Auswahl der wissenschaftlichen Literatur zum Thema „Apprentissage profonds“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Apprentissage profonds" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Apprentissage profonds"

1

Chakri, Lekbir, und My Lhassan Riouch. „Apports des TIC dans l'enseignement et l’apprentissage des mathématiques : Scénarisation pédagogique et pratiques de l'enseignement à distance“. ITM Web of Conferences 39 (2021): 03012. http://dx.doi.org/10.1051/itmconf/20213903012.

Der volle Inhalt der Quelle
Annotation:
L’intégration des TICE (technologie d’information et de communication dans l’enseignement) nécessite une réflexion profonde sur l’évolution des pratiques de classe. Elle nécessite surtout l’innovation dans le choix et dans la conception des situations des apprentissages qui utilisent d’une façon progressive et rationnelle les ressources numériques. Le choix adéquat des approches pédagogiques et didactiques de l'enseignant et des ressources numériques à utiliser ont un impact direct sur l’amélioration de la qualité des apprentissages mathématiques. Dans notre contribution nous réservons une place pour l’impact de la scénarisation et le film éducatif notamment dans l’apprentissage et l’enseignement à distance pour assurer la continuité pédagogique. Nous nous concentrons aussi sur la classe inversée et le e-learning pour leurs rôles dans l’auto-apprentissage des apprenants. Toutefois, il faut signaler que la conception de nouvelles ressources éducatives numériques et leur mise en oeuvre présentent un défi majeur pour les enseignants ; pour produire une nouvelle ressource numérique, il faut combiner les fonctionnalités de plusieurs logiciels. On parle alors des concepts liés à la genèse et l’orchestration instrumentale [1, 12].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Fillières-Riveau, Gauthier, Jean-Marie Favreau, Vincent Barra und Guillaume Touya. „Génération de cartes tactiles photoréalistes pour personnes déficientes visuelles par apprentissage profond“. Revue Internationale de Géomatique 30, Nr. 1-2 (Januar 2020): 105–26. http://dx.doi.org/10.3166/rig.2020.00104.

Der volle Inhalt der Quelle
Annotation:
Les cartes tactiles photoréalistes sont un des outils mobilisés par les personnes en situation de déficience visuelle pour appréhender leur environnement urbain proche, notamment dans le cadre de la mobilité, pour la traversée de carrefours par exemple. Ces cartes sont aujourd’hui principalement fabriquées artisanalement. Dans cet article, nous proposons une approche permettant de produire une segmentation sémantique d’une imagerie aérienne de précision, étape centrale de cette fabrication. Les différents éléments d’intérêt tels que trottoirs, passages piétons, ou îlots centraux sont ainsi localisés et tracés dans l’espace urbain. Nous présentons en particulier comment l’augmentation de cette imagerie par des données vectorielles issues d’OpenStreetMap permet d’obtenir par une technique d’apprentissage profond (réseau adverse génératif conditionnel) des résultats significatifs. Après avoir présenté les enjeux de ce travail et un état de l’art des techniques existantes, nous détaillons l’approche proposée, et nous étudions les résultats obtenus, en comparant en particulier les segmentations obtenues sans et avec enrichissement par données vectorielles. Les résultats sont très prometteurs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Pouliquen, Geoffroy, und Catherine Oppenheim. „Débruitage par apprentissage profond: impact sur les biomarqueurs quantitatifs des tumeurs cérébrales“. Journal of Neuroradiology 49, Nr. 2 (März 2022): 136. http://dx.doi.org/10.1016/j.neurad.2022.01.040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Abadie, Pierre, Pierre Yves Herve, Benjamin Dallaudiere, Philippe Meyer, Lionel Pesquer, Nicolas Poussange und Alain Silvestre. „Apprentissage profond pour la prise en charge décisionnelle des lésions IRM du genou“. Revue de Chirurgie Orthopédique et Traumatologique 105, Nr. 8 (Dezember 2019): S123. http://dx.doi.org/10.1016/j.rcot.2019.09.068.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Fouquet, Guillaume. „60 ans démunis devant 30 ans !“ Gestalt 59, Nr. 2 (07.07.2023): 103–14. http://dx.doi.org/10.3917/gest.059.0103.

Der volle Inhalt der Quelle
Annotation:
L’intensité face à la durée amène le thérapeute à regarder comment résonne pour lui, senior en âge, l’urgence vitale de sa cliente de 30 ans. Thérapeute, je pense ma cliente, comment est-ce que je prends le temps de me penser moi-même ? Devant l’urgence ressentie par la cliente, quelles sont mes ressources ? Comment agit cette perception différenciée du temps ? Dans quel apprentissage ma cliente m’emmène-t-elle ? Ces questions sont examinées à travers la centration, l’alignement au soi profond et les enjeux des cycles des âges.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Caccamo, Emmanuelle, und Fabien Richert. „Les procédés algorithmiques au prisme des approches sémiotiques“. Cygne noir, Nr. 7 (01.06.2022): 1–16. http://dx.doi.org/10.7202/1089327ar.

Der volle Inhalt der Quelle
Annotation:
Assistants virtuels, objets connectés, intelligence artificielle, données massives, apprentissage machine ou apprentissage profond ; nul jour sans que les journaux ne rapportent une nouvelle spectaculaire sur les technologies algorithmiques dites « intelligentes ». Aucune activité humaine ou presque ne semble échapper à la mainmise algorithmique et à la volonté de contrôle sans limite qu’elle traduit. Ce constat sur l’emprise des technologies algorithmiques sur nos vies n’est pas nouveau, mais nous avons souhaité le transmuer en enquête en consacrant un numéro du Cygne noir à l’exploration des liens entre sémiotique et procédés algorithmiques. Relevant tantôt de la sémiotique théorique, tantôt de la sémiotique appliquée, les textes ici rassemblés travaillent à leur façon ces rapports. Ce dossier témoigne de la manière dont la sémiotique continue d’étonner par sa capacité de renouvellement conceptuel, par sa force de saisie d’objets toujours nouveaux et par sa disposition épistémologique à se « suturer » à de nombreux cadres théoriques. Il réaffirme en dernier lieu à quel point la sémiotique peut tenir un rôle éminemment critique et démystifiant, à contre-pied de la technolâtrie dominant l’espace social, dans un contexte marqué par une numérisation toujours plus croissante des activités humaines et sociales.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Tremblay, Karine N., Ruth Philion, André C. Moreau, Julie Ruel, Ernesto Morales, Maryse Feliziani und Laurie-Ann Garneau-Gaudreault. „Bilan des contributions et retombées perçues de l’implantation d’une communauté de pratique auprès d’une équipe-école“. Revue hybride de l'éducation 7, Nr. 1 (22.06.2023): 184–217. http://dx.doi.org/10.1522/rhe.v7i1.1472.

Der volle Inhalt der Quelle
Annotation:
Le présent article expose les résultats d’un projet pilote de deux années. Par l’entremise d’une communauté de pratique, ce projet visait à soutenir des équipes enseignantes (ÉEs) à développer des pratiques pédagogiques en littératie adaptées à leurs élèves ayant une déficience intellectuelle (DI) moyenne, sévère ou profonde. Les résultats illustrent que peu importe le niveau de sévérité de la DI, il est possible de déployer une diversité de pratiques pédagogiques. Outre ces résultats, des effets positifs sur le développement professionnel des ÉEs et sur les apprentissages des élèves sont présentés.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bat-Zeev Shyldkrot, Hava. „Meillet, les juifs et la Bible“. Langages N° 233, Nr. 1 (06.03.2024): 79–94. http://dx.doi.org/10.3917/lang.233.0079.

Der volle Inhalt der Quelle
Annotation:
La contribution de Hava Bat-Zeev Shyldkrot discute de la position de Meillet à l’égard des juifs. Trois aspects sont élaborés. Le premier concerne la façon dont Meillet ramène les différentes langues du peuple juif à la même culture. Ce type de travaux illustre la volonté de Meillet d’examiner les cultures liées aux langues auxquelles il s’intéressait. Le second sujet traite de l’influence de la Bible hébraïque sur les langues européennes. Les démonstrations et les explications de Meillet laissent penser que son apprentissage chez Carrière a été très fructueux et lui a permis d’acquérir une connaissance profonde des textes religieux en général. La troisième partie est dédiée à l’attitude de Meillet au moment de l’affaire Dreyfus.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Baudouin, Maxime. „Détection d'anévrisme intracrânien par apprentissage profond sur l'irm tof à l'aide d'un u-net régularisé à deux niveaux“. Journal of Neuroradiology 50, Nr. 2 (März 2023): 187–89. http://dx.doi.org/10.1016/j.neurad.2023.01.129.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Prakash, Prem, Marc Sebban, Amaury Habrard, Jean-Claude Barthelemy, Frédéric Roche und Vincent Pichot. „Détection automatique des apnées du sommeil sur l’ECG nocturne par un apprentissage profond en réseau de neurones récurrents (RNN)“. Médecine du Sommeil 18, Nr. 1 (März 2021): 43–44. http://dx.doi.org/10.1016/j.msom.2020.11.077.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Apprentissage profonds"

1

Franceschi, Jean-Yves. „Apprentissage de représentations et modèles génératifs profonds dans les systèmes dynamiques“. Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS014.

Der volle Inhalt der Quelle
Annotation:
L'essor de l'apprentissage profond trouve notamment sa source dans les avancées scientifiques qu'il a permises en termes d'apprentissage de représentations et de modèles génératifs. Dans leur grande majorité, ces progrès ont cependant été obtenus sur des données textuelles et visuelles statiques, les données temporelles demeurant un défi pour ces méthodes. Compte tenu de leur importance pour l'automatisation croissante de multiples tâches, de plus en plus de travaux en apprentissage automatique s'intéressent aux problématiques d'évolution temporelle. Dans cette thèse, nous étudions ainsi plusieurs aspects de la temporalité et des systèmes dynamiques dans les réseaux de neurones profonds pour l'apprentissage non supervisé de représentations et de modèles génératifs. Premièrement, nous présentons une méthode générale d'apprentissage de représentations non supervisée pour les séries temporelles prenant en compte des besoins pratiques d'efficacité et de flexibilité. Dans un second temps, nous nous intéressons à l'apprentissage pour les séquences structurées de nature spatio-temporelle, couvrant les vidéos et phénomènes physiques. En les modélisant par des équations différentielles paramétrisées par des réseaux de neurones, nous montrons la corrélation entre la découverte de représentations pertinentes d'un côté, et de l'autre la fabrique de modèles prédictifs performants sur ces données. Enfin, nous analysons plus généralement dans une troisième partie les populaires réseaux antagonistes génératifs dont nous décrivons la dynamique d'apprentissage par des équations différentielles, nous permettant d'améliorer la compréhension de leur fonctionnement
The recent rise of deep learning has been motivated by numerous scientific breakthroughs, particularly regarding representation learning and generative modeling. However, most of these achievements have been obtained on image or text data, whose evolution through time remains challenging for existing methods. Given their importance for autonomous systems to adapt in a constantly evolving environment, these challenges have been actively investigated in a growing body of work. In this thesis, we follow this line of work and study several aspects of temporality and dynamical systems in deep unsupervised representation learning and generative modeling. Firstly, we present a general-purpose deep unsupervised representation learning method for time series tackling scalability and adaptivity issues arising in practical applications. We then further study in a second part representation learning for sequences by focusing on structured and stochastic spatiotemporal data: videos and physical phenomena. We show in this context that performant temporal generative prediction models help to uncover meaningful and disentangled representations, and conversely. We highlight to this end the crucial role of differential equations in the modeling and embedding of these natural sequences within sequential generative models. Finally, we more broadly analyze in a third part a popular class of generative models, generative adversarial networks, under the scope of dynamical systems. We study the evolution of the involved neural networks with respect to their training time by describing it with a differential equation, allowing us to gain a novel understanding of this generative model
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bietti, Alberto. „Méthodes à noyaux pour les réseaux convolutionnels profonds“. Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM051.

Der volle Inhalt der Quelle
Annotation:
La disponibilité de quantités massives de données, comme des images dans les réseaux sociaux, des signaux audio de téléphones mobiles, ou des données génomiques ou médicales, a accéléré le développement des techniques d'apprentissage automatique. Ces méthodes exploitent des motifs statistiques dans ces grandes bases de données pour effectuer de bonnes prédictions sur des nouvelles images, signaux, ou séquences de protéines. Récemment, les systèmes d'apprentissage profond ont émergé comme des algorithmes d'apprentissage très efficaces. Ces modèles multi-couche effectuent leurs prédictions de façon hiérarchique, et peuvent être entraînés à très grande échelle avec des méthodes de gradient. Leur succès a été particulièrement marqué lorsque les données sont des signaux naturels comme des images ou des signaux audio, pour des tâches comme la reconnaissance visuelle, la détection d'objets, ou la reconnaissance de la parole. Pour de telles tâches, l'apprentissage profond donne souvent la meilleure performance empirique, mais leur compréhension théorique reste difficile à cause du grand nombre de paramètres, et de la grande dimension des données. Leur succès est souvent attribué à leur capacité d'exploiter des structures des signaux naturels, par exemple en apprenant des représentations invariantes et multi-échelle de signaux naturels à travers un bon choix d'architecture, par exemple avec des convolutions et des opérations de pooling. Néanmoins, ces propriétés sont encore mal comprises théoriquement, et l'écart entre la théorique et pratique en apprentissage continue à augmenter. Cette thèse vise à réduire cet écart grâce à l'étude d'espaces de fonctions qui surviennent à partir d'une certaine architecture, en particulier pour les architectures convolutives. Notre approche se base sur les méthodes à noyaux, et considère des espaces de Hilbert à noyaux reproduisant (RKHS) associés à certains noyaux construits de façon hiérarchique selon une architecture donnée. Cela nous permet d'étudier précisément des propriétés de régularité, d'invariance, de stabilité aux déformations du signal, et d'approximation des fonctions du RKHS. Ces propriétés sur la représentation sont aussi liées à des questions d'optimisation pour l'entraînement de réseaux profonds à très grand nombre de neurones par descente de gradient, qui donnent lieu à de tels noyaux. Cette théorie suggère également des nouvelles stratégies pratiques de régularisation qui permettent d'obtenir une meilleure performance en généralisation pour des petits jeux de données, et une performance état de l'art pour la robustesse à des perturbations adversariales en vision
The increased availability of large amounts of data, from images in social networks, speech waveforms from mobile devices, and large text corpuses, to genomic and medical data, has led to a surge of machine learning techniques. Such methods exploit statistical patterns in these large datasets for making accurate predictions on new data. In recent years, deep learning systems have emerged as a remarkably successful class of machine learning algorithms, which rely on gradient-based methods for training multi-layer models that process data in a hierarchical manner. These methods have been particularly successful in tasks where the data consists of natural signals such as images or audio; this includes visual recognition, object detection or segmentation, and speech recognition.For such tasks, deep learning methods often yield the best known empirical performance; yet, the high dimensionality of the data and large number of parameters of these models make them challenging to understand theoretically. Their success is often attributed in part to their ability to exploit useful structure in natural signals, such as local stationarity or invariance, for instance through choices of network architectures with convolution and pooling operations. However, such properties are still poorly understood from a theoretical standpoint, leading to a growing gap between the theory and practice of machine learning. This thesis is aimed towards bridging this gap, by studying spaces of functions which arise from given network architectures, with a focus on the convolutional case. Our study relies on kernel methods, by considering reproducing kernel Hilbert spaces (RKHSs) associated to certain kernels that are constructed hierarchically based on a given architecture. This allows us to precisely study smoothness, invariance, stability to deformations, and approximation properties of functions in the RKHS. These representation properties are also linked with optimization questions when training deep networks with gradient methods in some over-parameterized regimes where such kernels arise. They also suggest new practical regularization strategies for obtaining better generalization performance on small datasets, and state-of-the-art performance for adversarial robustness on image tasks
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lucas, Thomas. „Modèles génératifs profonds : sur-généralisation et abandon de mode“. Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALM049.

Der volle Inhalt der Quelle
Annotation:
Cette dissertation explore le sujet des modèles génératifs appliqués aux images naturelles.Cette tâche consiste a modéliser la distribution des données observées, et peut permettre de générer des données artificielles semblables aux données d'origine, où de compresser des images.Les modèles à variable latentes, qui sont au cœur de cette thèse, cherchent a résumer les principaux facteurs de variation d'une image en une variable qui peut être manipulée.En particulier, nos contributions sont basées sur deux modèles génératifs a variable latentes: le modèle génératif adversarial (GAN) et l' encodeur variationel (VAE).Récemment, les GAN ont significativement amélioré la qualité des images générées par des modèles profonds, générant des images très convaincantes.Malheureusement ces modèles ont du mal à modéliser tous les modes de la distribution d'origine, ie ils ne couvrent pas les données dans toute leur variabilité.A l'inverse, les modèles basés sur le maximum de vraisemblance tels que les VAEs couvrent typiquement toute la variabilité des données, et en offrent une mesure objective.Mais ces modèles produisent des échantillons de qualité visuelle inférieure, qui sont plus facilement distingués de vrais images.Le travail présenté dans cette thèse a pour but d'obtenir le meilleur des deux mondes: des échantillons de bonne qualité tout en modélisant tout le support de la distribution.La première contribution de ce manuscrit est un modèle génératif profond qui encode la structure globale des images dans une variable latente, basé sur le VAE, et utilise un modèle autoregressif pour modéliser les détails de bas niveau.Nous proposons une procédure d'entrainement qui utilise une fonction de perte auxiliaire pour contrôler quelle information est capturée par la variable latent et quelle information est laissée à un décodeur autoregressif.Au contraire des précédentes approches pour construire des modèles hybrides de ce genre, notre modèle de nécessite pas de contraindre la capacité du décodeur autoregressif pour empêcher des modèles dégénérés qui ignorent la variable latente.La deuxième contribution est bâtie sur le modèle du GAN standard, qui utilise un discriminateur pour guider le modèle génératif.Le discriminateur évalue généralement la qualité d'échantillons individuels, ce qui rend la tache d'évaluer la variabilité des données difficile.A la place, nous proposons de fournir au discriminateur des ensembles de données, ou batches, qui mélangent des vraies images et des images générées.Nous l'entrainons à prédire le ratio de vrais et de faux éléments dans l'ensemble.Ces batches servent d'approximation de la vrai distribution des images générées et permettent au discriminateur d'approximer des statistiques sur leur distributionLes lacunes mutuelles des VAEs et des GANs peuvent, en principe, être réglées en entrainant des modèles hybrides qui utilisent les deux types d'objectif.Dans notre troisième contribution, nous montrons que les hypothèses paramétriques habituelles faites par les VAE produisent un conflit entre les deux, menant à des performances décevantes pour les modèles hybrides.Nous proposons une solution basée sur des modèles profonds inversibles, qui entraine un espace de features dans lequel les hypothèses habituelles peuvent être faites sans poser problème.Notre approche fourni des évaluations e vraisemblance dans l'espace des images tout en étant capable de tirer profit de l'entrainement adversaire.Elle obtient des échantillons de qualité équivalente au modèle pleinement adversaires tout en améliorant les scores de maximum de vraisemblance au moment de la publication, ce qui constitue une amélioration significative
This dissertation explores the topic of generative modelling of natural images,which is the task of fitting a data generating distribution.Such models can be used to generate artificial data resembling the true data, or to compress images.Latent variable models, which are at the core of our contributions, seek to capture the main factors of variations of an image into a variable that can be manipulated.In particular we build on two successful latent variable generative models, the generative adversarial network (GAN) and Variational autoencoder (VAE) models.Recently GANs significantly improved the quality of images generated by deep models, obtaining very compelling samples.Unfortunately these models struggle to capture all the modes of the original distribution, ie they do not cover the full variability of the dataset.Conversely, likelihood based models such as VAEs typically cover the full variety of the data well and provide an objective measure of coverage.However these models produce samples of inferior visual quality that are more easily distinguished from real ones.The work presented in this thesis strives for the best of both worlds: to obtain compelling samples while modelling the full support of the distribution.To achieve that, we focus on i) the optimisation problems used and ii) practical model limitations that hinder performance.The first contribution of this manuscript is a deep generative model that encodes global image structure into latent variables, built on the VAE, and autoregressively models low level detail.We propose a training procedure relying on an auxiliary loss function to control what information is captured by the latent variables and what information is left to an autoregressive decoder.Unlike previous approaches to such hybrid models, ours does not need to restrict the capacity of the autoregressive decoder to prevent degenerate models that ignore the latent variables.The second contribution builds on the standard GAN model, which trains a discriminator network to provide feedback to a generative network.The discriminator usually assesses the quality of individual samples, which makes it hard to evaluate the variability of the data.Instead we propose to feed the discriminator with emph{batches} that mix both true and fake samples, and train it to predict the ratio of true samples in the batch.These batches work as approximations of the distribution of generated images and allows the discriminator to approximate distributional statistics.We introduce an architecture that is well suited to solve this problem efficiently,and show experimentally that our approach reduces mode collapse in GANs on two synthetic datasets, and obtains good results on the CIFAR10 and CelebA datasets.The mutual shortcomings of VAEs and GANs can in principle be addressed by training hybrid models that use both types of objective.In our third contribution, we show that usual parametric assumptions made in VAEs induce a conflict between them, leading to lackluster performance of hybrid models.We propose a solution based on deep invertible transformations, that trains a feature space in which usual assumptions can be made without harm.Our approach provides likelihood computations in image space while being able to take advantage of adversarial training.It obtains GAN-like samples that are competitive with fully adversarial models while improving likelihood scores over existing hybrid models at the time of publication, which is a significant advancement
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Walker, Emmanuelle Le Ray Anne. „Réflexions sur le développement des concepts chez les jeunes sourds profonds“. [S.l.] : [s.n.], 2007. http://castore.univ-nantes.fr/castore/GetOAIRef?idDoc=19576.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Medrouk, Indira Lisa. „Réseaux profonds pour la classification des opinions multilingue“. Electronic Thesis or Diss., Paris 8, 2018. http://www.theses.fr/2018PA080081.

Der volle Inhalt der Quelle
Annotation:
À l’ère de l’avènement des réseaux sociaux où tout un chacun peut se targuerd’être un producteur de contenus, l’intérêt grandissant de la recherche etl’industrie pour l’analyse automatique des opinions est un fait incontestable.Cette thèse traite de la fouille d’opinions en adressant principalement une caractéristiqueinhérente aux avis publiés sur le Web reflétant leurs caractèresglobalisés et multilingue.Pour adresser la problématique multilingue des opinions, le modèle proposéest inspiré du processus d’acquisition des langues simultanées avec intensitéégale chez les jeunes enfants. Il est basé sur des réseaux neuronauxprofonds, avec comme intention de se défaire de pré-traitements, de choixmanuels de caractéristiques et surtout d’avoir une chaîne de traitement sansinterdépendances de langues, de traduction ou de langue pivot.L’évaluation du modèle proposé a été effectué sur des corpus composés dequatre langues, à savoir le français, l’anglais, le grec et l’arabe pour répondreà une classification d’opinion suivant deux polarités, positive et négative,ainsi qu’une classification thématique. Les diverses expérimentations alliantvariation de taille de corpus, regroupement bi-tri et quadrilingue présentésà un réseau profond sans modules additionnels ont montré qu’à l’instar dudéveloppement de la compétence bilingue chez l’enfant qui est liée à la qualitéet la quantité de son immersion au contexte linguistique, le réseau apprendmieux dans un environnement riche et varié.Dans le cadre de la problématique de la classification des opinions, ledeuxième volet de la thèse présente une étude comparative de deux modèlesde réseaux profonds : les réseaux convolutionnels et les réseaux récurrents.Notre contribution consiste à démontrer leur complémentarité selon leurscombinaisons dans un contexte multilingue
In the era of social networks where everyone can claim to be a contentproducer, the growing interest in research and industry is an indisputablefact for the opinion mining domain.This thesis is mainly addressing a Web inherent characteristic reflectingits globalized and multilingual character.To address the multilingual opinion mining issue, the proposed model isinspired by the process of acquiring simultaneous languages with equal intensityamong young children. The incorporate corpus-based input is raw, usedwithout any pre-processing, translation, annotation nor additional knowledgefeatures. For the machine learning approach, we use two different deep neuralnetworks. The evaluation of the proposed model was executed on corpusescomposed of four different languages, namely French, English, Greek and Arabic,to emphasize the ability of a deep learning model in order to establishthe sentiment polarity of reviews and topics classification in a multilingualenvironment. The various experiments combining corpus size variations forbi and quadrilingual grouping languages, presented to our models withoutadditional modules, have shown that, such as children bilingual competencedevelopment, which is linked to quality and quantity of their immersion in thelinguistic context, the network learns better in a rich and varied environment.As part of the problem of opinion classification, the second part of thethesis presents a comparative study of two models of deep networks : convolutionalnetworks and recurrent networks. Our contribution consists in demonstratingtheir complementarity according to their combinations in a multilingualcontext
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Blot, Michaël. „Étude de l'apprentissage et de la généralisation des réseaux profonds en classification d'images“. Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS412.

Der volle Inhalt der Quelle
Annotation:
L'intelligence artificielle connait une résurgence ces dernières années. En cause, la capacité croissante à rassembler et à stocker un nombre considérable de données digitalisées. Ces immenses bases de données permettent aux algorithmes de machine learning de répondre à certaines tâches par apprentissage supervisé. Parmi les données digitalisées, les images demeurent prépondérantes dans l’environnement moderne. D'immenses datasets ont été constitués. De plus, la classification d'image a permis l’essor de modèles jusqu'alors négligés, les réseaux de neurones profonds ou deep learning. Cette famille d'algorithmes démontre une grande facilité à apprendre parfaitement des datasets, même de très grande taille. Leurs capacités de généralisation demeure largement incomprise, mais les réseaux de convolutions sont aujourd'hui l'état de l'art incontesté. D'un point de vue recherche et application du deep learning, les demandes vont être de plus en plus exigeantes, nécessitant de fournir un effort pour porter les performances des réseaux de neurone au maximum de leurs capacités. C'est dans cet objectif que se place nos recherches dont les contributions sont présentées dans cette thèse. Nous nous sommes d'abord penchés sur la question de l'entrainement et avons envisagé d’accélérer celui ci grâce à des méthodes distribuées. Nous avons ensuite étudié les architectures dans le but de les améliorer sans toutefois trop augmenter leurs complexités. Enfin nous avons particulièrement étudié la régularisation de l'entrainement des réseaux. Nous avons envisagé un critère de régularisation basée sur la théorie de l'information que nous avons déployé de deux façons différentes
Artificial intelligence is experiencing a resurgence in recent years. This is due to the growing ability to collect and store a considerable amount of digitized data. These huge databases allow machine learning algorithms to respond to certain tasks through supervised learning. Among the digitized data, images remain predominant in the modern environment. Huge datasets have been created. moreover, the image classification has allowed the development of previously neglected models, deep neural networks or deep learning. This family of algorithms demonstrates a great facility to learn perfectly datasets, even very large. Their ability to generalize remains largely misunderstood, but the networks of convolutions are today the undisputed state of the art. From a research and application point of view of deep learning, the demands will be more and more demanding, requiring to make an effort to bring the performances of the neuron networks to the maximum of their capacities. This is the purpose of our research, whose contributions are presented in this thesis. We first looked at the issue of training and considered accelerating it through distributed methods. We then studied the architectures in order to improve them without increasing their complexity. Finally, we particularly study the regularization of network training. We studied a regularization criterion based on information theory that we deployed in two different ways
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Langlois, Julien. „Vision industrielle et réseaux de neurones profonds : application au dévracage de pièces plastiques industrielles“. Thesis, Nantes, 2019. http://www.theses.fr/2019NANT4010/document.

Der volle Inhalt der Quelle
Annotation:
Ces travaux de thèse présentent une méthode d’estimation de pose de pièces industrielles en vue de leur dévracage à partir d’un système mono-caméra 2D en utilisant une approche par apprentissage avec des réseaux profonds. Dans un premier temps, des réseaux de neurones assurent la segmentation d’un nombre prédéterminé de pièces dans la scène. En appliquant le masque binaire d’une pièce à l’image originale, un second réseau infère la profondeur locale de cet objet. En parallèle des coordonnées de la pièce dans l’image, cette profondeur est employée dans deux réseaux estimant à la fois l’orientation de l’objet sous la forme d’un quaternion et sa translation sur l’axe Z. Enfin, un module de recalage travaillant sur la rétro-projection de la profondeur et le modèle 3D de l’objet, permet d’affiner la pose prédite par les réseaux. Afin de pallier le manque de données réelles annotées dans un contexte industriel, un processus de création de données synthétiques est proposé. En effectuant des rendus aux multiples luminosités, la versatilité du jeu de données permet d’anticiper les différentes conditions hostiles d’exploitation du réseau dans un environnement de production
This work presents a pose estimation method from a RGB image of industrial parts placed in a bin. In a first time, neural networks are used to segment a certain number of parts in the scene. After applying an object mask to the original image, a second network is inferring the local depth of the part. Both the local pixel coordinates of the part and the local depth are used in two networks estimating the orientation of the object as a quaternion and its translation on the Z axis. Finally, a registration module working on the back-projected local depth and the 3D model of the part is refining the pose inferred from the previous networks. To deal with the lack of annotated real images in an industrial context, an data generation process is proposed. By using various light parameters, the dataset versatility allows to anticipate multiple challenging exploitation scenarios within an industrial environment
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ogier, du Terrail Jean. „Réseaux de neurones convolutionnels profonds pour la détection de petits véhicules en imagerie aérienne“. Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC276/document.

Der volle Inhalt der Quelle
Annotation:
Cette thèse présente une tentative d'approche du problème de la détection et discrimination des petits véhicules dans des images aériennes en vue verticale par l'utilisation de techniques issues de l'apprentissage profond ou "deep-learning". Le caractère spécifique du problème permet d'utiliser des techniques originales mettant à profit les invariances des automobiles et autres avions vus du ciel.Nous commencerons par une étude systématique des détecteurs dits "single-shot", pour ensuite analyser l'apport des systèmes à plusieurs étages de décision sur les performances de détection. Enfin nous essayerons de résoudre le problème de l'adaptation de domaine à travers la génération de données synthétiques toujours plus réalistes, et son utilisation dans l'apprentissage de ces détecteurs
The following manuscript is an attempt to tackle the problem of small vehicles detection in vertical aerial imagery through the use of deep learning algorithms. The specificities of the matter allows the use of innovative techniques leveraging the invariance and self similarities of automobiles/planes vehicles seen from the sky.We will start by a thorough study of single shot detectors. Building on that we will examine the effect of adding multiple stages to the detection decision process. Finally we will try to come to grips with the domain adaptation problem in detection through the generation of better looking synthetic data and its use in the training process of these detectors
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lathuiliere, Stéphane. „Modèles profonds de régression et applications à la vision par ordinateur pour l'interaction homme-robot“. Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM026/document.

Der volle Inhalt der Quelle
Annotation:
Dans le but d’interagir avec des êtres humains, les robots doivent effectuer destâches de perception basique telles que la détection de visage, l’estimation dela pose des personnes ou la reconnaissance de la parole. Cependant, pour interagir naturellement, avec les hommes, le robot doit modéliser des conceptsde haut niveau tels que les tours de paroles dans un dialogue, le centre d’intérêtd’une conversion, ou les interactions entre les participants. Dans ce manuscrit,nous suivons une approche ascendante (dite “top-down”). D’une part, nousprésentons deux méthodes de haut niveau qui modélisent les comportementscollectifs. Ainsi, nous proposons un modèle capable de reconnatre les activitésqui sont effectuées par différents des groupes de personnes conjointement, telsque faire la queue, discuter. Notre approche gère le cas général où plusieursactivités peuvent se dérouler simultanément et en séquence. D’autre part,nous introduisons une nouvelle approche d’apprentissage par renforcement deréseau de neurones pour le contrôle de la direction du regard du robot. Notreapproche permet à un robot d’apprendre et d’adapter sa stratégie de contrôledu regard dans le contexte de l’interaction homme-robot. Le robot est ainsicapable d’apprendre à concentrer son attention sur des groupes de personnesen utilisant seulement ses propres expériences (sans supervision extérieur).Dans un deuxième temps, nous étudions en détail les approchesd’apprentissage profond pour les problèmes de régression. Les problèmesde régression sont cruciaux dans le contexte de l’interaction homme-robotafin d’obtenir des informations fiables sur les poses de la tête et du corpsdes personnes faisant face au robot. Par conséquent, ces contributions sontvraiment générales et peuvent être appliquées dans de nombreux contextesdifférents. Dans un premier temps, nous proposons de coupler un mélangegaussien de régressions inverses linéaires avec un réseau de neurones convolutionnels. Deuxièmement, nous introduisons un modèle de mélange gaussien-uniforme afin de rendre l’algorithme d’apprentissage plus robuste aux annotations bruitées. Enfin, nous effectuons une étude à grande échelle pour mesurerl’impact de plusieurs choix d’architecture et extraire des recommandationspratiques lors de l’utilisation d’approches d’apprentissage profond dans destâches de régression. Pour chacune de ces contributions, une intense validation expérimentale a été effectuée avec des expériences en temps réel sur lerobot NAO ou sur de larges et divers ensembles de données
In order to interact with humans, robots need to perform basic perception taskssuch as face detection, human pose estimation or speech recognition. However, in order have a natural interaction with humans, the robot needs to modelhigh level concepts such as speech turns, focus of attention or interactions between participants in a conversation. In this manuscript, we follow a top-downapproach. On the one hand, we present two high-level methods that model collective human behaviors. We propose a model able to recognize activities thatare performed by different groups of people jointly, such as queueing, talking.Our approach handles the general case where several group activities can occur simultaneously and in sequence. On the other hand, we introduce a novelneural network-based reinforcement learning approach for robot gaze control.Our approach enables a robot to learn and adapt its gaze control strategy inthe context of human-robot interaction. The robot is able to learn to focus itsattention on groups of people from its own audio-visual experiences.Second, we study in detail deep learning approaches for regression prob-lems. Regression problems are crucial in the context of human-robot interaction in order to obtain reliable information about head and body poses or theage of the persons facing the robot. Consequently, these contributions are really general and can be applied in many different contexts. First, we proposeto couple a Gaussian mixture of linear inverse regressions with a convolutionalneural network. Second, we introduce a Gaussian-uniform mixture model inorder to make the training algorithm more robust to noisy annotations. Finally,we perform a large-scale study to measure the impact of several architecturechoices and extract practical recommendations when using deep learning approaches in regression tasks. For each of these contributions, a strong experimental validation has been performed with real-time experiments on the NAOrobot or on large and diverse data-sets
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Carbajal, Guillaume. „Apprentissage profond bout-en-bout pour le rehaussement de la parole“. Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0017.

Der volle Inhalt der Quelle
Annotation:
Cette thèse s'insère dans le développement des systèmes de télécommunication mains-libres, en particulier avec des enceintes intelligentes en environnement domestique. L'utilisateur interagit avec un correspondant distant en étant généralement situé à quelques mètres de ce type de système. Les microphones sont susceptibles de capter des sons de l'environnement qui se mêlent à la voix de l'utilisateur, comme le bruit ambiant, l'écho acoustique et la réverbération. Ces types de distorsions peuvent gêner fortement l'écoute et la compréhension de la conversation par le correspondant distant, et il est donc nécessaire de les réduire. Des méthodes de filtrage existent pour réduire individuellement chacun de ces types de distorsion sonore, et leur réduction simultanée implique de combiner ces méthodes. Toutefois, celles-ci interagissent entre elles, et leurs interactions peuvent dégrader de la voix de l'utilisateur. Il est donc nécessaire d'optimiser conjointement ces méthodes. En premier lieu, nous présentons une approche de réduction de l'écho acoustique combinant un filtre d'annulation d'écho avec un post-filtre de suppression d'écho résiduel conçu de manière à s'adapter à différents modes de fonctionnement du filtre d'annulation. Pour cela, nous proposons d'estimer les coefficients du post-filtre en utilisant les spectres à court terme de plusieurs signaux observés, dont le signal estimé par le filtre d'annulation, en entrée d'un réseau de neurones. Nous montrons que cette approche améliore la performance et la robustesse du post-filtre en matière de réduction d'écho, tout en limitant la dégradation de la parole de l'utilisateur, sur plusieurs scénarios dans des conditions réelles. En second lieu, nous décrivons une approche conjointe de réduction multicanale de l'écho, de la réverbération et du bruit. Nous proposons de modéliser simultanément la parole cible et les signaux résiduels après annulation d'écho et déréverbération dans un cadre probabiliste et de représenter conjointement leurs spectres à court terme à l'aide d'un réseau de neurones récurrent. Nous intégrons cette modélisation dans un algorithme de montée par blocs de coordonnées pour mettre à jour les filtres d'annulation d'écho et de déréverbération, ainsi que le post-filtre de suppression des signaux résiduels. Nous évaluons notre approche sur des enregistrements réels dans différentes conditions. Nous montrons qu'elle améliore la qualité de la parole ainsi que la réduction de l'écho, de la réverbération et du bruit, par rapport à une approche optimisant séparément les méthodes de filtrage et une autre approche de réduction conjointe. En dernier lieu, nous formulons une version en ligne de notre approche adaptée aux situations où les conditions acoustiques varient dans le temps. Nous évaluons la qualité perceptuelle sur des exemples réels où l'utilisateur se déplace durant la conversation
This PhD falls within the development of hands-free telecommunication systems, more specifically smart speakers in domestic environments. The user interacts with another speaker at a far-end point and can be typically a few meters away from this kind of system. The microphones are likely to capture sounds of the environment which are added to the user's voice, such background noise, acoustic echo and reverberation. These types of distortion degrade speech quality, intelligibility and listening comfort for the far-end speaker, and must be reduced. Filtering methods can reduce individually each of these types of distortion. Reducing all of them implies combining the corresponding filtering methods. As these methods interact with each other which can deteriorate the user's speech, they must be jointly optimized. First of all, we introduce an acoustic echo reduction approach which combines an echo cancellation filter with a residual echo postfilter designed to adapt to the echo cancellation filter. To do so, we propose to estimate the postfilter coefficients using the short term spectra of multiple known signals, including the output of the echo cancellation filter, as inputs to a neural network. We show that this approach improves the performance and the robustness of the postfilter in terms of echo reduction, while limiting speech degradation, on several scenarios in real conditions. Secondly, we describe a joint approach for multichannel reduction of echo, reverberation and noise. We propose to simultaneously model the target speech and undesired residual signals after echo cancellation and dereveberation in a probabilistic framework, and to jointly represent their short-term spectra by means of a recurrent neural network. We develop a block-coordinate ascent algorithm to update the echo cancellation and dereverberation filters, as well as the postfilter that reduces the undesired residual signals. We evaluate our approach on real recordings in different conditions. We show that it improves speech quality and reduction of echo, reverberation and noise compared to a cascade of individual filtering methods and another joint reduction approach. Finally, we present an online version of our approach which is suitable for time-varying acoustic conditions. We evaluate the perceptual quality achieved on real examples where the user moves during the conversation
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Apprentissage profonds"

1

Patenaude, Jean-Victor. Les maladies thrombo-emboliques veineuses: Module d'auto-apprentissage : les thrombophlébites superficielles et profondes, les embolies pulmonaires. 2. Aufl. Montréal: Presses de l'Université de Montréal, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

M, Senge Peter, und Society for Organizational Learning, Hrsg. Presence: Exploring profound change in people, organizations, and society. New York: Doubleday, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Apprentissage profonds"

1

COGRANNE, Rémi, Marc CHAUMONT und Patrick BAS. „Stéganalyse : détection d’information cachée dans des contenus multimédias“. In Sécurité multimédia 1, 261–303. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9026.ch8.

Der volle Inhalt der Quelle
Annotation:
Ce chapitre détaille comment analyser une image numérique en vue d’obtenir des informations sur les données cachées par une méthode de stéganographie. Après une présentation des objectifs, plusieurs stratégies de détection sont ensuite détaillées, notamment les méthodes statistiques utilisant le rapport de vraisemblance, les méthodes par apprentissage reposant soit sur l’extraction de caractéristiques, soit sur l’utilisation de réseaux de neurones profonds.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

FLEURY SOARES, Gustavo, und Induraj PUDHUPATTU RAMAMURTHY. „Comparaison de modèles d’apprentissage automatique et d’apprentissage profond“. In Optimisation et apprentissage, 153–71. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9071.ch6.

Der volle Inhalt der Quelle
Annotation:
Pour réaliser un audit, l'utilisation de toutes les informations disponibles relatives à l'univers ou au sujet de l'audit pourrait améliorer la qualité des résultats. La classification des documents textuels de l'audit pourrait permettre l'utilisation d'informations supplémentaires pour améliorer les données structurées existantes, ce qui conduirait à une meilleure connaissance pour soutenir le processus d'audit. Nous avons appliqué cette démarche au traitement du langage naturel.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

JACQUEMONT, Mikaël, Thomas VUILLAUME, Alexandre BENOIT, Gilles MAURIN und Patrick LAMBERT. „Analyse d’images Cherenkov monotélescope par apprentissage profond“. In Inversion et assimilation de données de télédétection, 303–35. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9142.ch9.

Der volle Inhalt der Quelle
Annotation:
Sur un problème d'analyse de rayonnement gamma à partir d'observations depuis des télescopes à imagerie Cherenkov, ce chapitre présente un modèle de réseau de neurones profond multitâche. Celui-ci permet la reconstruction des paramètres des rayonnements observés. Nous démontrons l’intérêt de l'approche multitâche. Nous montrons également que cette architecture obtient de meilleures performances qu’une méthode d’analyse standard largement utilisée pour cette problématique.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

TKACHENKO, Iuliia, Alain TREMEAU und Thierry FOURNEL. „Protection de documents par impression d’éléments anticopies“. In Sécurité multimédia 2, 41–69. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9027.ch2.

Der volle Inhalt der Quelle
Annotation:
Ce chapitre dresse un panorama des approches en authentification de documents matérialisés avant de traiter de la protection par anticopie. Il passe en revue les différents types de dispositifs anticopies de l'état de l'art en distinguant les formes-tests soumis à l’impression et les codes sensibles à la copie. Les procédés d’authentification associés, améliorés/améliorables par des apprentissages profonds, sont conjointement décrits.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

ATIEH, Mirna, Omar MOHAMMAD, Ali SABRA und Nehme RMAYTI. „IdO, apprentissage profond et cybersécurité dans la maison connectée : une étude“. In Cybersécurité des maisons intelligentes, 215–56. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9086.ch6.

Der volle Inhalt der Quelle
Annotation:
Ce chapitre aborde l'utilisation de l'intelligence artificielle, de l'apprentissage automatique et de l'apprentissage profond dans le contexte des maisons connectées. Plus précisément, il met l'accent sur les avantages de l'utilisation de l'apprentissage profond en termes de sécurité dans la cybersécurité des maisons connectées. Ce chapitre examine également divers cas d'utilisation de l'intelligence artificielle et de l'apprentissage automatique, tels que la reconnaissance des activités humaines dans les maisons connectées, en utilisant des réseaux de neurones et des techniques d'apprentissage automatique. Ces méthodes permettent de détecter et d'analyser les comportements et les actions des résidents, ce qui peut contribuer à améliorer la sécurité et le confort dans les maisons connectées.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Koishi, Atsuko. „Comment dépasser le «monolinguisme» au Japon ?“ In Le Japon, acteur de la Francophonie, 49–58. Editions des archives contemporaines, 2016. http://dx.doi.org/10.17184/eac.5526.

Der volle Inhalt der Quelle
Annotation:
Un bref état des lieux de l'enseignement des langues vivantes au Japon ne peut que mettre en évidence son caractère «monolingue», tant le seul apprentissage de l'anglais se trouve mis en valeur à tous les niveaux de l'enseignement, du primaire au supérieur. Or, dans un monde à la complexité sans cesse croissante sur tous les plans, un pays peut-il encore se passer de personnes compétentes capables d'agir dans une langue autre que l'anglais? De la même façon, afin de mieux saisir cette complexité de manière adéquate et profonde, n'est-il pas mieux pour un individu de posséder plusieurs langues? À travers plusieurs exemples, nous voudrions montrer que le «monolinguisme» institutionnel est un fait «fabriqué», que ce que l'on appelle le «besoin» langagier est souvent manipulé et qu'au final, il appartient aux enseignants et aux institutions scolaires et universitaires de faire découvrir de vrais besoins aux apprenants. Nous pourrions ainsi faire de l'enseignement des langues vivantes une authentique éducation à l'altérité et non un outil coercitif d'uniformisation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Apprentissage profonds"

1

Fourcade, A. „Apprentissage profond : un troisième oeil pour les praticiens“. In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601014.

Der volle Inhalt der Quelle
Annotation:
« L’intelligence artificielle connaît un essor fulgurant depuis ces dernières années. Lapprentissage automatique et plus précisément lapprentissage profond grâce aux réseaux de neurones convolutifs ont permis des avancées majeures dans le domaine de la reconnaissance des formes. Cette présentation fait suite à mon travail de thèse. La première partie retrace lhistorique et décrit les principes de fonctionnement de ces réseaux. La seconde présente une revue de la littérature de leurs applications dans la pratique médicale de plusieurs spécialités, pour des tâches diagnostiques nécessitant une démarche visuelle (classification dimages et détection de lésions). Quinze articles, évaluant les performances de ces solutions dautomatisation, ont été analysés. La troisième partie est une discussion à propos des perspectives et des limites présentées par les réseaux de neurones convolutifs, ainsi que leurs possibles applications en chirurgie orale. »
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie