswolke auf den Strahlungshaushalt bestimmt. Die Wolke hatte lokal eine geringe Abkühlung der Erdoberfläche zur Folge. Ähnliche Wolken würden jedoch im Winter, wenn keine Sonnenstrahlung die Arktis erreicht, durch den Treibhauseffekt eine nicht vernachlässigbare Erwärmung der Oberfläche verursachen. Die Messungen der Mischphasenwolken wurden mit einem Wettervorhersagemodell (ECMWF) verglichen. Für die ständig neue Bildung von flüssigen Wassertropfen im oberen Teil der Wolke ist das Aufsteigen von feuchten Luftpaketen nötig. Während einer Messung wurden entlang der Flugstrecke verschiedene Luftmassen durchflogen. An der Luftmassengrenze wurde eine reine Eiswolke inmitten eines Mischphasen-Systems beobachtet. Die Messungen zeigen, dass das Mischen von Luftmassen den Nachschub an feuchter Luft blockiert, was unmittelbare Auswirkungen auf die thermodynamische Phase des Wolkenwassers hat. Weiterhin wurde bestimmt, wie groß die Abweichungen der Modellrechnungen von den Messungen bezüglich Wassergehalt und der Verteilung von Flüssigwasser und Eis waren. Durch die vereinfachte Wolken-Parameterisierung wurde die typische vertikale Struktur von Mischphasenwolken im Modell nicht wiedergegeben. Die flugzeuggetragenen Lidar-Messungen vom 9. April 2007 wurden mit Lidar-Messungen an Bord des Satelliten CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) verglichen. Die Messungen zeigten beide eine ansteigende Wolkenobergrenze entlang desselben Flugwegs. Da die Messungen jedoch nicht genau gleichzeitig durchgeführt wurden, war wegen Advektion und Prozessen in den Wolken kein genauer Vergleich der kleinskaligen Wolkenstrukturen möglich. Außerdem wurde eine doppelte Wolkenschicht in der freien Troposphäre (4 km Höhe) analysiert. Die Wolke bestand aus zwei separaten dünnen Schichten aus flüssigem Wasser (je 150 m dick) mit jeweils Eis darunter. Die untere Schicht entstand wahrscheinlich aus verdunstetem Eis-Niederschlag. Diese feuchte Schicht wurde durch die Abstrahlung der oberen Wolkenschicht gekühlt, so dass sie wieder kondensierte. Solche Wolkenformationen sind in der Arktis bisher vor allem in der Grenzschicht bekannt. Ein einzigartiger Datensatz von arktischen Wolken wurde mit einer Kombination verschiedener Flugzeug-Messgeräte erhoben. Zusammen mit meteorologischen Analysen konnten für verschiedene Fallstudien Wolkeneigenschaften, Entwicklungsprozesse und Auswirkungen auf den Strahlungshaushalt bestimmt werden.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pleavin, Thomas Daniel. „Large eddy simulations of Arctic stratus clouds“. Thesis, University of Leeds, 2013. http://etheses.whiterose.ac.uk/4934/.

Der volle Inhalt der Quelle
Annotation:
Mixed-phase Arctic stratocumulus clouds are ubiquitous to the region during the summer months. However, despite their prevalence, very little is known about the processes which maintain the cloud. Recent observations have shown that Arctic stratocumulus commonly extend into the temperature inversion which caps the Arctic boundary layer. This is atypical to sub-tropical stratocumulus where the cloud top is found in the vicinity of the inversion base, and unexpected as strong longwave radiative cooling would be expected to keep the cloud top and inversion base heights in equilibrium. Uniquely to the Arctic, inversions in speci�c humidity are also commonly observed coincident with temperature inversions, and this is thought to contribute to the clouds' subsistence in the strongly stable inversion layer. In this thesis, observations from the Arctic Summer Cloud Ocean Study (ASCOS) are used to characterize the lower Arctic atmosphere and provide the basis for simulations of stratocumulus cloud encroachment into the Arctic temperature inversion. Observations show that cloud extending into the inversion by more than 100 m was a common occurrence during ASCOS, which is consistent with measurements made during previous summer field campaigns. Simulations made with the Met Office Large Eddy Model (LEM) were used to model the encroachment, and results suggest that the depth of encroachment has a high correlation with the humidity inversion strength. A number of different cloud-inversion regimes were identi�ed from the model simulations. When specific humidity fell of inside the temperature inversion, the high relative humidity of the region just above the inversion base was found to allow encroachment of cloud up to 40 m into the inversion layer. While in the presence of a speci�c humidity inversion the encroachment was larger reaching a maximum of 200 m. The presence of specific humidity inversions and their relationship to the encroaching cloud was determined to be self-sustaining, and the cloud found to remain at a quasi-stable depth for as long as a moisture source is available to replenish the loss of water from ice precipitation. However, encroachment of cloud into the inversion was shown to cause a signi�cant reduction in the buoyant production of TKE at cloud top, which led to turbulence shutting off completely in the clouds with the largest encroachment depth. This caused a thermal adjustment of the inversion layer to the cloud which led a reduction in the encroachment depth. The overall impact of encroachment on boundary layer turbulence was found to be significant, with TKE reduced by up to 90% in the simulations with the largest encroachment depth.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kanngießer, Franz, André Ehrlich und Manfred Wendisch. „Observations of glories above arctic boundary layer clouds to identify cloud phase“. Universität Leipzig, 2017. https://ul.qucosa.de/id/qucosa%3A16743.

Der volle Inhalt der Quelle
Annotation:
The glory is an optical phenomenon observed above liquid water clouds and consists of coloured rings around the anti-solar point. Since the glory is caused by scattering on spherical particles it can be used as a proxy to identify liquid water at the cloud top. Images taken with a CANON digital camera equipped with a fish-eye lens on board the research aircraft Polar 5 during the measurement campaign Radiation-Aerosol-Cloud Experiment in the Arctic Circle (RACEPAC) were analysed for glories. To identify glories an algorithm consisting of five criteria was developed by using simulations of the scattering angle dependent radiance and a test data set of measurements. The algorithm was tested and proved to be able to distinguish between images showing a glory and images not showing any glory.
Die Glorie ist eine optische Erscheinung, die über Flüssigwasserwolken beobachtet werden kann und aus farbigen Ringen um den Gegensonnenpunkt besteht. Da die Glorie durch Streuung an sphärischen Partikeln entsteht, kann sie zur Identifikation von Flüssigwasser am Wolkenoberrand genutzt werden. Bilder, die mit einer CANON Digitalkamera, die mit einem Fischaugenobjektiv ausgestattet war, von Bord des Forschungsflugzeugs Polar 5 während der Messkampagne RACEPAC aufgenommen worden, wurden auf das Auftreten von Glorien untersucht. Zur Identifikation wurde ein Algorithmus mit fünf Kriterien entwickelt, die mit Hilfe von Simulationen der streuwinkelabhängigen Radianz und einem Testdatensatz der Messungen erstellt wurden. Der Algorithmus wurde getestet und ist in der Lage zwischen Bildern mit und ohne Glorie zu unterscheiden.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Poole, Lamont Rozelle. „Airborne lidar studies of Arctic polar stratospheric clouds“. Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184277.

Der volle Inhalt der Quelle
Annotation:
Airborne lidar measurements of Arctic polar stratospheric clouds (PSCs) in January 1984 and January 1986 are reported. The locales and altitudes of the clouds coincided in both years with very cold ambient temperatures. During the 1984 experiment, PSCs were observed on three flights north of Thule, Greenland; peak backscatter occurred near 20 km (at temperatures below 193 K). A single PSC formation was seen between Iceland and Scotland during the 1986 experiment, with beak backscatter occurring near 22 km (at temperatures from 188-191 K). A sequence of observations in this same area by the SAM II satellite sensor depicts the history of cloud development and dissipation. Enhancements in aerosol backscattering in excess of a factor of 100 were measured during the 1984 experiment at latitudes near the Pole where 50-mb temperatures approached the frost point. Depolarization in the backscattered signal was estimated as 30-40%, similar to that measured in cirrus clouds. Farther south, with 50-mb temperatures several degrees warmer, backscatter enhancement factors ranged from 20-30, and little or no depolarization was observed. Results similar to the latter were found during the 1986 experiment--enhancement factors near 50 (at the 30-mb level, with temperatures 3-5 K above the frost point), and little depolarization. The contrast in observations suggested the existence of distinct cloud growth regimes delineated by temperatures, as proposed in recent articles addressing Antarctic ozone depletion. A theoretical model was developed which interposes a stage of nitric acid trihydrate deposition between the two stages of cloud formation and growth assumed in earlier models (aerosol droplet precursors and ice particles). The calculated temperature dependence of backscatter and extinction agreed well with experimentally observed values, except for small systematic errors at the 30-mb level which may be due to poor characterization of the temperature field there. A companion theoretical study of PSC formation at 70 mb in the Antarctic showed that about 80% and 30% of the nitric acid and water vapor supplies, respectively, may be sequestered in relatively large (4-μm radius) cloud particles at a temperature near 189 K. Such large particles would fall at a rate of about 2 km wk⁻¹, suggesting that PSCs may act as a sink for these stratospheric trace gases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lampert, Astrid [Verfasser]. „Airborne lidar observations of tropospheric Arctic clouds / Astrid Lampert“. Bremerhaven : AWI, Alfred-Wegener-Institut für Polar- und Meeresforschung, 2010. http://d-nb.info/101019965X/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Cremer, Roxana, Johannes Quaas und Johannes Mülmenstädt. „Interactions between clouds and sea ice in the Arctic“. Universität Leipzig, 2017. https://ul.qucosa.de/id/qucosa%3A16773.

