Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Archean ocean“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Archean ocean" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Archean ocean"
Crowe, S. A., C. Jones, S. Katsev, C. Magen, A. H. O'Neill, A. Sturm, D. E. Canfield et al. „Photoferrotrophs thrive in an Archean Ocean analogue“. Proceedings of the National Academy of Sciences 105, Nr. 41 (06.10.2008): 15938–43. http://dx.doi.org/10.1073/pnas.0805313105.
Der volle Inhalt der QuelleBusigny, Vincent, Noah J. Planavsky, Didier Jézéquel, Sean Crowe, Pascale Louvat, Julien Moureau, Eric Viollier und Timothy W. Lyons. „Iron isotopes in an Archean ocean analogue“. Geochimica et Cosmochimica Acta 133 (Mai 2014): 443–62. http://dx.doi.org/10.1016/j.gca.2014.03.004.
Der volle Inhalt der QuelleSharma, S. Das, D. J. Patil, R. Srinivasan und K. Gopalan. „Very high18o enrichment in Archean cherts from South India: implications for Archean ocean temperature“. Terra Nova 6, Nr. 4 (Juli 1994): 385–90. http://dx.doi.org/10.1111/j.1365-3121.1994.tb00511.x.
Der volle Inhalt der QuelleHarrison, C. G. A. „Constraints on ocean volume change since the Archean“. Geophysical Research Letters 26, Nr. 13 (01.07.1999): 1913–16. http://dx.doi.org/10.1029/1999gl900425.
Der volle Inhalt der QuelleHabicht, K. S. „Calibration of Sulfate Levels in the Archean Ocean“. Science 298, Nr. 5602 (20.12.2002): 2372–74. http://dx.doi.org/10.1126/science.1078265.
Der volle Inhalt der QuelleBusigny, Vincent, Oanez Lebeau, Magali Ader, Bryan Krapež und Andrey Bekker. „Nitrogen cycle in the Late Archean ferruginous ocean“. Chemical Geology 362 (Dezember 2013): 115–30. http://dx.doi.org/10.1016/j.chemgeo.2013.06.023.
Der volle Inhalt der QuelleAvila-Alonso, Dailé, Jan M. Baetens, Rolando Cardenas und Bernard De Baets. „Assessing the effects of ultraviolet radiation on the photosynthetic potential in Archean marine environments“. International Journal of Astrobiology 16, Nr. 3 (09.09.2016): 271–79. http://dx.doi.org/10.1017/s147355041600032x.
Der volle Inhalt der QuelleNishizawa, Manabu, Takuya Saito, Akiko Makabe, Hisahiro Ueda, Masafumi Saitoh, Takazo Shibuya und Ken Takai. „Stable Abiotic Production of Ammonia from Nitrate in Komatiite-Hosted Hydrothermal Systems in the Hadean and Archean Oceans“. Minerals 11, Nr. 3 (19.03.2021): 321. http://dx.doi.org/10.3390/min11030321.
Der volle Inhalt der QuelleSleep, Norman H. „Archean plate tectonics: what can be learned from continental geology?“ Canadian Journal of Earth Sciences 29, Nr. 10 (01.10.1992): 2066–71. http://dx.doi.org/10.1139/e92-164.
Der volle Inhalt der QuelleOlson, Haley C., Nadja Drabon und David T. Johnston. „Oxygen isotope insights into the Archean ocean and atmosphere“. Earth and Planetary Science Letters 591 (August 2022): 117603. http://dx.doi.org/10.1016/j.epsl.2022.117603.
Der volle Inhalt der QuelleDissertationen zum Thema "Archean ocean"
Koeksoy, Elif [Verfasser], und Andreas [Akademischer Betreuer] Kappler. „Biogeochemical Fe-S-cycling in a late Archean and Proterozoic ocean model habitat - the high alpine Arvadi Spring / Elif Koeksoy ; Betreuer: Andreas Kappler“. Tübingen : Universitätsbibliothek Tübingen, 2018. http://d-nb.info/1198973374/34.
Der volle Inhalt der QuelleAquila, Quentin. „Explorer la géochimie des océans archéens avec les Formations de fer rubanées (BIF) : apport des compositions isotopiques Hf-Nd-Pb“. Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2024. http://www.theses.fr/2024UCFA0054.
Der volle Inhalt der QuelleThe Banded Iron Formations (BIF) are unique sedimentary archives for studying the primitive oceans of the Archean. However, the environment of formation and the mechanisms involved in the formation of these iron- and silicon-rich chemical sediments are poorly constrained. The BIFs have been little studied for their Nd-Hf isotopic compositions, although they could provide new constraints on the hydrothermal and continental sources feeding the ancient oceans. To better constrain the BIFs environment of formation, I combined field observations with a petro-geochemical study on a sedimentary succession from the Barberton belt (3.25 Ga, South Africa). The deposition model of the Barberton BIFs involves a deep depositional environment, at the base of a slope and distal from the continent. This environment is occasionally disturbed by gravity-driven terrigenous deposits (mafic) characteristics of a deep-sea fan system. I evaluated whether the seawater geochemical signature (REE+Y, low HFSE) indicated the preservation of the primary Hf-Nd-Pb isotopic compositions in a BIF from the Isua belt (3.7 Ga, Greenland). The Isua BIF shows post-depositional disturbances in the Hf-Nd isotopic compositions attributed to the presence of secondary apatites. However, it preserved a 207Pb-206Pb age of 3810 ± 7 Ma inherited from detrital zircons. Therefore, the REE+Y spectrum typical of seawater does not guarantee the preservation of the primary Hf-Nd isotopic compositions of seawater, nor the absence of any terrigenous contamination. Finally, I explored the origin and source of Nd and Hf in the BIFs at the scale of the bands on samples from the Témagami belt (2.7 Ga, Canada). The initial Nd-Hf isotopic compositions of the Si-rich bands of the Témagami BIFs show a decoupling of the two isotopic systems. Conversely, those of the Fe-rich bands remain coupled in Nd-Hf. The Si-rich bands record a radiogenic Hf isotopic composition originating from the weathering waters of felsic continents. Conversely, the Hf and Nd in the Fe-rich bands could mainly originate from submarine hydrothermalism
Mayaga-Mikolo, Francis. „Chronologie des evenements sedimentaires, magmatiques et tectono-metamorphiques du precambrien d'afrique centrale occidentale (gabon) : tectogenese ogooue et heritage archeen“. Clermont-Ferrand 2, 1996. http://www.theses.fr/1996CLF21824.
Der volle Inhalt der QuelleBarbeau, David Longfellow Jr. „Application of Growth Strata and Detrital-Zircon Geochronology to Stratigraphic Architecture and Kinematic History“. Diss., The University of Arizona, 2003. http://hdl.handle.net/10150/244092.
Der volle Inhalt der QuelleLincoln, Sara Ann Lincoln Ph D. Massachusetts Institute of Technology. „Molecular studies of the sources and significance of archaeal lipids in the oceans“. Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/84916.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references.
Marine archaea are ubiquitous and abundant in the modem oceans and have a geologic record extending >100 million years. However, factors influencing the populations of the major clades - chemolithoautotrophic Marine Group I Thaumarchaeota (MG-I) and heterotrophic Marine Group II Euryarchaeota (MG-II) - and their membrane lipid signatures are not well understood. Here, I paired techniques of organic geochemistry and molecular biology to explore the sources and significance of archaeal tetraether lipids in the marine water column. Using metagenomics, 16S rDNA pyrosequencing, QPCR and mass spectrometric analyses, I found that uncultivated MG-IL Euryarchaeota synthesize glycerol dialkyl glycerol tetraether (GDGT) lipids - including crenarchaeol, previously thought limited to autotrophic Thaumarchaeota. This finding has important implications for paleoenvironmental proxies reliant upon GDGTs. To investigate the effects of organic matter and bicarbonate + ammonia amendments on archaeal tetraether lipids and microbial community composition, I conducted large scale microcosm experiments. Experimental conditions did not promote the overall growth of archaea, but several changes in tetraether lipid abundance and relative ring distribution suggest that future incubation labeling studies using whole seawater may be valuable in probing the metabolism of individual archaeal clades in mixed populations. A rapid decrease in GDGT concentrations was observed within the first 44 h of the experiment, suggesting that the residence time of these compounds in the open ocean may be short. Changes in functional gene representation and microbial community composition over the course of the experiment provide potential insight into mechanisms of copiotrophy and the identity of bacteria that may degrade GDGTs. Finally, I present the results of a study of the sources and patterns of bacterial and archaeal GDGTs detected in the Lost City Hydrothermal Vent Field. Branched GDGTs, generally considered markers of terrestrial input to marine sediments, were detected in carbonate chimneys of this alkaline site near the mid-Atlantic Ridge. A relatively uncommon H-shaped GDGT was also present, and appears to be a marker of hydrothermal archaeal input rather than a mesophilic euryarchaeotal signal. Taken together, the work presented in this thesis emphasizes the necessity of understanding the biological underpinnings of archaeal lipids in the environment, increasingly used as biomarkers in microbial ecology and paleoenvironmental reconstruction.
by Sara Ann Lincoln.
Ph.D.in Geochemistry
Halter, Ghislaine. „Zonalite des alterations dans l'environnement des gisements d'uranium associes a la discordance du proterozoique moyen (saskatchewan, canada)“. Université Louis Pasteur (Strasbourg) (1971-2008), 1988. http://www.theses.fr/1988STR13078.
Der volle Inhalt der QuelleCámara, Mor Patricia. „Radionuclides in the Arctic Ocean: tracing sea ice origin, drifting and interception of atmospheric fluxes“. Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/123297.
Der volle Inhalt der QuelleThe Arctic Ocean is characterized by being covered by sea ice with a large variability between summer and winter. Sea ice incorporates particles and associated chemical species (metals, nutrients, contaminants, etc.) during its formation mainly in the continental shelves, while dissolved solutes are excluded. Along the whole life cycle of sea ice, diverse physical, chemical and biological processes determine the concentration of the sea-ice sediments (SIS) and chemical species entrapped in it. During its drifts offshore to the central Arctic Basin, sea ice also intercepts/incorporates chemical species from the atmosphere although, SIS may also incorporate some chemical solute compounds from the surface waters. Eventually, transported chemical species and SIS, are released to the underlying water column during melting process. Thus, sea ice becomes an important transport and distribution agent. However, the interception efficiency of atmospheric fluxes by sea ice, the origin of the entrapped SIS and radionuclides, the transit times of sea ice in the Arctic Ocean, as well as the importance of the transport of chemical species and SIS and its release in the ablation area are all poorly understood. To address these questions, a suite of natural (7Be, 210Po-210Pb and 234Th) and artificial (137Cs, 239,240Pu) radionuclides, characterized to have well-known sources and different half-lives, were analysed in samples from precipitation, sea ice, surface water, water beneath ice and SIS collected during the ARK XXII/2 expedition in 2007 along the central Arctic. The distributions of 7Be showed enrichment in sea ice (129±90Bq·m-3) with respect to surface water (7.1±1.3Bq·m-3). Since any 7Be incorporated to sea ice during its formation has decayed during drift, the direct atmospheric flux appears as the most important source of 7Be in sea ice. A mass balance was used to calculate that sea ice intercepts about 30% of the 7Be atmospheric flux. This estimation may be extrapolated to other atmospheric chemical species, such as nutrients or contaminants. Given that 7Be and 210Pb are intercepted and accumulated during sea ice transit and may also scavenge by SIS, both radionuclides can be used to assess sea ice transit time. The presence of SIS indicates that ice floes are formed in continental shelves. The presence of artificial radionuclides in SIS (240Pu/239Pu atom ratio, in combination with 137Cs and 239,240Pu activity) allow constraining their geographical origin. SIS originating in the Laptev and Kara Seas has 240Pu/239Pu atom ratios lower than those imprinted by global fallout (0.18), while SIS originating from the Alaskan shelf present 240Pu/239Pu atom ratios greater than global fallout. Data showed that most of the SIS in the Eurasian Basin originated from the Siberian shelves, in agreement with back-trajectory analyses and main drift patterns. The evidence of using 7Be/210Pb ratio, 137Cs and 239,240Pu in SIS as tracers to estimate sea ice transit time and origin, and the fact that SIS did not contain 234Thxs or that a small fraction of 7Be activity in SIS is explained by scavenging of seawater if all 210Pb in SIS does, make the atmospheric deposition the main source of radionuclides in SIS. The relevance of sea ice as a significant transport and source of radionuclides in melting areas, such as the Fram Strait, is reflected in the annual fluxes of dissolved 7Be carried by sea ice (67±55Bq·m-2·y-1), which are comparable to atmospheric inputs in this region (113-131Bq·m-2·y-1). In addition, the annual mass flux of SIS at the Fram Strait, assessed using a 7Be mass balance and the mean annual ice area efflux through it, is on average 240 (4.5-1700)·106 tons, value comparable to 115·106 tons discharged annually by Arctic rivers.
Yamaguchi, Kosei. „Geochemistry of Archean-Paleoproterozoic black shales the early evolution of the atmosphere, oceans, and biosphere /“. 2002. http://www.etda.libraries.psu.edu/theses/approved/PSUonlyIndex/ETD-128/index.html.
Der volle Inhalt der QuelleBücher zum Thema "Archean ocean"
Enright, Joseph F. Shinano!: The sinking of Japan's secret supership. London: Bodley Head, 1987.
Den vollen Inhalt der Quelle findenEnright, Joseph F. Shinano!: The sinking of Japan's secret supership. Taiwan: Xing Guang, 1987.
Den vollen Inhalt der Quelle findenLa Busqueda De Archelon/ the Search for Archelon. Alfaguara, 2006.
Den vollen Inhalt der Quelle findenRobinson, Carol. Phytoplankton Biogeochemical Cycles. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199233267.003.0005.
Der volle Inhalt der QuelleMoney, Nicholas P. 6. Microbial ecology and evolution. Oxford University Press, 2014. http://dx.doi.org/10.1093/actrade/9780199681686.003.0006.
Der volle Inhalt der QuelleKirchman, David L. Community structure of microbes in natural environments. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0004.
Der volle Inhalt der QuelleKirchman, David L. The nitrogen cycle. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0012.
Der volle Inhalt der QuelleBuchteile zum Thema "Archean ocean"
Shen, Yanan, Daniele L. Pinti und Ko Hashizume. „Biogeochemical cycles of sulfur and nitrogen in the Archean ocean and atmosphere“. In Archean Geodynamics and Environments, 305–20. Washington, D. C.: American Geophysical Union, 2006. http://dx.doi.org/10.1029/164gm19.
Der volle Inhalt der QuelleVolk, Tyler, und Martin I. Hoffert. „Ocean Carbon Pumps: Analysis of Relative Strengths and Efficiencies in Ocean-Driven Atmospheric CO2 Changes“. In The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, 99–110. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0099.
Der volle Inhalt der QuelleHsü, Kenneth J., und Judith A. Mckenzie. „A “Strangelove” Ocean in the Earliest Tertiary“. In The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, 487–92. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0487.
Der volle Inhalt der QuelleWenk, T., und U. Siegenthaler. „The High-Latitude Ocean as a Control of Atmospheric CO2“. In The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, 185–94. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0185.
Der volle Inhalt der QuelleMclean, Dewey M. „Mantle Degassing Induced Dead Ocean in the Cretaceous-Tertiary Transition“. In The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, 493–503. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0493.
Der volle Inhalt der QuelleHerring, James R. „Charcoal Fluxes into Sediments of the North Pacific Ocean: The Cenozoic Record of Burning“. In The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, 419–42. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0419.
Der volle Inhalt der QuellePeterson, L. C., und W. L. Prell. „Carbonate Preservation and Rates of Climatic Change: An 800 KYR Record from the Indian Ocean“. In The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, 251–69. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0251.
Der volle Inhalt der QuelleToggweiler, J. R., und J. L. Sarmiento. „Glacial to Interglacial Changes in Atmospheric Carbon Dioxide: The Critical Role of Ocean Surface Water in High Latitudes“. In The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, 163–84. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0163.
Der volle Inhalt der QuelleCurry, W. B., und G. P. Lohmann. „Carbon Deposition Rates and Deep Water Residence Time in the Equatorial Atlantic Ocean Throughout the Last 160,000 Years“. In The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, 285–301. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0285.
Der volle Inhalt der QuelleTakai, Ken, Fumio Inagaki und Koki Horikoshi. „Distribution of unusual archaea in subsurface biosphere“. In The Subseafloor Biosphere at Mid-Ocean Ridges, 369–81. Washington, D. C.: American Geophysical Union, 2004. http://dx.doi.org/10.1029/144gm23.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Archean ocean"
Lambrecht, Nicholas, Elizabeth Swanner, Chad Wittkop, Cody Sheik und Sergei Katsev. „MICROBIAL COMMUNITIES OF TWO ARCHEAN OCEAN ANALOGS“. In 52nd Annual North-Central GSA Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018nc-312978.
Der volle Inhalt der QuelleZheng, Xin-Yuan, Aaron M. Satkoski, Brian L. Beard, Thiruchelvi R. Reddy, Nicolas J. Beukes und Clark M. Johnson. „TRACING OF THE COUPLED SI AND FE CYCLE IN THE ARCHEAN OCEAN“. In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-300243.
Der volle Inhalt der QuelleHinz, Isaac L., Christine Nims, Christine Nims, Samantha Theuer, Samantha Theuer, Alexis S. Templeton, Alexis S. Templeton, Jena E. Johnson und Jena E. Johnson. „FERRIC IRON CATALYZES THE FORMATION OF IRON-RICH SILICATES UNDER ARCHEAN OCEAN-LIKE CONDITIONS“. In 54th Annual GSA North-Central Section Meeting - 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020nc-347861.
Der volle Inhalt der QuelleJohnson, Aleisha C., Stephen J. Romaniello, Chadlin M. Ostrander, Christopher T. Reinhard, Timothy W. Lyons und Ariel D. Anbar. „ASSESSING THE BIOAVAILABILITY OF MO IN ARCHEAN OCEANS“. In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-341070.
Der volle Inhalt der QuelleKatsev, Sergei, Mojtaba Fakhraee, Emily Hyde, Madelyn Petersen, Cody Sheik und Kathryn Schreiner. „Sulfide, Sulfite, and Sulfate Production from Organic Sulfur in Archean Oceans and Modern Lakes“. In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1256.
Der volle Inhalt der QuelleOsterhout, Jeffrey T., und Andrew D. Czaja. „STABLE ISOTOPE GEOCHEMISTRY OF A LATE ARCHEAN MICROBIAL ECOSYSTEM: DIVERSITY IN THE PRE-GOE OCEANS“. In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-307829.
Der volle Inhalt der QuelleRibeiro, Elton J. B., Edson Luiz Labanca, Cesar Bartz und Andre Iwane. „Tubarão Martelo Field Development: Lazy S Riser Configuration Using Mid Water Arch (MWA)“. In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-41873.
Der volle Inhalt der QuelleMurray, John J., Harish Mukundan, Apurva Gupta und Guibog Choi. „Dry Disconnectable Riser System for Low Keel Clearance Floaters“. In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79734.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Archean ocean"
Mueller, C., S. J. Piercey, M. G. Babechuk und D. Copeland. Stratigraphy and lithogeochemistry of rocks from the Nugget Pond Deposit area, Baie Verte Peninsula, Newfoundland. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328989.
Der volle Inhalt der QuelleThomas, M. D. Magnetic and gravity characteristics of the Thelon and Taltson orogens, northern Canada: tectonic implications. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329250.
Der volle Inhalt der QuelleBarbie, Alexander. ARCHES Digital Twin Framework. GEOMAR, Dezember 2022. http://dx.doi.org/10.3289/sw_arches_core_1.0.0.
Der volle Inhalt der QuelleMueller, C., S. J. Piercey, M. G. Babechuk und D. Copeland. Stratigraphy and lithogeochemistry of the Goldenville horizon and associated rocks, Baie Verte Peninsula, Newfoundland. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328990.
Der volle Inhalt der QuelleSommer, Stefan, Sascha Flögel, Michael Walter und Frank Wenzhöfer. Autonomous Robotic Network to Resolve Coastal Oxygen Dynamics : Cruise No. AL547, 20.10. – 31.10.2020, Kiel – Kiel, ARCODYN. GEOMAR Helmholtz Centre for Ocean Research Kiel, 2022. http://dx.doi.org/10.3289/cr_al547.
Der volle Inhalt der Quelle