Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Aquatic plants“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Aquatic plants" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Aquatic plants"
Cota-Sánchez, J. Hugo, und Kirsten Remarchuk. „An Inventory of the Aquatic and Subaquatic Plants in SASKWater Canals in Central Saskatchewan, Canada, Before and After the Application of the Herbicide Magnacide“. Canadian Field-Naturalist 121, Nr. 2 (01.04.2007): 164. http://dx.doi.org/10.22621/cfn.v121i2.441.
Der volle Inhalt der QuelleSingh, Sangeeta. „Insights in Medicinal Value of Aquatic Plants Eichhornia Crassipes, Ipomoea Aquatica, and Hydrilla Verticillata: Potential Therapeutics in Drug Design and Discovery“. African Journal of Biological Sciences 6, Si4 (05.07.2024): 2097–106. http://dx.doi.org/10.48047/afjbs.6.si4.2024.2097-2106.
Der volle Inhalt der QuelleIndriani, Rafiatun, Yani Hadiroseyani, Iis Diatin und Media Fitri Isma Nugraha. „The The Growth Performance and Physiological Status of Comet Goldfish (Carassius auratus) in Aquascape System with Different Aquatic Plant Species“. Jurnal Akuakultur Indonesia 22, Nr. 1 (10.02.2023): 36–46. http://dx.doi.org/10.19027/jai.22.1.36-46.
Der volle Inhalt der QuelleElakovich, Stella D. „Allelopathic aquatic plants for aquatic weed management“. Biologia Plantarum 31, Nr. 6 (November 1989): 479–86. http://dx.doi.org/10.1007/bf02876221.
Der volle Inhalt der QuelleSudipta, I. Gusti Made, I. Wayan Arthana und Endang Wulandari Suryaningtyas. „Kerapatan dan Persebaran Tumbuhan Air di Danau Buyan Kabupaten Buleleng, Provinsi Bali“. Journal of Marine and Aquatic Sciences 6, Nr. 1 (11.09.2020): 67. http://dx.doi.org/10.24843/jmas.2020.v06.i01.p09.
Der volle Inhalt der QuelleVolin, Valeria C. „Southern Aquatic Plants CD“. Economic Botany 57, Nr. 2 (April 2003): 292. http://dx.doi.org/10.1663/0013-0001(2003)057[0292:sapc]2.0.co;2.
Der volle Inhalt der QuelleCook, Christopher D. K. „Aquatic plants of Japan“. Aquatic Botany 49, Nr. 4 (März 1995): 277–78. http://dx.doi.org/10.1016/0304-3770(95)90024-1.
Der volle Inhalt der QuelleGOLDMAN, J. C. „Aquatic Plants: Phytoplankton Ecology.“ Science 234, Nr. 4777 (07.11.1986): 767–68. http://dx.doi.org/10.1126/science.234.4777.767.
Der volle Inhalt der QuelleSipple, Bill. „Aquatic plants Preston, C.D. and J.M. Croft. Aquatic plants in Britain and Ireland“. Wetlands 18, Nr. 2 (Juni 1998): 305–6. http://dx.doi.org/10.1007/bf03161666.
Der volle Inhalt der QuelleAdamec, Lubomir, und Kamil Pasek. „Photosynthetic CO2 affinity of aquatic carnivorous plants growing under nearly-natural conditions and in vitro“. Carnivorous Plant Newsletter 38, Nr. 4 (01.12.2009): 107–13. http://dx.doi.org/10.55360/cpn384.la235.
Der volle Inhalt der QuelleDissertationen zum Thema "Aquatic plants"
Tront, Jacqueline Marie. „Plant Activity and Organic Contaminant Processing by Aquatic Plants“. Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5234.
Der volle Inhalt der QuellePoli, Delci Magalhães. „Leitos cultivados utilizando crostas de eletrofusão da bauxita“. [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/286836.
Der volle Inhalt der QuelleDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Geociências
Made available in DSpace on 2018-08-22T23:02:36Z (GMT). No. of bitstreams: 1 Poli_DelciMagalhaes._M.pdf: 7037560 bytes, checksum: a3c49fdccdd6e0ddac9ecf51ba79b687 (MD5) Previous issue date: 2012
Resumo: O trabalho foi desenvolvido no campo experimental da Faculdade de Engenharia Agrícola da Universidade Estadual de Campinas, Campinas, SP, posição geográfica definida pelas coordenadas 22° 53' 22" LS e 47° 044' 39" LW. O estudo procurou verificar se a utilização de crostas de eletrofusão da bauxita como substrato, em leitos cultivados construídos ou "Constructeds Wetlands" com os vegetais aquáticos emergentes Typha sp, Canna limbata e Cyperus prolifer, interfere na dinâmica do pH, fósforo e nitrogênio presentes em águas residuárias domésticas. Foram utilizados 6 tanques artificiais, sendo constituído por 3 séries de duas unidades, com fluxo vertical e saídas subsuperficiais, nominados por série Typha, leitos 3.1 e 3.2; série Canna, leitos 2.1 e 2.2; série Cyperus 1.1 e 1.2 e preenchidos com crostas de eletrofusão da Bauxita. A dimensão de cada tanque é de 4 metros de comprimento por 3 metros de largura por 1 metro de altura, totalizando 12 m³. Em cada uma das séries foram plantados os vegetais Typha sp, Canna limbata e Cyperus prolifer respectivamente. O período de monitoramento foi de setembro de 2009 a fevereiro de 2010. O desempenho do foi avaliado considerando o desenvolvimento dos vegetais, quantidades e qualidades químicas das águas residuárias. As águas foram coletadas semanalmente, em dias aleatórios, nas entradas e saídas dos tanques durante o período monitorado; os vegetais foram colhidos, somente uma vez, no final do período. As vazões médias diárias e os pH médios ocorridos no período monitorado, observados no afluente e nas saídas da série Typha foram 962 l/dia, 864 l/dia e 804 l/dia; os pH foram 6,9; 8,6 e 9,0. Na série Canna as vazões foram 954 l/dia, 797 l/dia e 735 l/dia; os pH foram 6,9; 9,2 e 9,3. Na série Cyperus as vazões foram 792 l/dia, 723 l/dia e 664 l/dia; os pH foram 6,9; 9,0 e 9,1. Os tempos de detenções hidráulicas, considerando os leitos nas séries citadas foram: 4,2 dias e 4,6 dias; 4,0 dias e 4,6 dias e 4,3 dias e 4,4 dias. As porcentagens médias de retenções de nitrogênio total nos leitos, considerando as massas que entraram, por intermédio dos afluentes, durante o período monitorado foram: a) Série Typha 27% e 19%; b) Série Canna 35% e 19%; c) Série Cyperus 32% e 21%. As remoções realizadas pelos vegetais foram: a) Série Typha 26% e 9%; b) Série Canna 42% e 11%; Série Cyperus 22% e 15%. Em relação ao fósforo, as porcentagens médias de retenções, considerando as massas que entraram nos leitos por meio dos afluentes, foram: a) Série Typha 70% e 31%; b) Série Canna 73 e 19%; Série Cyperus 74% e 27%. As remoções realizadas pelos vegetais foram: a) Série Typha 11% e 4%; b) Série Canna 17% e 4%; c) Série Cyperus 7% e 11%. As massas vegetais totais secas produzidas foram: a) Série Typha 39,9 Kg e 11.2 Kg; b) Série Canna 50,5 Kg e 26,4 Kg; Série c) Cyperus 24 Kg e 15 Kg. O estudo mostrou que o substrato promoveu alterações na eficiência e eficácia da retenção e remoção de nutriente, crescimentos dos vegetais, produção de matéria seca e qualidades da água efluente
Abstract: The study was conducted in the experimental field of the Faculty of Agricultural Engineering, State University of Campinas, Campinas, SP, geographical position defined by coordinates 22° 53' 22" LS and 47° 04' 39" LW. The study examined whether the use of bauxite electrofusion crusts, as a substrate in constructed wetlands with emergent vegetables Typha sp, Canna limbata and Cyperus prolifer, interferes on the dynamics of pH, phosphorus and nitrogen present in domestic wastewater. It was used 6 artificial beds, consisting of 3 sets of two units with vertical flow and subsurface outflows, nominated by Typha series, 3.1 and 3.2 beds; series Canna, 2.1 and 2.2 beds, series Cyperus, 1.1 and 1.2 and filled with Bauxite electrofusion crusts. The size of each bed was 4 meters long by 3 meters wide by 1 meter high, totaling 12 m³. In each series the vegetables Typha sp, Canna limbata and Cyperus prolifer were planted respectively. The monitoring period was from September 2009 to February 2010. The performance was evaluated considering the development of plants, the chemical quantities and qualities of wastewater. The waters were collected weekly, on random days, at the entrances and exits of the beds during the monitoring period; the plants were harvested only once, at the end of each period. The average daily flow rates and average pH occurred during this period, observed in the tributary and the outflow of the series Typha were 962 l/day, 864 l/day and 804 l/day, the pH were 6.9, 8.6 and 9.0. In the series Canna flow rates were 954 l/day, 797 l/day and 735 l/day, the pH were 6.9, 9.2 and 9.3. In the series Cyperus flow rates were 792 l/day, 723 l/day and 664 l/day, the pH were 6.9, 9.0 and 9.1. The hydraulic detention time, considering the beds in the series cited were 4.2 days and 4.6 days, 4.0 days and 4.6 days and 4.3 days and 4.4 days. The average percentage of total nitrogen retention in the beds, considering the masses that came through the tributaries during the monitoring period was: a) Series Typha 27% e19% b) Series Canna 35% and 19%, c) Series Cyperus 32% and 21%. The removals conducted by the plants were : a) Series Typha 26% and 9%, b) Series Canna 42% and 11%; Series Cyperus 22% and 15%. Regarding the phosphorus, the average percentage of retention, considering the masses that entered the bed through the tributaries was: a) Series Typha 70% and 31%, b) Canna Series 73 and 19%; Series Cyperus 74% and 27 %. The removals conducted by the plant were: a) Series Typha 11% and 4%, b) Series Canna 17% and 4%, c) Cyperus Series 7% and 11%. The total dry plant mass produced were: a) Series Typha 39.9 Kg is 11.2 Kg b) Series Canna 50.5 kg is 26.4 kg; Series c) Cyperus 24 Kg is 15 Kg. The study has shown that the substrate promoted changes in the efficiency and effectiveness of nutrient removal and retention, growth of vegetables, dry material production and quality of effluent water
Mestrado
Análise Ambiental e Dinâmica Territorial
Mestre em Geografia
Spósito, Thadeu Henrique Novais. „Matéria seca e acúmulo de nutrientes no aguapé utilizado para fitorremediação em águas residuárias de suinocultura /“. Ilha Solteira, 2018. http://hdl.handle.net/11449/180866.
Der volle Inhalt der QuelleResumo: As águas residuárias de suinocultura (ARS) são consideradas um grande problema de cunho ambiental. Porém o aguapé (Eichhornia crassipes) parece ter uma capacidade de adaptação em meios com alta concentração da ARS, o que pode ser interessante para diminuir os nutrientes e as cargas orgânicas das ARS, cujo destino são mananciais ou até mesmo lagoas conhecidas como sumidouros, causando problemas ambientais, como a eutrofização. Neste sentido, objetivou-se analisar o polimento de água residuária de suinocultura em diferentes concentrações, por meio do cultivo de aguapé, determinou-se a concentração de elementos químicos presentes na ARS, assim como o acúmulo destes elementos na matéria seca e produção desta macrófita. O experimento foi conduzido na área experimental da ETEC (Colégio Agrícola) de Presidente Prudente - SP. Utilizou-se o delineamento experimental inteiramente casualizado, com parcelas subdivididas e cinco repetições. As parcelas constituíram de três tratamentos (água potável “Testemunha”, diluição de 50% ARS e 100% ARS) e subparcelas com cinco períodos de coleta da ARS para análise química [0 (caracterização), 7, 14, 21 e 28 dias], sendo a coleta das plantas de aguapé realizada aos 28 dias, junto a última coleta da ARS. O cultivo de aguapé em 100% de ARS proporcionou maior absorção de nutrientes, desenvolvimento e acúmulo de matéria seca desta macrófita aquática, reduzindo gradativamente conforme vai diminuindo a concentração da ARS. Recomenda-se o cultivo do aguap... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Swine wastewater (SWW) is considered to be a major environmental problem, but water hyacinth (Eichhornia crassipes) seems to have a capacity for adaptation in environments with high concentration of the same, which may be interesting to reduce nutrients and loads organic matter of this material, the destination of which are fountains or even ponds known as sinks, causing environmental problems such as eutrophication. In this sense, the aim of this study was to analyze the polishing SWW in different concentrations, by the E. crassipes crop, was determined the concentration of chemical elements present in the SWW, as well as the accumulation of these elements in the dry matter and production of this macrophyte. The experiment was conducted in the experimental area of the ETEC (Agricultural College) of Presidente Prudente - SP, Brazil. We used the fully randomized experimental design with split plots and five replications. The plots consisted of three treatments ("Witness" drinking water, 50% of SWW and 100% of SWW dilution) and the five-period ARS collection periods for chemical analysis [0 (characterization), 7, 14, 21 and 28 days]. The collection of the E. crassipes plants was carried out at 28 days along with the last SWW collection. The E. crassipes cropped in 100% SWW provided greater nutrient uptake, plant development and dry matter accumulation of this aquatic macrophyte, reducing gradually as the SWW concentration decreases. It is recommended the E. crassipes crop in SW... (Complete abstract click electronic access below)
Doutor
Reeves, Justin. „Plant Finding Behavior of Phytophagous Insects and Biological Control of Aquatic Plants“. Kent State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=kent1285168402.
Der volle Inhalt der QuelleGöthberg, Agneta. „Metal fate and sensitivity in the aquatic tropical vegetable Ipomoea aquatica“. Doctoral thesis, Stockholms universitet, Institutionen för tillämpad miljövetenskap (ITM), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7625.
Der volle Inhalt der QuelleWhite, Sean D. „Internal pressurisation and convective flow in two species of emergent macrophyte; Typha domingensis and Phragmites australis /“. Title page, contents and summary only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09phw5877.pdf.
Der volle Inhalt der QuelleMacFarlane, Jeffrey Julius. „Diffusion, boundary layers and the uptake of nutrients by aquatic macrophytes /“. Title page, contents and summary only, 1985. http://web4.library.adelaide.edu.au/theses/09PH/09phm1431.pdf.
Der volle Inhalt der QuelleSabet, Mitra Deliri, und n/a. „Aquatic plants as indicators of heavy metal contamination“. University of Canberra. Resource, Environmental & Heritage Sciences, 1997. http://erl.canberra.edu.au./public/adt-AUC20061107.161814.
Der volle Inhalt der QuelleForster, Rodney Malcolm. „The control of photosynthetic capacity in aquatic plants“. Thesis, Queen's University Belfast, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317439.
Der volle Inhalt der QuelleLittles, Chanda Jones. „Effects of rapid salinity change on submersed aquatic plants“. [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0011820.
Der volle Inhalt der QuelleBücher zum Thema "Aquatic plants"
Lall, Namrita, Hrsg. Aquatic Plants. Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429429095.
Der volle Inhalt der QuelleSpencer-Jones, David. Aquatic plants. Farnham, Surrey: ICI Professional Products, 1986.
Den vollen Inhalt der Quelle findenBachheti, Archana, Rakesh Kumar Bachheti und Azamal Husen. Aquatic Medicinal Plants. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003256830.
Der volle Inhalt der QuelleMichael, Quigley. Herbaceous flowering aquatic plants. Oxford: Blackwell, 1986.
Den vollen Inhalt der Quelle findenNelson, Edward N. Aquatic plants of Oklahoma. Tulsa, OK]: Oral Roberts University, 1985.
Den vollen Inhalt der Quelle findenSchenck, H. The biology of aquatic plants. Ruggell: A.R.G. Gantner, 2003.
Den vollen Inhalt der Quelle findenSchenck, H. The biology of aquatic plants. Ruggell: A.R.G. Gantner, 2003.
Den vollen Inhalt der Quelle findenAbbasi, S. A. Wastewater treatment with aquatic plants. Roorkee: INCOH Secretariat, 1995.
Den vollen Inhalt der Quelle findenCurtis, Linda. Aquatic plants of Northeastern Illinois. [Lake Villa? Ill.]: L. Curtis, 1998.
Den vollen Inhalt der Quelle findenParsons, Jenifer. Aquatic plant sampling protocols. Olympia, Wash: Washington State Dept. of Ecology, Environmental Assessment Program, 2001.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Aquatic plants"
Hellström, Thomas, Rhodes W. Fairbridge, Lars Bengtsson, Barbara Wohlfarth, Reginald W. Herschy, Anders Hargeby, Irmgard Blindow et al. „Aquatic Plants“. In Encyclopedia of Lakes and Reservoirs, 39–42. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-1-4020-4410-6_42.
Der volle Inhalt der QuellePott, Vali Joana, und Arnildo Pott. „Aquatic Plants“. In Flora and Vegetation of the Pantanal Wetland, 229–88. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83375-6_4.
Der volle Inhalt der QuelleSzuman, Karina M., Analike Blom van Staden, Bonani Madikizela und Namrita Lall. „An Introduction to Aquatic Plants“. In Aquatic Plants, 1–7. Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429429095-1.
Der volle Inhalt der QuelleSzuman, Karina M., Mala V. Ranghoo-Sanmukhiya, Joyce Govinden-Soulange und Namrita Lall. „Aquatic Plants Native to Africa“. In Aquatic Plants, 9–35. Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429429095-2.
Der volle Inhalt der QuelleDe Canha, Marco Nuno, Danielle Twilley, B. Venugopal Reddy, SubbaRao V. Madhunapantula, N. P. Deepika, T. N. Shilpa, B. Duraiswamy, S. P. Dhanabal, Suresh M. Kumar und Namrita Lall. „Aquatic Plants Native to Asia and Australia“. In Aquatic Plants, 37–120. Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429429095-3.
Der volle Inhalt der QuelleFibrich, Bianca D., Jacqueline Maphutha, Carel B. Oosthuizen, Danielle Twilley, Khan-Van Ho, Chung-Ho Lin, Leszek P. Vincent et al. „Aquatic Plants Native to America“. In Aquatic Plants, 121–239. Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429429095-4.
Der volle Inhalt der QuelleLambrechts, Isa A., Lydia Gibango, Antonios Chrysargyris, Nikolaos Tzortzakis und Namrita Lall. „Aquatic Plants Native to Europe“. In Aquatic Plants, 241–90. Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429429095-5.
Der volle Inhalt der QuelleColes, Zane S., und Namrita Lall. „Sustainable Production of Aquatic and Wetland Plants“. In Aquatic Plants, 291–329. Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429429095-6.
Der volle Inhalt der QuelleAbate, Limenew, Archana Bachheti, Mesfin Getachew Tadesse, D. P. Pandey, Azamal Husen und Rakesh Kumar Bachheti. „Chemical Composition and Biological Activity of Red Algae (Rhodophyta)“. In Aquatic Medicinal Plants, 251–64. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003256830-15.
Der volle Inhalt der QuelleGupta, Prakash Chandra, und Nisha Sharma. „An Overview of Traditional Uses and Pharmacological Profile of Sphaeranthus indicus“. In Aquatic Medicinal Plants, 121–32. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003256830-8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Aquatic plants"
Liu, Yu H., Chun L. Wu, Ting C. Hsu, Yun H. Huang und Li Chen. „Swinery Wastewater Purification Using Aquatic Plants“. In World Water and Environmental Resources Congress 2001. Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40569(2001)476.
Der volle Inhalt der QuelleNeidoni, Dorian-Gabriel, Valeria Nicorescu, Ladislau Andres, Monica Ihos und Carol Blaziu Lehr. „ACCUMULATION OF TOXIC METALS IN AQUATIC PLANTS“. In International Symposium "The Environment and the Industry". National Research and Development Institute for Industrial Ecology, 2018. http://dx.doi.org/10.21698/simi.2018.ab30.
Der volle Inhalt der QuelleKumar, Kamlesh, und Deepu Prabhakaran. „Dynamics of aquatic plants interacting with waves“. In OCEANS 2022, Hampton Roads. IEEE, 2022. http://dx.doi.org/10.1109/oceans47191.2022.9977056.
Der volle Inhalt der QuelleFu, Xiaoyun. „Phosphorus removal from wastewater by five aquatic plants“. In 2015 3rd International Conference on Advances in Energy and Environmental Science. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icaees-15.2015.186.
Der volle Inhalt der QuelleGonçalves de Azevedo, Claudia, und Ruan Vitor Cortelassi da Cruz. „PRELIMINARY STUDY FOR OBTAINING BIOFUELS FROM AQUATIC PLANTS“. In 26th International Congress of Mechanical Engineering. ABCM, 2021. http://dx.doi.org/10.26678/abcm.cobem2021.cob2021-1933.
Der volle Inhalt der QuelleRaković, Maja, Nataša Popović, Bojana Tubić, Jelena Đuknić, Momir Paunović, Snežana Jarić und Uroš Živković. „INFLUENCE OF ALLOCHTHONOUS AQUATIC VEGETATION ON THE MACROINVERTEBRATE FAUNA OF THE CANAL NETWORK ON THE LEFT BANK OF THE DANUBE“. In 53rd Annual Conference of the Serbian Water Pollution Control Society. SERBIAN WATER POLLUTION CONTROL SOCIETY, 2024. http://dx.doi.org/10.46793/voda24.065r.
Der volle Inhalt der QuelleNagarajan, Praveena, K. S. Sruthy, Veena P. Lal, Veena P. Devan, Anupama Krishna, Aarathi Lakshman, K. M. Vineetha, Ajith Madhavan, Bipin G. Nair und Sanjay Pal. „Biological treatment of domestic wastewater by selected aquatic plants“. In 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy). IEEE, 2017. http://dx.doi.org/10.1109/tapenergy.2017.8397350.
Der volle Inhalt der QuelleLi, Shaopeng, Ligang Wang und Peizhen Chen. „The effects of purifying livestock wastewater by different aquatic plants“. In 2013 International Conference on Materials for Renewable Energy and Environment (ICMREE). IEEE, 2013. http://dx.doi.org/10.1109/icmree.2013.6893757.
Der volle Inhalt der QuelleWu, Yihong, Baoligao Bai-Yin, Xiangpeng Mu, Shengzong Xie und Shuang Zheng. „Hydrodynamic characteristics in channel flow with submerged flexible aquatic plants“. In The International Conference On Fluvial Hydraulics (River Flow 2016). Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315644479-346.
Der volle Inhalt der QuelleСЕРИКОВА, В. И. „ФОРМИРОВАНИЕ ЛАНДШАФТНО-ДЕКОРАТИВНЫХ ЭЛЕМЕНТОВ ИСКУССТВЕННОГО ВОДОЁМА НА БАЗЕ ЭКСПОЗИЦИИ "ВОДНЫЕ И ПРИБРЕЖНО-ВОДНЫЕ РАСТЕНИЯПРИРОДНОЙ ФЛОРЫ ЦЕНТРАЛЬНОГО ЧЕРНОЗЕМЬЯ" В БОТАНИЧЕСКОМ САДУ ВОРОНЕЖСКОГО ГОСУНИВЕРСИТЕТА“. In ПРОБЛЕМЫ ИНТРОДУКЦИИ РАСТЕНИЙ И СОХРАНЕНИЯ БИОЛОГИЧЕСКИХ РЕСУРСОВ. Voronezh State University, 2023. http://dx.doi.org/10.17308/978-5-907669-40-6-2023-251.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Aquatic plants"
Westerdahl, Howard E., und Kurt D. Getsinger. Aquatic Plant Control Research Program: Aquatic Plant Identification and Herbicide Use Guide. Volume 2. Aquatic Plants and Susceptibility to Herbicides. Fort Belvoir, VA: Defense Technical Information Center, November 1988. http://dx.doi.org/10.21236/ada203243.
Der volle Inhalt der QuelleCrosby, David, Brian Nerrie und Cynthia L. Gregg. Edible Aquatic Plants in Farm Ponds. Blacksburg, VA: Virginia Cooperative Extension, Januar 2021. http://dx.doi.org/10.21061/cnre-127np.
Der volle Inhalt der QuelleHerrel, Sherry L., Eric D. Dibble und K. J. Killgore. Foraging Behavior of Fishes in Aquatic Plants. Fort Belvoir, VA: Defense Technical Information Center, Februar 2001. http://dx.doi.org/10.21236/ada392062.
Der volle Inhalt der QuelleLarson, Gary E. Aquatic and wetland vascular plants of the northern Great Plains. Ft. Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, 1993. http://dx.doi.org/10.2737/rm-gtr-238.
Der volle Inhalt der QuelleMudge, Christopher, Glenn Suir und Benjamin Sperry. Unmanned aircraft systems and tracer dyes : potential for monitoring herbicide spray distribution. Engineer Research and Development Center (U.S.), Oktober 2023. http://dx.doi.org/10.21079/11681/47705.
Der volle Inhalt der QuelleSmart, R. M., und Gary O. Dick. Propagation and Establishment of Aquatic Plants: A Handbook for Ecosystem Restoration Projects. Fort Belvoir, VA: Defense Technical Information Center, Februar 1999. http://dx.doi.org/10.21236/ada369779.
Der volle Inhalt der QuelleDick, Gary O., R. M. Smart und Lynde L. Dodd. Propagation and Establishment of Native Plants for Vegetative Restoration of Aquatic Ecosystems. Fort Belvoir, VA: Defense Technical Information Center, Juni 2013. http://dx.doi.org/10.21236/ada582960.
Der volle Inhalt der QuelleWersal, Ryan, Bradley Sartain, Kurt Getsinger, John Madsen, John Skogerboe, Justin Nawrocki, Robert Richardson und Morgan Sternberg. Improving chemical control of nonnative aquatic plants in run-of-the-river reservoirs. Engineer Research and Development Center (U.S.), März 2024. http://dx.doi.org/10.21079/11681/48350.
Der volle Inhalt der QuelleOwens, Chetta S., Michael J. Grodowitz und Fred Nibling. A Survey of the Invasive Aquatic and Riparian Plants of the Low Rio Grande. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada433828.
Der volle Inhalt der QuelleOwens, Chetta S., Michael J. Grodowitz und Fred Nibling. A Survey of the Invasive Aquatic and Riparian Plants of the Lower Rio Grande. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada434539.
Der volle Inhalt der Quelle