Der volle Inhalt der Quelle
Annotation:
The feedback between clouds and sea ice got more importance in the last years, because of the declining Arctic sea ice extent. Previous observations show the formation of low clouds over newly formed open water. These low clouds are very important for the Arctic Energy Budget, because they warm the surface. This leads to increasing temperatures and stronger sea ice loss. To assess the relationship between sea ice cover and cloudiness, satellite observations by DARDAR were compared with both global climate reanalyses ERA–Interim and MACC. The analysis focuses on 2007 – 2010 and the relationship between different parameters from the different datasets. It is found that the reanalyses only poorly approximate the cloud cover in the Arctic. Consequently no strong correlation was found for the time period 2007 – 2010.
Das Wolken–Albedo–Feedback in der Arktis gewann in den letzten Jahren immer mehr an Bedeutung aufgrund des Rückganges der Meereisfläche. Vorhergehende Arbeiten zeigten die Bildung von tiefer Bewölkung über kürzlich aufgebrochenen Meereisstellen. Diese tiefen Wolken sind sehr wichtig für das arktische Energiebudget, wegen des Erwärmens der Oberfläche. Daraus folgt ein Anstieg in der bodennahen Temperatur und ein verstärkter Rückgang des Meereises. Um den Einfluss der Meereiskonzentration auf die Wolkenbildung zu untersuchen, werden in dieser Arbeit Satellitendaten von DARDAR mit den beiden globalen Klimareanalysen Era–interim und MACC verglichen. Analysiert werden Daten aus den Jahren 2007 bis 2010 und für verschiedene Oberflächenbedingungen werden Korrelationen der einzelnen Datensätze erstellt. Es hat sich gezeigt, dass die Darstellung der Wolkenbedeckung in der Arktis durch die Reanalyse Daten nicht geeignet ist. Aus diesem Grund wurden keine signifikanten Korrelationen in der Zeitspanne von 2007 bis 2010 gefunden.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Achtert, Peggy. „Lidar Measurements of Polar Stratospheric Clouds in the Arctic“. Doctoral thesis, Stockholms universitet, Meteorologiska institutionen (MISU), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-88054.

Der volle Inhalt der Quelle
Annotation:
Polar Stratospheric Clouds (PSCs) play a key role for ozone depletion in the polar stratosphere. Its magnitude depends on the type of PSC and its lifetime and extent. This thesis presents PSC observations conducted with the Esrange lidar and the space-borne CALIPSO lidar. PSCs are separated into three types according to their optical properties. The occurrence rate of the different types which are often observed simultaneously as well as their interaction and connection is not well understood. To better understand the processes that govern PSC formation, observations need to be combined with a detailed view of the atmospheric background in which PSCs develop, exist, and are transformed from one type to another. This thesis introduces a new channel of the Esrange lidar for temperature profiling at heights below 35 km. The design of this channel and first temperature measurements within PSCs and cirrus clouds are presented. This is an important step since the majority of PSC-related literature extracts temperatures within PSCs from reanalysis data. In contrast to ground–based measurements space–borne lidar does not rely on cloud–free conditions. Hence, it provides an unprecedented opportunity for studying the connection between PSCs and the underlying synoptic–scale conditions which manifest as tropospheric clouds. This thesis shows that most of the PSCs observed in the Arctic during winter 2007/08 occurred in connection with tropospheric clouds. A combined analysis of ground-based and space-borne lidar observation of PSCs in combination with microphysical modeling can improve our understanding of PSC formation. A first case study of this approach shows how a PSC that was formed by synoptic-scale processes is transformed into another type while passing the Scandinavian mountains. Today a variety of classification schemes provides inconsistent information on PSC properties and types. This thesis suggests a unified classification scheme for lidar measurements of PSCs.

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Submitted. 

 

APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Young, Gillian. „Understanding the nucleation of ice particles in polar clouds“. Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/understanding-the-nucleation-of-ice-particles-in-polar-clouds(4f80f81b-ed06-480a-944b-6e3594ba8471).html.

Der volle Inhalt der Quelle
Annotation:
Arctic clouds are poorly represented in numerical models due to the complex, small-scale interactions which occur within them. Modelled cloud fractions are often significantly less than observed in this region; therefore, the radiative budget is not accurately simulated and forecasts of the melting cryosphere are fraught with uncertainty. Our ability to accurately model Arctic clouds can be improved through observational studies. Recent in situ airborne measurements from the springtime Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign are presented in this thesis to improve our understanding of the cloud microphysical interactions unique to this region. Aerosol-cloud interactions - where aerosol particles act as ice nucleating particles (INPs) or cloud condensation nuclei (CCN) - are integral to the understanding of clouds on a global scale. In the Arctic, uncertainties caused by our poor understanding of these interactions are enhanced by strong feedbacks between clouds, the boundary layer, and the sea ice. In the Arctic spring, aerosol-cloud interactions are affected by the Arctic haze, where a stable boundary layer allows aerosol particles to remain in the atmosphere for long periods of time. This leads to a heightened state of mixing in the aerosol population, which affects the ability of particles to act as INPs or CCN. Aerosol particle compositional data are presented to indicate which particles are present during the ACCACIA campaign, and infer how they may participate in aerosol-cloud interactions. Mineral dusts (known INPs) are identified in all flights considered, and the dominating particle classes in each case vary with changing air mass history. Mixed particles, and an enhanced aerosol loading, are identified in the final case. Evidence is presented which suggests these characteristics may be attributed to biomass burning activities in Siberia and Scandinavia. Additionally, in situ airborne observations are presented to investigate the relationship between the Arctic atmosphere and the mixed-phase clouds - containing both liquid cloud droplets and ice crystals - common to this region. Cloud microphysical structure responds strongly to changing surface conditions, as strong heat and moisture fluxes from the comparatively-warm ocean promote more turbulent motion in the boundary layer than the minimal heat fluxes from the frozen sea ice. Observations over the transition from sea ice to ocean show that the cloud liquid water content increases four-fold, whilst ice crystal number concentrations, N_ice, remain consistent at ~0.5/L. Following from this study, large eddy simulations are used to illustrate the sensitivity of cloud structure, evolution, and lifetime to N_ice. To accurately model mixed-phase conditions over sea ice, marginal ice, and ocean, ice nucleation must occur under water-saturated conditions. Ocean-based clouds are found to be particularly sensitive to N_ice, as small decreases in N_ice allow glaciating clouds to be sustained, with mixed-phase conditions, for longer. Modelled N_ice also influences precipitation development over the ocean, with either snow or rain depleting the liquid phase of the simulated cloud.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Ehrlich, André, Eike Bierwirth und Manfred Wendisch. „Airborne remote sensing of Arctic boundary-layer mixed-phase clouds“. Universität Leipzig, 2010. https://ul.qucosa.de/id/qucosa%3A16357.

Der volle Inhalt der Quelle
Annotation:
This article gives an overview on the investigations on Artic boundary-layer mixed-phase clouds conducted within the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) in spring 2007. In particular the horizontal and vertical disribution of ice crystals within the clouds was determined by three independent airborne instruments (lidar, in situ and solar radiation measurements). Spectral measurements of cloud top reflectivity have been utilized to retrieve information on the ice phase by analyzing the spectral pattern of the cloud top reflectance in the wavelength range dominated by liquid water and ice absorption (1400-1700 nm). A new algorithm to derive an ice index which distinguishes pure ice, liquid water, and mixed-phase clouds was developed. The horizontal distribution of the ice index, observed during ASTAR 2007, agrees with airborne lidar and in situ measurements showing patches of glaciated clouds at an air mass transition zone within the investigated mixed-phase cloud fields. Information on the vertical distribution of ice crystals in mixed-phase clouds was derived by comparing the measured cloud top reflectivity in the wavelength band 1400-1700 nm to radiative transfer simulations. To interpret the data, the vertical weighting of the measurements was calculated. In the investigated wavelength range the weightings differ according to the spectral absorption of ice and liquid water. From the observed spectral cloud reflectivity with low values in the ice absorption maximum (1400 nm) and higher values at the liquid water absorption maximum (1700 nm) it was concluded that ice crystals were present in the otherwise liquid dominated cloud top layer. Although in situ measurements (limited due to vertical resolution and detection limits) did confirm these findings only in certain limits, the retrieved vertical structure is in agreement with published ground based remote sensing measurements.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Sotiropoulou, Georgia. „The Arctic Atmosphere : Interactions between clouds, boundary-layer turbulence and large-scale circulation“. Doctoral thesis, Stockholms universitet, Meteorologiska institutionen (MISU), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-134525.

Der volle Inhalt der Quelle
Annotation:
Arctic climate is changing fast, but weather forecast and climate models have serious deficiencies in representing the Arctic atmosphere, because of the special conditions that occur in this region. The cold ice surface and the advection of warm air aloft from the south result in a semi-continuous presence of a temperature inversion, known as the “Arctic inversion”, which is governed by interacting large-scale and local processes, such as surface fluxes and cloud formation. In this thesis these poorly understood interactions are investigated using observations from field campaigns on the Swedish icebreaker Oden: The Arctic Summer Cloud Ocean Study (ASCOS) in 2008 and the Arctic Clouds in Summer Experiment (ACSE) in 2014. Two numerical models are also used to explore these data: the IFS global weather forecast model from the European Center for Medium-range Weather Forecasts and the MIMICA LES from Stockholm University. Arctic clouds can persist for a long time, days to weeks, and are usually mixed-phase; a difficult to model mixture of super-cooled cloud droplets and ice crystals. Their persistence has been attributed to several mechanisms, such as large-scale advection, surface evaporation and microphysical processes. ASCOS observations indicate that these clouds are most frequently decoupled from the surface; hence, surface evaporation plays a minor role. The determining factor for cloud-surface decoupling is the altitude of the clouds. Turbulent mixing is generated in the cloud layer, forced by cloud-top radiative cooling, but with a high cloud this cannot penetrate down to the surface mixed layer, which is forced primarily by mechanical turbulence. A special category of clouds is also found: optically thin liquid-only clouds with stable stratification, hence insignificant in-cloud mixing, which occur in low-aerosol conditions. IFS model fails to reproduce the cloud-surface decoupling observed during ASCOS. A new prognostic cloud physics scheme in IFS improves simulation of mixed-phase clouds, but does not improve the warm bias in the model, mostly because IFS fails to disperse low surface-warming clouds when observations indicate cloud-free conditions. With increasing summer open-water areas in a warming Arctic, there is a growing interest in processes related to the ice marginal zones and the summer-to-autumn seasonal transition. ACSE included measurements over both open-water and sea-ice surfaces, during melt and early freeze. The seasonal transition was abrupt, not gradual as would have been expected if it was primarily driven by the gradual changes in net solar radiation. After the transition, the ocean surface remained warmer than the atmosphere, enhancing surface cooling and facilitating sea-ice formation. Observations in melt season showed distinct differences in atmospheric structure between the two surface types; during freeze-up these largely disappear. In summer, large-scale advection of warm and moist air over melting sea ice had large impacts on atmospheric stability and the surface. This is explored with an LES; results indicate that while vertical structure of the lowest atmosphere is primarily sensitive to heat advection, cloud formation, which is of great importance to the surface energy budget, is primarily sensitive to moisture advection.

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.

APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Kripchak, Kristopher J. „Cloud phase and the surface energy balance of the arctic an investigation of mixed-phase clouds“. Thesis, Monterey, Calif. : Naval Postgraduate School, 2008. http://bosun.nps.edu/uhtbin/hyperion-image.exe/08Mar%5FKripchak.pdf.

Der volle Inhalt der Quelle
Annotation:
Thesis (M.S. in Meterology)--Naval Postgraduate School, March 2008.
Thesis Advisor(s): Guest, Peter. "March 2008." Description based on title screen as viewed on May 1, 2008. Includes bibliographical references (p. 59-61). Also available in print.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Schäfer, Michael, Eike Bierwirth, André Ehrlich, Evi Jäkel und Manfred Wendisch. „Three-dimensional radiative effects in Arctic boundary layer clouds above ice edges“. Universität Leipzig, 2015. https://ul.qucosa.de/id/qucosa%3A16651.

Der volle Inhalt der Quelle
Annotation:
Based on airborne spectral imaging observations, three-dimensional (3-D) radiative effects between Arctic boundary layer clouds and highly variable Arctic surfaces have been identified and quantified. A method is presented to discriminate sea ice and open water in cloudy conditions based on airborne upward radiance measurements in the visible spectral range. This separation simultaneously reveals that the transition of radiance between open water and sea ice is not instantaneous in cloudy conditions but horizontally smoothed. In general, clouds reduce the nadir radiance above bright surfaces in the vicinity of open water, while the nadir radiance above open sea is enhanced compared to situations with clouds located above sea ice surfaces. With the help of the observations and 3-D radiative transfer simulations, this effect was quantified. This affected distance deltaL was found to depend on both cloud and sea ice properties. For a low level cloud at 0-200 m altitude, as observed during the Arctic field campaign Vertical Distribution of Ice in Arctic Clouds (VERDI) in 2012, an increase of the cloud optical thickness from tau = 1 to tau = 10 leads to a decrease of deltaL from 600 to 250 m. An increase in cloud base altitude or cloud geometrical thickness results in an increase of deltaL. Furthermore, the impact of these 3-D-radiative effects on a retrieval of cloud optical properties was investigated. The enhanced brightness of a dark pixel next to an ice edge results in uncertainties of up to 90 % in retrievals of tau and up to 30 % in retrievals of the effective radius reff. With the help of detlaL quantified here, an estimate of the distance to the ice edge is given where the retrieval uncertainties due to 3D-effects are negligible.
Mit Hilfe flugzeuggetragener abbildender spektraler Beobachtungen wurden 3-D Strahlungseffekte zwischen arktischen Grenzschichtwolken sowie der hochvariablen arktischen Bodenoberfläche identifiziert und quantifiziert. Eine Methode zur Differenzierung von Meereis und offener Wasserflächen, auf Grundlage flugzeuggetragener Messungen der aufwärtsgerichteten Strahldichte im sichtbaren Spektralbereich, während bewölkter Bedingungen wird vorgestellt. Diese Differenzierung zeigt gleichzeitig auf, dass die Strahldichtereduzierung beim Übergang vom Meereis zu den offenen Wasserflächen nicht unmittelbar erfolgt, sondern horizontal geglättet ist. Allgemein verringern Wolken in der Umgebung von Eiskanten die Nadir-Strahldichte über den hellen Eisflächen und erhöhen sie über dunklen Meeresoberflächen. Mit Hilfe von 3-D Strahlungstransferrechnungen wurde dieser Effekt quantifiziert. Die Reichweite dieses Effektes wird sowohl von den Wolken- als auch den Oberflächeneigenschaften beeinflusst. Für eine flache Wolke zwischen 0 und 200 m, so wie sie während der arktischen Feldkampagne Vertical Distribution of Ice in Arctic Clouds (VERDI), 2012 beobachtet werden konnte, führt eine Erhöhung der wolkenoptischen Dicke von tau = 1 zu tau = 10 zu einer Verringerung in deltaL von 600 zu 250 m. Zudem führt eine Erhöhung der Wolkenhöhe und ihrer geometrischen Dicke zu einer Zunahme von deltaL. Anschließend wurde der Einfluss dieser 3-D Strahlungseffekte auf die Ableitungsergebnisse von tau untersucht. Die Aufhellung eines dunkleren Pixels neben der Eiskante führt zu Unsicherheiten von bis zu 90 % bei der Ableitung von . Beim effektiven Radius zu bis zu 30 %. DeltaL ist ein Maß mit Hilfe dessen die Entfernung zur Eiskante bestimmt werden kann, ab welcher die Unsicherheiten bezüglich der 3-D Effekte vernachlässigt werden können.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Lauermann, Felix, Fanny Finger, André Ehrlich und Manfred Wendisch. „Analysis of Water Content Profiles in Arctic Mixed-Phase Clouds during VERDI“. Universität Leipzig, 2016. https://ul.qucosa.de/id/qucosa%3A16700.

Der volle Inhalt der Quelle
Annotation:
Airborne measurements of liquid water content (LWC) and ice water content (IWC) were performed in mixed-phase clouds during the field campaign VERDI in Canada in April and May 2012. In single-layer and multi-layer clouds different vertical profiles of LWC and IWC could be observed. For single layer clouds the maximum LWC occurred in the upper half of the clouds while the IWC had a maximum near the cloud base. This pattern was attributed to the sedimentation of ice particles. In the lowest cloud layer of a multi-layer system both LWC and IWC reached a maximum near cloud top. Together with measured particles size distributions this suggests the presence of the seeder-feeder-process described by Fleishauer et al. (2012) for mid-level clouds.
Im Rahmen der VERDI-Kampagne im April und Mai 2012 in Kanada wurden flugzeuggetragene Messungen von Flüssigwassergehalt (LWC) und Eiswassergehalt (IWC) durchgeführt. Für Einschicht- und Mehrschichtwolkensysteme konnten unterschiedliche Vertikalprofile von LWC und IWC nachgewiesen werden. In Einschichtsystemen wurden die größten Flüssigwassergehalte in der oberen Wolkenhälfte und die größten Eiswassergehalte nahe der Wolkenunterkante gemessen. Diese Verteilung wurde auf die Sedimentation von Eispartikeln zurückgeführt. In der untersten Wolkenschicht eines Mehrschichtsystems befanden sich die Maxima von LWC und IWC nahe der Wolkenoberkante. Diese Beobachtung deutet zusammen mit gemessenen Partikelgrößenverteilungen auf das Vorhandensein des Seeder-Feeder- Prozesses hin, welcher von Fleishauer et al. (2012) für mittelhohe Wolken beschrieben wurde.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Stachlewska, Iwona Sylwia. „Investigation of tropospheric arctic aerosol and mixed-phase clouds using airborne lidar technique“. Phd thesis, Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2006/698/.

Der volle Inhalt der Quelle
Annotation:
An Airborne Mobile Aerosol Lidar (AMALi) was constructed and built at Alfred-Wegener-Institute for Polar and Marine Research (AWI) in Potsdam, Germany for the lower tropospheric aerosol and cloud research under tough arctic conditions. The system was successfully used during two AWI airborne field campaigns, ASTAR 2004 and SVALEX 2005, performed in vicinity of Spitsbergen in the Arctic. The novel evaluation schemes, the Two-Stream Inversion and the Iterative Airborne Inversion, were applied to the obtained lidar data. Thereby, calculation of the particle extinction and backscatter coefficient profiles with corresponding lidar ratio profiles characteristic for the arctic air was possible. The comparison of these lidar results with the results of other in-situ and remote instrumentation (ground based Koldewey Aerosol Raman Lidar (KARL), sunphotometer, radiosounding, satellite imagery) allowed to provided clean contra polluted (Arctic Haze) characteristics of the arctic aerosols. Moreover, the data interpretation by means of the ECMWF Operational Analyses and small-scale dispersion model EULAG allowed studying the effects of the Spitsbergens orography on the aerosol load in the Planetary Boundary Layer. With respect to the cloud studies a new methodology of alternated remote AMALi measurements with the airborne in-situ cloud optical and microphysical parameters measurements was proved feasible for the low density mixed-phase cloud studies. An example of such approach during observation of the natural cloud seeding (feeder-seeder phenomenon) with ice crystals precipitating into the lower supercooled stratocumulus deck were discussed in terms of the lidar signal intensity profiles and corresponding depolarisation ratio profiles. For parts of the cloud system characterised by almost negligible multiple scattering the calculation of the particle backscatter coefficient profiles was possible using the lidar ratio information obtained from the in-situ measurements in ice-crystal cloud and water cloud.
Das Airborne Mobile Aerosol Lidar (AMALi) wurde am Alfred-Wegener-Institut für Polar- und Meeresforschung in Potsdam für die Untersuchung arktischer Aerosole und Wolken der unteren Troposphäre entwickelt und gebaut. Das AMALi wurde erfolgreich in zwei AWI Flugzeugmesskampagnen, der ASTAR 2004 und der SvalEx 2005, die in Spitzbergen in der Arktis durchgeführt wurden, eingesetzt. Zwei neue Lidar Datenauswertungsmethoden wurden implementiert: die Two-Stream Inversion und die Iterative Airborne Inversion. Damit erwies sich die Berechnung der Profile der Teilchen Rückstreu- und Extinktionskoeffizienten mit einem entsprechenden Lidar Verhältnis, das charakteristisch für arktische Luft ist, als möglich. Der Vergleich dieser Auswertungen mit den Resultaten, die mit verschiedenen Fernerkundungs- und In-situ Instrumenten gewonnen worden waren (stationäres Koldewey Aerosol Raman Lidar KARL, Sonnenphotometer, Radiosondierung und Satellitenbilder) ermöglichten die Interpretation der Lidar-Resultate und eine Charakterisierung sowohl der reinen als auch der verschmutzten Luft. Außerdem konnten die Lidardaten mit operationellen ECMWF Daten und dem kleinskaligen Dispersionsmodel EULAG verglichen werden. Dadurch konnte der Einfluss der Spitzbergener Orographie auf die Aerosolladung der Planetaren Grenzschicht untersucht werden. Für Wolkenmessungen wurde eine neue Methode der alternativen Fernerkundung mit dem AMALi und flugzeuggetragenen In-situ Messgeräten verwendet, um optische und mikrophysikalische Eigenschaften der Wolken zu bestimmen. Diese Methode wurde erfolgreich implementiert und auf Mixed-Phase Wolken geringer optischen Dicke angewendet. Ein Beispiel hier stellt das Besamen der Wolken (sogenannte Feeder-Seeder Effekt) dar, bei dem Eiskristalle in eine niedrige unterkühlte Stratokumulus fallen. Dabei konnten Lidarsignale, Intensitätsprofile und die Volumendepolarisation gemessen werden. Zusätzlich konnten in den weniger dichten Bereichen der Wolken, in denen Vielfachstreuung vernachlässigbar ist, auch Profile des Teilchen Rückstreukoeffizienten berechnet werden, wobei Lidarverhältnisse genommen wurden, die aus In-situ Messungen für Wasser- und Eiswolken ermittelt wurden.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Loewe, Katharina [Verfasser]. „Arctic mixed-phase clouds : Macro- and microphysical insights with a numerical model / Katharina Loewe“. Karlsruhe : KIT Scientific Publishing, 2017. http://www.ksp.kit.edu.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Zygmuntowska, Marta, Thorsten Mauritsen, Johannes Quaas und Lars Kaleschke. „Arctic clouds and surface radiation: a critical comparison of satellite retrievals and the ERA-Interim reanalysis“. Atmospheric chemistry and physics (2012) 12, S. 6667-6677, 2012. https://ul.qucosa.de/id/qucosa%3A13793.

Der volle Inhalt der Quelle
Annotation:
Clouds regulate the Earth’s radiation budget, both by reflecting part of the incoming sunlight leading to cooling and by absorbing and emitting infrared radiation which tends to have a warming effect. Globally averaged, at the top of the atmosphere the cloud radiative effect is to cool the climate, while at the Arctic surface, clouds are thought to be warming. Here we compare a passive instrument, the AVHRR-based retrieval from CM-SAF, with recently launched active instruments onboard CloudSat and CALIPSO and the widely used ERA-Interim reanalysis. We find that in particular in winter months the three data sets differ significantly. While passive satellite instruments have serious difficulties, detecting only half the cloudiness of the modeled clouds in the reanalysis, the active instruments are in between. In summer, the two satellite products agree having monthly means of 70–80 percent, but the reanalysis are approximately ten percent higher. The monthly mean long- and shortwave components of the surface cloud radiative effect obtained from the ERAInterim reanalysis are about twice that calculated on the basis of CloudSat’s radar-only retrievals, while ground based measurements from SHEBA are in between. We discuss these differences in terms of instrument-, retrieval- and reanalysis characteristics, which differ substantially between the analyzed datasets.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Humpage, Neil. „Observing and modelling the impact of arctic and tropical cirrus clouds on far-infrared radiance spectra“. Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/5652.

Der volle Inhalt der Quelle
Annotation:
The work described in this thesis concerns the effect of cirrus clouds on far-infrared (FIR) radiance spectra. Though the importance of both FIR radiation and cirrus clouds to the Earth’s energy budget is well recognised, few high spectral resolution measurements have been made at FIR wavelengths to date. Observations taken during two diverse field campaigns, along with spectra simulated using a radiative transfer model, are used here to investi- gate the FIR signature of cirrus. The FIR observations presented are made using the TAFTS spectrometer, which measures spectral radiances from ei- ther an aircraft or the ground. The deployment of TAFTS during the RHUBC campaign based in Barrow, Alaska is described. TAFTS was used to make ground-based FIR observations of the arctic atmosphere, both with and without cirrus. Comparing these with modelled spectra, which assume a parameterised particle size distribution (PSD) when describing the cirrus microphysics, suggested that the PSD parameterisation underestimates the fraction of ice water content contributed by small ice crystals. This conclusion is corroborated by AERI-ER observations made simultaneously at the Barrow site during RHUBC. TAFTS observations of convective tropical cirrus made during EMERALD- II near Darwin, Australia are also presented here. During EMERALD-II TAFTS was deployed on an aircraft, enabling spectral measurements of cirrus at wavenumbers between 100 and 200cm−1 to be made for the first time. Comparisons with LBLDIS spectra calculated using PSDs measured using cloud probes indicate that the number of small crystals measured may be too high by a factor of three. This result is in agreement with previous studies suggesting that small crystal populations are over-counted by in-situ cloud probes, due to shattering of larger crystals on the probe inlets. The results from both campaigns illustrate the sensitivity of FIR radiances to cirrus properties, with particular emphasis on the effect of small ice crystals.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Guyot, Gwennolé. „Caractérisation des propriétés microphysiques des nuages et de l'interaction aérosol-nuage en Arctique à partir de mesures in-situ au sol pendant la campagne CLIMSLIP-NyA, Svalbard“. Thesis, Clermont-Ferrand 2, 2016. http://www.theses.fr/2016CLF22699/document.

Der volle Inhalt der Quelle
Annotation:
La région arctique est particulièrement sensible au changement climatique. Aux latitudes polaires, les nuages arctiques ont un effet important sur le bilan radiatif à la surface. La première partie de ce travail est constitué de l’intercomparaison instrumentale au sol à la station PUY en Mai 2013. Les mesures ont montré une bonne corrélation entre les diamètres effectifs et les distributions en taille des gouttelettes d’eau obtenus par les instruments, mais avec des biais systématiques sur les concentrations. Ces biais ont été reliés à l’estimation du volume d’échantillonnage et nous avons donc proposé une méthode consistant à normaliser les données par rapport à un instrument qui réalise des mesures intégrées. D’autre part, le FSSP et le FM ont fait l’objet d’expériences visant à évaluer l’influence de l’angle de déviation par rapport au vent extérieur et de la vitesse du vent. La seconde partie de ce travail a pour objet la campagne de mesure qui s’est déroulée à la station du Mont-Zeppelin, Ny-Alesund, Svalbard, de Mars à Mai 2012 dans le cadre du projet CLIMSLIP. Une comparaison a été effectuée entre un cas « pollué », avec des masses d’air provenant d’Asie de l’Est et d’Europe, et un cas « propre », dont les sources d’aérosols sont majoritairement locales et ne dépassent pas l’Europe du Nord. Les résultats ont montré que le cas pollué possède des concentrations en BC, aérosols et gouttes plus élevées, un mode accumulation plus important, un diamètre de gouttes plus faible et une fraction d’activation plus élevée. Enfin, le premier et le second effet indirect des aérosols ont pu être quantifiés
The arctic region is especially sensitive to climate change. At high latitudes, arctic clouds have an important effect on the surface radiative budget. The first part of this work consists in a ground based cloud instrumentation intercomparison in the PUY station in May 2013. The measurements showed a good correlation between the effective diameters and the droplet size distributions obtained by the instruments, but with a systematical bias on the concentrations. These biases have been relied to the assessment of the sampling volume and we thus proposed a methodology to standardize the data according to an ensemble of particles probe. Moreover, the FSSP and the FM have been the subject of experiments to assess the influence of the deflection angle according to exterior wind and the wind speed. The second part of this work is about the measurement campaign at the Mount-Zeppelin station, Ny-Alesund, Svalbard, from March to May 2012 in the frame of the CLIMSLIP project. A comparison has been performed between a « polluted » case, with air masses coming from East Asia and Europe, and a « clean » case, where the aerosol sources are predominantly local and do not exceed the northern Europe. The results showed that the polluted case possessed higher concentrations in BC, aerosols and drops, an accumulation mode more important, weaker droplet diameters and higher activation fraction. Finally, the first and second aerosol indirect effects have been quantified
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Schäfer, Michael, Katharina Loewe, André Ehrlich, Corinna Hoose und Manfred Wendisch. „Comparison of simulated and observed horizontal inhomogeneities of optical thickness of Arctic stratus“. Universität Leipzig, 2019. https://ul.qucosa.de/id/qucosa%3A74176.

Der volle Inhalt der Quelle
Annotation:
Two-dimensional horizontal fields of cloud optical thickness derived from airborne measurements of solar spectral, reflected radiance are compared with semiidealized large eddy simulations (LESs) of Arctic stratus performed with the Consortium for Small-scale Modeling (COSMO) atmospheric model. The measurements were collected during the Vertical Distribution of Ice in Arctic Clouds (VERDI) campaign carried out in Inuvik, Canada, in April/May 2012. The input for the LESs is obtained from collocated dropsonde observations of a persistent Arctic stratus above the sea-icefree Beaufort Sea. Simulations are performed for spatial resolutions of 50 m (1.6 km by 1.6 km domain) and 100 m (6.4 km by 6.4 kmdomain). Macrophysical cloud properties, such as cloud top altitude and vertical extent, are well captured by the COSMO simulations. However, COSMO produces rather homogeneous clouds compared to the measurements, in particular for the simulations with coarser spatial resolution. For both spatial resolutions, the directional structure of the cloud inhomogeneity is well represented by the model. This study was first published by Schäfer et al., 2018.
Zweidimensionale horizontale Felder optischer Dicken abgeleitet aus flugzeuggetragenen Messungen der spektralen, solaren, reflektierten Strahldichte über Arktischem Stratus werden mit teilidealisierten Large Eddy Simulationen (LES) im Atmosphärenmodel des Consortium for Small-scale Modeling (COSMO) verglichen. Die Messungen stammen von der Vertical Distribution of Ice in Arctic Clouds (VERDI) Kampagne in Inuvik, Kanada, im April/Mai 2012. Fallsonden- Beobachtungen eines beständigen arktischen Stratus über dem eisfreien Beaufort Meer bilden die LES-Eingangsdaten. Die Simulationen wurden mit räumlichen Auflösungen von 50 m (1.6 km  1.6 km Gebiet) und 100 m (6.4 km  6.4 km Gebiet) durchgeführt. Makroskopische Wolkeneigenschaften (Wolkenhöhe, -ausdehnung) wurden von COSMO erfasst. Allerdings produziert COSMO verglichen zu den Beobachtungen (besonders bei grober räumlicher Auflösung) eher homogenere Wolken. Gerichtete Strukturen der Inhomogenitäten wurden mit beiden räumlichen Auflösungen gut erfasst. Diese Studie wurde als erstes von Schäfer et al., 2018 veröffentlicht.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Shupe, Matthew David. „An intricate balance of liquid and ice: The properties, processes, and significance of Arctic stratiform mixed-phase clouds“. Connect to online resource, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3284464.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Lloyd, Gary James. „Observations of the origin and distribution of primary and secondary ice in clouds“. Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/observations-of-the-origin-and-distribution-of-primary-and-secondary-ice-in-clouds(fbe41932-ddf0-49c2-b634-89575e919037).html.

Der volle Inhalt der Quelle
Annotation:
A detailed understanding of cloud microphysical processes is crucial for a large range of scientific disciplines that require knowledge of cloud particles for accurate climate and weather prediction. This thesis focuses on 3 measurement campaigns, encompassing both airborne and ground based measurements of the microphysical structures observed in cold, warm and occluded frontal systems around the United Kingdom, stratocumulus clouds in the Arctic and many different clouds observed over a 6 week period at a high-alpine site in the Swiss Alps. Particular attention was paid to the origin and distribution of both primary and secondary ice and the dominant features associated with ice phase processes. During investigation of cold, warm and occluded frontal systems associated with mid-latitude cyclones around the U.K., secondary ice was often found to dominate the number and mass concentrations of ice particles in all systems. The presence of large liquid droplets was sometimes observed in close proximity to regions of secondary ice production. The existence of these provides a possible mechanism by which rime-splintering is greatly enhanced through the creation of instant rimers as the large drops freeze. In-situ measurements during the cold frontal case were used to calculate rates of diabatic heating during a comparison between bin-resolved and bulk microphysics schemes. Observations in arctic stratocumulus clouds during spring and summer seasons revealed higher ice concentrations in the summer cases when compared to the spring season. This is attributed to secondary ice production actively enhancing ice concentrations in the summer, due to the higher temperature range the clouds spanned. At Jungfraujoch in the Swiss Alps, ground based measurements allowed us to obtain high spatial scale resolution measurements of cloud microphysics and we found transitions between high and low ice mass fractions that took place on differing temporal scales spanning seconds to hours. During the campaign measurements of aerosol properties at an out of cloud site, Schilthorn, were made. When analysing a Saharan Dust Event that took place a possible link between the number of U.V. fluorescent particles and the number of ice particles was found in the temperature range around -10 ºC.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Mariage, Vincent. „Développement et mise en oeuvre de LiDAR embarqués sur bouées dérivantes pour l'étude des propriétés des aérosols et des nuages en Arctique et des forçages radiatifs induits“. Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066580/document.

Der volle Inhalt der Quelle
Annotation:
Afin de mieux comprendre les processus et les interactions entre l'atmosphère, la glace de mer et l'océan en arctique, un financement EQUIPEX a permis de développer et déployer le projet IAOOS (Ice-Atmosphere-Ocean-Observing-System) de réseau de bouées multi-instrumentées. Pour la partie atmosphère un LiDAR rétrodiffusion innovant a été développé pour répondre aux contraintes du projet et de l'environnement arctique. Un modèle analytique du rapport signal sur bruit en air clair a permis de préciser les paramètres clés de la conception. Des simulations numériques ont ensuite permis d'affiner les performances du système. Un prototype évolutif a été réalisé dans le planning serré de cet EQUIPEX, avant la mise en œuvre d'une première bouée complète au Pôle Nord en avril 2014, qui a fonctionné jusqu'en décembre 2014. Un second déploiement de deux bouées a ensuite été réalisé à l'occasion de la campagne N-ICE de janvier à juin 2015, dont l'une était équipée d'une version polarisée du LiDAR. Les deux campagnes ont permis d'obtenir des premières statistiques de la distribution des aérosols et des nuages en arctique central avec un système LiDAR autonome. Les premiers résultats montrent la présence de couches d'aérosols assez fréquentes au printemps dans la moyenne troposphère et des nuages bas très fréquents. Les mesures LiDAR ont été utilisées pour effectuer une estimation des flux infrarouge et visible descendants. Les résultats des deux premiers déploiements et les comparaisons avec des analyses et des sorties du modèle WRF fournissent des premiers éléments sur l'apport que pourra présenter ce réseau de bouées multi-instrumentées en région centrale arctique
To improve our knowledge of the processes and interactions which occur in Arctic between atmosphere, sea ice and ocean, an EQUIPEX funding was granted to the IAOOS project. This improvement will be reached by deploying a network of multi-instrumented buoys. For the atmospheric analyses an innovative backscattering LiDAR meeting with constraints of the project and arctic environment has been developed. An analytical model of signal to noise ratio in clear sky led to the instrumental key parameters, and numerical simulations helped in improving the system performances. An evolutive prototype has been realized within the tight planning of this EQUIPEX. The first whole equiped buoy was deployed close to the north pole in April 2014 and worked until the beginning of December 2014. A second deployment of two buoys, including a polarized version, was then realized within the N-ICE campaign from January to June 2015. These first campaigns gave first statistics of aerosols and clouds distribution in the central arctic region with an autonomous LiDAR. First results show frequent aerosols layers in mid-troposphere during spring, as well as a high occurence of very low clouds. LiDAR measurements were also used to estimate downwelling longwave and shortwave at surface. Results obtained from these first deployments and comparisons with analysis and outputs from the WRF model show a first overview of what can be expected from this network of multi-instrumented buoys in the central arctic region
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Guest, Peter Staples. „A numerical, analytical and observational study of the effect of clouds on surface wind and wind stress during the central Arctic winter“. Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23734.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Petersson, Sofie. „Arktiska molns påverkan på havsisens utbredning och minskning“. Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-326014.

Der volle Inhalt der Quelle
Annotation:
Klimatförändringarna i Arktis sker i en snabbare takt än någon annanstans på jorden. I regionen är det framförallt havsisens utbredning som drabbas, vilken har minskat med 3.8 % av medelstorleken per decennium under åren 1979-2012. För att klimatmodellerna ska kunna göra så bra beräkningar som möjligt av det framtida klimatet behövs mer observationsdata och bättre förståelse av Arktis klimatsystem. Det arktiska klimatet är komplext, svåråtkomligt för observationer och därför mindre utforskat än klimatsystemen på resten av jorden. Detta gör att klimatmodellerna i nuläget har begränsningar för regionen. De arktiska molnen utgör en osäker faktor i sammanhanget. Molnen är en viktig del i strålningsbalansen och har en stark korrelation med havsisen. De arktiska molnen har en tydlig säsongsvariation med mer molnighet sommartid än under vinterhalvåret. Detta gör att molnen över Arktis till skillnad från i jordens övriga regioner har en totalt sett värmande effekt alla årstider förutom sommaren. Forskarna är även överens om att mer observationsdata och kunskap behövs inom området, vilket skulle förbättra klimatmodellerna och öka kunskapen kring korrelationen mellan molnen och den arktiska havsisen.
In the Arctic the climate changes faster than anywhere on the planet. It is especially the expansion of the sea ice that is affected. Over the years 1979-2012, the annual average extent of the Arctic sea ice has been reduced with 3.8 % per decade. In order for climate models to make the best possible calculations of the future climate, more observation data and better understanding of the Arctic climate system are needed. The Arctic climate is complex, difficult to reach for observations and therefore less explored than the climate systems in the rest of the world. This means that climate models currently have limitations for the region. The Arctic clouds constitute an uncertain factor in this context. Clouds are an important part of the radiation balance and have a strong correlation with the sea ice. The Arctic clouds have a clear seasonal variation with more cloudiness in summer than during the winter. This makes the Arctic clouds, unlike in the rest of the world, to have a total warming effect all seasons except during the summer. The researchers also agree that more observation data and knowledge are needed for the area. It would improve climate models and expand the science about the correlation between the clouds and the Arctic sea ice.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Maroon, Elizabeth A. „The impact of Arctic cloud water and ice on cloud radiative forcing during the Arctic Summer Cloud-Ocean Study in August 2008“. Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/114379.

Der volle Inhalt der Quelle
Annotation:
Thesis: S.B., Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 49-52).
The Arctic atmosphere is especially sensitive to changes in climate forcing; however, Arctic processes and feedbacks are not understood well enough to accurately predict how the Arctic environment might change under anthropogenic forcing. Further study of the basic atmospheric processes is needed, especially due to uncertainties in modeling cloud feedbacks. August and September are the months when the Arctic sea surfaces begin to freeze; clouds play an important role in determining when this process begins. In this study, the radiative properties of Arctic stratocumulus are studied by comparing measurements for two days in August 2008 during the Arctic Surface Cloud Ocean Study (ASCOS) with simulations using the Rapid Radiative Transfer Model (RRTM). Cloud radiative forcing for both days is examined, and the modeled radiative fluxes were found to compare well to observations. Sensitivity studies are conducted on single and multi-level stratocumulus clouds to study their radiative interactions with each other. Cloud-top cooling in upper clouds is found to radiatively turn off cloud-top cooling in clouds below it. The RRTM and the surface radiative observations are used together to constrain estimates of liquid droplet radius; constraining these radii shows the sensitivity of shortwave cloud radiative forcing and the insensitivity of long wave cloud forcing to changes in drop size.
by Elizabeth A. Maroon.
S.B.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Fargey, Shannon. „Characterization of orographic cloud and precipitation features over southern Baffin Island and surrounding area“. Taylor & Francis Publishing, 2014. http://hdl.handle.net/1993/23730.

Der volle Inhalt der Quelle
Annotation:
Improved characterization of cloud and precipitation features are required to understand the impact of a changing climate in high latitude regions and accurately represent these features in models. The importance of cold season precipitation to regional moisture cycling and our limited understanding of orographic cloud and precipitation processes in the Arctic provide the motivation for this research. Using high-resolution datasets collected during the Storm Studies in the Arctic (STAR) field project this thesis examines cloud and precipitation features over southern Baffin Island in Nunavut. Cloud and precipitation features were shown to differ over orography compared to the adjacent ocean regions upstream. Gravity waves, terrain shape, atmospheric stability and atmosphere-ocean exchanges were all associated with precipitation enhancement. In addition, high sea ice extent, low-level blocking in the upstream environment and sublimation were factors that reduced precipitation. The nature of hydrometeors was variable and accretion and aggregation were found to be important determinants of whether precipitation reached the ground. The processes controlling a snowfall event over southern Baffin Island were found to be complex, representing a significant challenge for modelling in the region. Low-level convection over adjacent ocean regions, strong upslope flow over the terrain, and the passing of a weak trough collectively produced the event. Analysis of the Global Environmental Multi-scale limited area model (GEM-LAM 2.5) revealed that upstream convection and upslope processes were affected by model errors. Consequently, precipitation onset was delayed and total modelled accumulation was 50% less than observations. Further evaluation of a numerical weather prediction model during STAR cases provided descriptions of model errors and proficiencies for different synoptic forcing and surface environments. Overall the model overestimated temperature and had difficulties representing thermal inversions over sea ice. The model generally over-predicted moisture with the exception of profiles over sea ice and land. Wind speed was frequently underestimated, weakening upslope processes and errors in wind direction were large at times. Cloud-tops were usually too high and cloud-bases too low. Where multiple cloud layers were present, the dry layer depth was inaccurate. Model errors were shown to have implications for cloud and precipitation production and their forecast.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Jouan, Caroline. „Les nuages de glace en arctique : mécanismes de formation“. Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2013. http://tel.archives-ouvertes.fr/tel-00843520.

Der volle Inhalt der Quelle
Annotation:
Les mécanismes de formation des nuages de glace arctiques durant la nuit polaire sont encore mal définis en raison de l'absence d'observations et de l'éloignement de cette région. Pourtant, leur influence sur les conditions météorologiques et sur le climat dans l'hémisphère nord est d'une importance primordiale ; et les connaissances sur la modification de leurs propriétés, liées à des processus d'interaction aérosol-nuage, doivent être améliorées. Les fortes concentrations d'aérosols en Arctique durant la nuit polaire sont associées au transport des aérosols anthropiques des latitudes moyennes jusqu'au pôle Nord. Les observations et les modèles montrent que cela peut conduire à un transport important de particules d'aérosol acidifiées. Les mesures en laboratoire et in situ montrent qu'à basse température (< -30°C), le revêtement d'acide sur les noyaux glaçogènes (IN) peut réduire leurs propriétés de nucléation de la glace. Par conséquent, leur concentration est réduite dans ces régions entraînant une plus faible concentration de plus gros cristaux de glace en raison d'une diminution de la compétition pour une humidité disponible similaire. De nombreuses mesures de terrain et par télédétection par satellite (CloudSat et CALIPSO) révèlent l'existence de deux types de nuages de glace (TIC) en Arctique durant la nuit polaire. Les nuages de glace de type 1 (TIC-1) ne sont visibles que par le lidar tandis que les nuages de glace de type 2 (TIC-2) sont perçus à la fois par le lidar et le radar. Les TIC-2 sont divisés en TIC-2A et TIC-2B. Les TIC-2A sont recouverts d'une fine couche de petits cristaux de glace non-précipitant (invisible par le radar) (TIC-1), tandis que les TIC-2B ne le sont pas. Ils sont caractérisés par une faible concentration de gros cristaux de glace. On suppose que la microstructure des TIC-2B est liée à l'acidification des aérosols. Pour vérifier cette hypothèse, des études de cas et des approches statistiques ont été combinées afin d'analyser le transport des aérosols et les propriétés des nuages de glace en Arctique. La première partie de la thèse enquête sur les propriétés microphysiques des TIC-1/2A et TIC-2B, en analysant des mesures aéroportées et satellitaires de cas spécifiques observés durant la campagne de mesures ISDAC (Alaska, Avril 2008). Pour la première fois, les microstructures des TIC-1/2A et TIC-2B en Arctique sont comparées en utilisant les observations in-situ des nuages. (...) La deuxième partie de la thèse enquête sur l'origine des masses d'air formant deux cas spécifiques de TICs ISDAC : TIC-1/2A (1 Avril 2008) et TIC-2B (15 Avril 2008), en utilisant des outils de trajectoire et des données satellitaires.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Barron, John P. „An objective technique for Arctic cloud analysis using multispectral AVHRR satellite imagery“. Thesis, Monterey, California. Naval Postgraduate School, 1988. http://hdl.handle.net/10945/23335.

Der volle Inhalt der Quelle
Annotation:
Approved for public release; distribution is unlimited.
An established cloud analysis routine has been modified for use in the Arctic. The separation of clouds from the snow and sea ice backgrounds is accomplished through a multispectral technique which utilizes VHRR channel 2 (visible), channel 3 (near infrared) and channel 4 (infrared) data. The primary means of cloud identification is based on a derived channel 3 reflectance image. At this wavelength, a significant contrast exists between liquid clouds and the arctic backgrounds, unlike in the standard visible and infrared images. The channel 3 reflectance is obtained by first using the channel 4 emission temperature to estimate the thermal emission component of the total channel 3 radiance. This thermal emission component is subsequently removed from the total radiance, leaving only the solar reflectance component available for analysis. Since many ice clouds do not exhibit a substantially greater reflectance is channel 3, the routine exploits differences in transmissive characteristics between channels 3 and 4 for identification. The routine was applied to six case studies which had been analyzed by three independent experts to establish 'ground truth'. Verification of the cloud analysis results, through a comparison to the subjective analyses, yielded impressive statistics. A success rate of 77.9% was obtained with an arguably small data base of 131 undisputed scenes
http://archive.org/details/objectivetechniq00barr
Lieutenant, United States Navy
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Salvato, Gregory. „Comparison between Arctic and subtropic ship exaust [i.e. exhaust] effects on cloud properties“. Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23838.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Huang, Yiyi, Xiquan Dong, Baike Xi, Erica K. Dolinar, Ryan E. Stanfield und Shaoyue Qiu. „Quantifying the Uncertainties of Reanalyzed Arctic Cloud and Radiation Properties Using Satellite Surface Observations“. AMER METEOROLOGICAL SOC, 2017. http://hdl.handle.net/10150/625985.

Der volle Inhalt der Quelle
Annotation:
Reanalyses have proven to be convenient tools for studying the Arctic climate system, but their uncertainties should first be identified. In this study, five reanalyses (JRA-55, 20CRv2c, CFSR, ERA-Interim, and MERRA-2) are compared with NASA CERES-MODIS (CM)-derived cloud fractions (CFs), cloud water paths (CWPs), top-of-atmosphere (TOA) and surface longwave (LW) and shortwave (SW) radiative fluxes over the Arctic (70 degrees-90 degrees N) over the period of 2000-12, and CloudSat-CALIPSO (CC)-derived CFs from 2006 to 2010. The monthly mean CFs in all reanalyses except JRA-55 are close to or slightly higher than the CC-derived CFs from May to September. However, wintertime CF cannot be confidently evaluated until instrument simulators are implemented in reanalysis products. The comparison between CM and CCCFs indicates that CM-derived CFs are reliable in summer but not in winter. Although the reanalysis CWPs follow the general seasonal variations of CM CWPs, their annual means are only half or even less than the CM-retrieved CWPs (126 g m(-2)). The annual mean differences in TOA and surface SW and LW fluxes between CERES EBAF and reanalyses are less than 6 W m(-2) for TOA radiative fluxes and 16 W m(-2) for surface radiative fluxes. All reanalyses show positive biases along the northern and eastern coasts of Greenland as a result of model elevation biases or possible CM clear-sky retrieval issues. The correlations between the reanalyses and CERES satellite retrievals indicate that all five reanalyses estimate radiative fluxes better than cloud properties, and MERRA-2 and JRA-55 exhibit comparatively higher correlations for Arctic cloud and radiation properties.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Huang, Yiyi, Xiquan Dong, Baike Xi, Erica K. Dolinar und Ryan E. Stanfield. „The footprints of 16 year trends of Arctic springtime cloud and radiation properties on September sea ice retreat“. AMER GEOPHYSICAL UNION, 2017. http://hdl.handle.net/10150/623224.

Der volle Inhalt der Quelle
Annotation:
The most prominent September Arctic sea ice decline over the period of 2000-2015 occurs over the Siberian Sea, Laptev Sea, and Kara Sea. The satellite observed and retrieved sea ice concentration (SIC) and cloud/radiation properties over the Arctic (70 degrees-90 degrees N) have been used to investigate the impact of springtime cloud and radiation properties on September SIC variation. Positive trends of cloud fractions, cloud water paths, and surface downward longwave flux at the surface over the September sea ice retreat areas are found over the period of 1 March to 14 May, while negative trends are found over the period of 15 May to 28 June. The spatial distributions of correlations between springtime cloud/radiation properties and September SIC have been calculated, indicating that increasing cloud fractions and downward longwave flux during springtime tend to enhance sea ice melting due to strong cloud warming effect. Surface downward and upward shortwave fluxes play an important role from May to June when the onset of sea ice melting occurs. The comparison between linearly detrended and nondetrended of each parameter indicates that significant impact of cloud and radiation properties on September sea ice retreat occurs over the Chukchi/Beaufort Sea at interannual time scale, especially over the period of 31 March to 29 April, while strongest climatological trends are found over the Laptev/Siberian Sea.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Nomokonova, Tatiana [Verfasser], Ulrich [Gutachter] Löhnert und Roel A. J. [Gutachter] Neggers. „Arctic cloud properties derived from ground-based sensor synergy at Ny-Ålesund / Tatiana Nomokonova ; Gutachter: Ulrich Löhnert, Roel A. J. Neggers“. Köln : Universitäts- und Stadtbibliothek Köln, 2020. http://d-nb.info/1216241074/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Gao, Qiuju. „Marine biogenic polysaccharides as a potential source of aerosol in the high Arctic : Towards a link between marine biology and cloud formation“. Doctoral thesis, Stockholms universitet, Meteorologiska institutionen (MISU), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-72433.

Der volle Inhalt der Quelle
Annotation:
Primary marine aerosol particles containing biogenic polymer microgels play a potential role for cloud formation in the pristine high Arctic summer. One of the major sources of the polymer gels in Arctic aerosol was suggested to be the surface water and more specifically, the surface microlayer (SML) of the open leads within the perennial sea ice as a result of bubble bursting at the air-sea interface.  Phytoplankton and/or ice algae are believed to be the main origins of the polymer gels. In this thesis, we examine the chemical composition of biogenic polymers, with focus on polysaccharides, in seawater and airborne aerosol particles collected during the Arctic Summer Cloud Ocean Study (ASCOS) in the summer of 2008. The main results and findings include: A novel method using liquid chromatography coupling with tandem mass spectrometry was developed and applied for identification and quantification of polysaccharides. The enrichment of polysaccharides in the SML was shown to be a common feature of the Arctic open leads. Rising bubbles and surface coagulation of polymers are the likely mechanism for the accumulation of polysaccharides at the SML. The size dependencies of airborne polysaccharides on the travel-time since the last contact with the open sea are indicative of a submicron microgel source within the pack ice.  The similarity of polysaccharides composition observed between the ambient aerosol particles and those generated by in situ bubbling experiments confines the microgel source to the open leads. The demonstrated occurrence of polysaccharides in surface sea waters and in air, with surface-active and hygroscopic properties, has shown their potential to serve as cloud condensation nuclei and subsequently promote cloud-drop activation in the pristine high Arctic. Presumably this possibility may renew interest in the complex but fascinating interactions between marine biology, aerosol, clouds and climate.
At the time of doctoral defence, the following paper was unpublished and had a status as follows: Paper 4: Manuscript
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Schäfer, Michael. „Optical Thickness Retrievals of Subtropical Cirrus and Arctic Stratus from Ground-Based and Airborne Radiance Observations Using Imaging Spectrometers“. Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-207395.

Der volle Inhalt der Quelle
Annotation:
The development and application of new cloud retrieval methods from ground–based and airborne measurements of spectral radiance fields above heteorogeneous surfaces is introduced. The potential of imaging spectrometers in remote–sensing applications is evaluated. The analyzed spectral radiance fields were measured during two international field campaigns in the visible wavelength range (400–970 nm) with high spatial (<10m) resolution. From ground–based measurements, high ice clouds were observed and from airborne measurements Arctic stratus. From the measurements, cloud optical thickness is retrieved with high spatial resolution and the horizontal cloud inhomogeneities are investigated. Depending on the measurement configuration, different uncertainties arise for the retrieval of the cloud optical thickness. A reduction of those uncertainties is derived by a specification of the ice crystal shape to improve the retrieval of the optical thickness of high ice clouds. The ice crystal shape is obtained independently from the angular information of the scattering phase function features, imprinted in the radiance fields. A performed sensitivity study reveals uncertainties of up to 90%, when neglecting this information and applying a wrong crystal shape to the retrieval. For remote-sensing of Arctic stratus, the highly variable surface albedo influences the accuracy of the cloud optical thickness retrieval. In cloudy cases the transition of reflected radiance from open water to sea ice is not instantaneous but horizontally smoothed. In general, clouds reduce the reflected radiance above bright surfaces in the vicinity of open water, while it is enhanced above open sea. This results in an overestimation of to up to 90% in retrievals of the optical thickness. This effect is investigated. Using observations and three-dimensional radiative transfer simulations, this effect is quantified to range to up to 2200 m distance to the sea-ice edge (for dark-ocean albedo of αwater = 0.042 and sea-ice albedo of αice = 0.91 at 645 nm wavelength) and to depend on macrophysical cloud and sea-ice properties. The retrieved fields of cloud optical thickness are statistically investigated. Auto–correlation functions and power spectral density analysis reveal that in case of clouds with prevailing directional cloud structures, cloud inhomogeneities cannot be described by a universally valid parameter. They have to be defined along and across the prevailing cloud structures to avoid uncertainties up to 85%
Im folgenden wird die Entwicklung und Anwendung neuer Ableitungsverfahren von Wolkenparametern, basierend auf bodengebundener und flugzeuggetragener spektraler Strahldichtemessungen über heterogenen Untergründen, vorgestellt und das Fernerkundungspotential abbildender Spektrometer evaluiert. Die spektralen Strahldichtefelder wurden während zweier internationaler Feldkampagnen im sichtbaren Wellenlängenbereich (400–970 nm) mit hoher räumlich Auflösung (<10m) gemessen. Bodengebundene Messungen wurden genutzt, um hohe Eiswolken zu beobachten und flugzeuggetragenen um arktischen Stratus zu beobachten. Aus den Messungen werden räumlich hochaufgelöste wolkenoptische Dicken abgeleitet und anschließend horizontale Wolkeninhomogenitäten untersucht. Die Ableitung der wolkenoptischen Dicke birgt je nach Messkonfiguration verschiedene Unsicherheiten. Eine Reduzierung der Unsicherheiten wird durch die Vorgabe einer Eiskristallform zur Verbesserung der Ableitung der optischen Dicke hoher Eiswolken erreicht. Diese werden unabhängig aus den winkelabhängigen, in das gemessene Strahldichtefeld eingeprägten Eigenschaften der Streuphasenfunktion, abgeleitet. Bei Vernachlässigung dieser Information und Wahl der falschen Eiskristallform, treten Fehler in der abgeleiteten optischen Dicke von bis zu 90% auf. Bei der Fernerkundung von arktischem Stratus beeinflusst die sehr variable Bodenalbedo die Genauigkeit der Ableitung der optischen Dicke. Beim Übergang von Meereis zu Wasser, findet die Abnahme der reflektierten Strahldichte im bewölktem Fall nicht direkt über der Eiskante, sondern horizontal geglättet statt. Allgemein reduzieren Wolken die reflektierte Strahldichte über Eisflächen nahe Wasser, während sie über dem Wasser erhöht wird. Dies führt zur Überschätzung der wolkenoptischen Dicke über Wasserflächen nahe Eiskanten von bis zu 90 %. Dieser Effekt wird mit Hilfe von Beobachtungen und dreidimensionalen Strahlungstransferrechnungen untersucht und es wird gezeigt, dass sein Einfluss noch bis zu 2200 m Entfernung zur Eiskante wirkt (für Meeresalbedo 0.042 und Meereisalbedo 0.91 bei 645 nm Wellenlänge) und von den makrophysikalischen Wolken- und Meereiseigenschaften abhängt. Die abgeleiteten Felder der optischen Dicke werden statistisch ausgewertet, um die Inhomogeneität der Wolken zu charakterisieren. Autokorrelationsfunktionen und Leistungsdichtespektren zeigen, dass Inhomogenitäten von Wolken mit vorranging richtungsabhängiger Struktur nicht mit einem allgemeingültigen Parameter beschrieben werden können. Es sind Inhomogenitätsmaße entlang und entgegen der jeweiligen Wolkenstrukturen nötig, um Fehler von bis zu 85% zu vermeiden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Willig, Judith A. (Judith Ann) 1953. „Paleo-archaic broad spectrum adaptations at the Pleistocene-Holocene boundary in Far Western North America“. Thesis, University of Oregon, 1989. http://hdl.handle.net/1794/9220.

Der volle Inhalt der Quelle
Annotation:
xx, 463 p. : ill., maps. Two print copies of this title are available through the UO Libraries under the call number: KNIGHT E61 .W72 1989
Western Clovis and Western Stemmed cultural traditions, archaeologically indexed by fluted (Clovis) and stemmed projectile point complexes, represent the earliest human occupation documented in Far Western North America. The temporal closeness of Western Clovis, dated roughly from 11,500 to 11,000 B.P., to Western Stemmed complexes known as early as 11,140 to 10,800 B.P., has generated debate over the age and historical relationship of these cultures. The frequent co-occurrence of fluted and stemmed points along the lowest strandlines in pluvial lake basins has also led scholars to hypothesize an early development of the characteristically "Archaic" lake-marsh adaptations known from later periods. Geoarchaeological research in the northern Alkali Lake Basin of south-central Oregon has addressed these issues of cultural chronology and economy by seeking data to test a paleoecological model of human land use in the basin from 11,500 to 7,000 B.P. The model posits a late Pleistocene Western Clovis settlement oriented to a small, shallow lake or pond, followed by an early Holocene Western Stemmed occupation around a much larger lake and marsh fringe. Data gathered through basin-wide site survey, stratigraphic studies, and high-resolution mapping of lake features and artifacts, support the model as proposed, and reveal a settlement pattern indicative of a "tethered" focus on local lake-marsh habitats. Research also verifies the horizontal separation of fluted and stemmed artifacts on different, sequent shorelines, indicating that Western Clovis occupation precedes Western Stemmed, although the two are close in time. Data from Alkali Basin, and elsewhere, support the notion that Far Western cultures developed broad-spectrum adaptations much earlier than was once thought. This implies that the foundations of the Western Archaic were already in place by 11,000 B.P. In keeping with the adaptive flexibility embodied within the Desert Culture concept, environmental data further suggest that this "paleo-Archaic" lifeway developed quickly, not gradually, in response to punctuated climatic change and the emerging mosaic of regional habitats which characterized the Pleistocene-Holocene boundary, at a time when the desert as we know it was just coming into being.
Adviser: Aikens, C. Melvin
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Whitman, Derek C. „Investigating Virtual Globes for a Prototype Community Archive of 3D Subsurface Data“. BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/4105.

Der volle Inhalt der Quelle
Annotation:
Geoscience data sharing and processing is very advanced in terms of surface data. Subsurface data sharing has not received the attention that surface data sharing has received and so there are fewer applications or software packages which focus on it. This research is funded by the NSF EarthCube GEO Domain program in an effort to develop a continental-scale repository of 3D subsurface data to facilitate the sharing of complex 3D data and to enable the development of geoprocessing tools and workflows that operate on that data. The work in this thesis is a small part of the EarthCube project with two parts. The first part is to research current tools for 3D subsurface data visualization, specifically virtual globes, and to recommend one for use in the development of the EarthCube project. The second part is to develop an online prototype visualization platform for the EarthCube project referred to as the "Digital Crust" using the recommended virtual globe. Additional work was done with the Digital Crust to develop geoprocessing tools to show the ability for the Digital Crust to work with a data repository. These tools convert geoscience data file types, and interpolate soil cross-sections from borehole log data.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Lampert, Astrid [Verfasser]. „Airborne lidar observations of tropospheric arctic clouds / von Astrid Lampert“. 2009. http://d-nb.info/1001474341/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Candlish, Lauren. „An investigation of atmospheric temperature, humidity and cloud detection techniques over the Arctic marine cryosphere“. 2011. http://hdl.handle.net/1993/4489.

Der volle Inhalt der Quelle
Annotation:
The veracity of a Radiometric Microwave Profiling Radiometer (MWRP) while mounted onboard a ship in the Arctic marine environment was assessed. The MWRP was validated against radiosonde data by calculating the RMS and bias for simultaneous measurements taken for temperature and absolute humidity profiles. The vertical resolution of the MWRP was calculated using the inter-level covariance method. Based on the comparisons, the MWRP provided reliable measurements of both temperature and absolute humidity while mounted on the CCGS Amundsen. Satellites CloudSat and Calipso were assessed over the Arctic marine cryosphere. Temperature and absolute humidity from the ECMWF-aux data product was compared with profiles from the ship based MWRP. The cloud base heights measured by the ceilometer and MWRP were compared to CloudSat and Calipso's GeoProf-lidar. Due to a large number of possible false detections, the constraints used by the GeoProf-lidar data product for cloud detection may need to be further refined.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Kretzschmar, Jan. „Improving the representation of Arctic clouds in atmospheric models across scales using observations“. 2021. https://ul.qucosa.de/id/qucosa%3A75240.

Der volle Inhalt der Quelle
Annotation:
With a nearly twice as strongly pronounced temperature increase compared to that of the Northern Hemisphere, the Arctic is especially susceptible to global climate change. The effect of clouds on the Arctic warming is especially uncertain, which is caused by misrepresented cloud microphysical processes in atmospheric models. This thesis aims at employing a scale- and definition-aware comparison of models and observations and will propose changes how to better parameterize Arctic clouds in atmospheric models. In the first part of this thesis, ECHAM6, which is the atmospheric component of the MPI-ESM global climate model, is compared to spaceborne lidar observations of clouds from the CALIPSO satellite. This comparison shows that ECHAM6 overestimates Arctic low-level, liquid containing clouds over snow- and ice-covered surfaces, which consequently leads to an overestimated amount of radiative energy received by the surface. Using sensitivity studies, it is shown that the probable cause of the model biases in cloud amount and phase is related to misrepresented cloud microphysical parameterization (i.e., parameterization of the Wegener-Bergeron-Findeisen process and of the cloud cover scheme) in ECHAM6. By revising those processes, a better representation of cloud amount and cloud phase is achieved, which helps to more accurately simulated the amount of radiative energy received by the Arctic in ECHAM6. The second part of this thesis will focus on a comparison of kilometer-scale simulation with the ICON model to aircraft observations from the ACLOUD campaign that took place in May/June 2017 over the sea ice-covered Arctic Ocean north of Svalbard, Norway. By comparing measurements of solar and terrestrial surface irradiances during ACLOUD flights to the respective quantities in ICON, it is shown that the model systematically overestimates the transmissivity of the mostly liquid clouds during the campaign. This model bias is traced back to the way cloud condensation nuclei get activated into cloud droplets in the two-moment, bulk microphysical scheme used. By parameterizing subgrid-scale vertical motion as a function of turbulent kinetic energy, a more realistic CCN activation into cloud droplets is achieved. This consequently results in an improved representation of cloud optical properties in the ICON simulations. Furthermore, the results of two studies to which contributions have been made during the Ph.D. will be summarized. In Petersik et al. 2018, the impact of subgrid-scale variability in clear-sky relative humidity on hygroscopic growth of aerosols in the aerosol-climate model ECHAM6-HAM2 has been explored. It was shown that the revised parameterization of hygroscopic growth of aerosols resulted in a stronger swelling of aerosol particles, which consequently causes an increased backscattering of solar radiation. In the study of Costa-Suros et al. 2019, it is explored whether it is possible to detect and attribute aerosol-cloud interactions in large-eddy simulation over Germany. It was shown that an increase in cloud droplet number concentration could be attributed to an increased aerosol load, while such an attribution was not possible for other cloud micro- and macrophysical variables.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Pike-Thackray, Colin. „RECONSTRUCTION OF HIGH ARCTIC WINTER SURFACE ENERGY FLUXES“. 2011. http://hdl.handle.net/10222/14167.

Der volle Inhalt der Quelle
Annotation:
Throughout the late 20th and early 21st century, the global temperature has been on the rise, a process that has been accelerated in the Arctic. The Arctic surface temperatures have risen at a factor of 3 greater rate than the global average, leading to the term Arctic Amplification of climate change. In this study, the enhanced warming of the Arctic, and the enhancement at the Arctic surface in comparison to the warming of the atmosphere aloft, is investigated through a reconstruction of the past surface energy balance by a model driven by downwelling irradiance reconstructed using radiosonde profiles and the radiative transfer code SBDART. The downwelling irradiance is shown to be increasing over the time-period of 1994-2009, and the sources of this increase are diagnosed. The time-evolution of the surface flux terms are discussed, and the sensitivity of the surface temperature to changes in atmospheric temperature is investigated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Avramov, Alexander Elkov Harrington Jerry Y. „Simulations of aerosol, microphysical and coastal influences on Arctic mixed-phase clouds“. 2009. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-3672/index.html.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Turner, David D. „Microphysical properties of single and mixed-phase arctic clouds derived from ground-based AERI observations /“. 2003. http://www.library.wisc.edu/databases/connect/dissertations.html.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Stachlewska, Iwona Sylwia [Verfasser]. „Investigation of tropospheric arctic aerosol and mixed-phase clouds using airborne lidar technique / von Iwona Sylwia Stachlewska“. 2006. http://d-nb.info/979804183/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Ruiz-Donoso, Elena. „Small-scale structure of thermodynamic phase in Arctic mixed-phase clouds observed with airborne remote sensing during the ACLOUD campaign“. 2020. https://ul.qucosa.de/id/qucosa%3A74833.

Der volle Inhalt der Quelle
Annotation:
This thesis evaluates the limitations of passive airborne remote sensing methods to retrieve optical and microphysical properties of Arctic mixed-phase clouds. These limitations are circumvented using a synergy of passive and active remote sensing techniques, and large eddy simulations. Using this synergetic approach, the three-dimensional spatial distribution of the thermodynamic phase of two cloud case studies is characterized. The findings are subsequently applied to a statistical analysis of the cloud properties measured during the Arctic Cloud Observations Using airborne measurements during polar Day (ACLOUD) campaign.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Ehrlich, André [Verfasser]. „The impact of ice crystals on radiative forcing and remote sensing of arctic boundary-layer mixed-phase clouds / vorgelegt von André Ehrlich“. 2009. http://d-nb.info/994470355/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Chang, Rachel Ying-Wen. „Arctic Aerosol Sources and Continental Organic Aerosol Hygroscopicity“. Thesis, 2011. http://hdl.handle.net/1807/29679.

Der volle Inhalt der Quelle
Annotation:
Atmospheric particles can affect climate directly, by scattering solar radiation, or indirectly, by acting as the seed upon which cloud droplets form. These clouds can then cool the earth's surface by reflecting incoming sunlight. In order to constrain the large uncertainties in predicting the ultimate effect of aerosol on climate, the sources of atmospheric particles and their subsequent ability to turn into cloud droplets needs to be better understood. This thesis addresses two parts of this issue: the sources of Arctic aerosol and the hygroscopicity of continental organic aerosol. Small particles were observed in Baffin Bay during September 2008 that coincided with high atmospheric and ocean surface dimethyl sulphide (DMS) concentrations suggesting that the aerosol formed from oceanic sources. An aerosol microphysics box model confirmed that local DMS could have produced the observed particles. In addition, the particle chemical composition was measured using aerosol mass spectrometry in the central Arctic Ocean in August 2008 and particles were found to be 43% organic and 46% sulphate. Factor analysis further apportioned the aerosol mass to marine biogenic and continental sources 33% and 36% of the time, respectively, with the source of the remaining mass unidentified. The second part of the study parameterises the hygroscopicity of the ambient organic aerosol fraction (κorg) at Egbert, Ontario and Whistler, British Columbia. This was done using two methods: 1) by assuming that the oxygenated organic component was hygroscopic and that the unoxygenated organic component was non-hygroscopic, κ of the oxygenated component was found to be 0.22 ± 0.04, and 2) by assuming that κorg varied linearly with the atomic oxygen to atomic carbon ratio, it could be parameterised as κorg = (0.29 ± 0.05) × (O/C). Calculations predict that knowing κorg is important in urban, semi-urban, and remote locations whenever the inorganic mass fraction is low.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Perro, Christopher. „CLOUD AND AEROSOL PROPERTIES MEASURED WITH A LIDAR IN THE HIGH ARCTIC AT EUREKA“. 2010. http://hdl.handle.net/10222/13131.

Der volle Inhalt der Quelle
Annotation:
The recently commissioned CANDAC Rayleigh?Mie?Raman Lidar (CRL) in Eureka, Nunavut, finished its first winter measurement campaign in 2010, during which over 900 hours of data was collected. A comparison of several inversion techniques are shown to de- termine which one is most appropriate for the CRL aerosol and cloud analyses. Results of a newly implemented automatic beam steering program are shown and discussed. Measure- ments of water vapour and aerosols showed a distinct layering effect in the troposphere. Back trajectories of these layers are compared to the CRL measurements to determine origins of these layers. Measurements of significant aerosol concentrations in the lower stratosphere were seen during the campaign, which were from the Sarychev eruption in June of 2009. The aerosol evolution over Eureka is shown by using different ground-based and satellite-based instruments. Calculations using multi-wavelength aerosol and cloud measurements are used to give insight on aerosol and cloud particle properties.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie