Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Apprentissage d'ontologies“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Apprentissage d'ontologies" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Dissertationen zum Thema "Apprentissage d'ontologies"
Delteil, Alexandre. „Représentation et apprentissage de concepts et d'ontologies pour le web sémantique“. Nice, 2002. http://www.theses.fr/2002NICE5786.
Der volle Inhalt der QuelleGoncharova, Olena. „Méthodes et modèles de construction automatisée d'ontologies pour des domaines spécialisés“. Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE2018/document.
Der volle Inhalt der QuelleThe thesis has been prepared within a co-supervision agreement with the Professors Jean-Hugues Chauchat (ERIC-Lyon2) and N.V. Charonova (National Polytechnic University of Kharkov in Ukraine).The results obtained can be summarized as follows:1. State of the art:Retrospective of theoretical foundations concerning the formalization of knowledge and natural language as precursors of ontology engineering.Update of the state of the art on general approaches in the field of ontology learning, and on methods for extracting terms and semantic relations.Overview of platforms and tools for ontology construction and learning; list of lexical resources available online able to support ontology learning (concept learning and relationship).2. Methodological proposals:Learning morphosyntactic patterns and implementing partial taxonomies of terms.Finding semantic classes representing concepts and relationships for the field of radiological safety.Building a frame for the various stages of the work leading to the construction of the ontology in the field of radiological safety.3. Implementation and experiments:Loading of two corpuses specialized in radiological protection, in French and Russian, with 1,500,000 and 600,000 lexical units respectively.Implementation of the three previous methods and analysis of the results obtained.The results have been published in 13 national and international journals and proceedings, between 2010 and 2016, including IMS-2012, TIA-2013, TOTH-2014, Bionica Intellecta (Бионика интеллекта) , Herald of the NTU "~ KhPI ~" (Вестник НТУ "~ ХПИ ~")
Laadhar, Amir. „Local matching learning of large scale biomedical ontologies“. Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30126.
Der volle Inhalt der QuelleAlthough a considerable body of research work has addressed the problem of ontology matching, few studies have tackled the large ontologies used in the biomedical domain. We introduce a fully automated local matching learning approach that breaks down a large ontology matching task into a set of independent local sub-matching tasks. This approach integrates a novel partitioning algorithm as well as a set of matching learning techniques. The partitioning method is based on hierarchical clustering and does not generate isolated partitions. The matching learning approach employs different techniques: (i) local matching tasks are independently and automatically aligned using their local classifiers, which are based on local training sets built from element level and structure level features, (ii) resampling techniques are used to balance each local training set, and (iii) feature selection techniques are used to automatically select the appropriate tuning parameters for each local matching context. Our local matching learning approach generates a set of combined alignments from each local matching task, and experiments show that a multiple local classifier approach outperforms conventional, state-of-the-art approaches: these use a single classifier for the whole ontology matching task. In addition, focusing on context-aware local training sets based on local feature selection and resampling techniques significantly enhances the obtained results
Fan, Zhengjie. „Apprentissage de Motifs Concis pour le Liage de Donnees RDF“. Phd thesis, Université de Grenoble, 2014. http://tel.archives-ouvertes.fr/tel-00986104.
Der volle Inhalt der QuelleNgo, Duy Hoa. „Amélioration de l'alignement d'ontologies par les techniques d'apprentissage automatique, d'appariement de graphes et de recherche d'information“. Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2012. http://tel.archives-ouvertes.fr/tel-00767318.
Der volle Inhalt der QuelleSaleem, Khalid. „Intégration de Schémas Large Echelle“. Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2008. http://tel.archives-ouvertes.fr/tel-00352352.
Der volle Inhalt der QuelleLes outils de mise en correspondance existants utilisent des techniques semi-automatiques uniquement entre deux schémas. Dans un scénario à grande échelle, où le partage des données implique un grand nombre de sources de données, ces techniques ne sont pas adaptées. De plus, la mise en correspondance semi-automatique nécessite l'intervention de l'utilisateur pour finaliser les mappings. Bien qu'elle offre la possibilité de découvrir les mappings les plus appropriés, les performances s'en trouvent fortement dégradées. Dans un premier temps, le manuscrit présente en détails l'état de l'art sur la mise en correspondance. Nous expliquons les inconvénients des outils actuellement disponibles pour répondre aux contraintes d'un scénario à grande échelle. Notre approche, PORSCHE (Performance ORiented SCHEma mediation) évite ces inconvénients et ses avantages sont mis en évidence de manière empirique.
Le principe de l'algorithme de PORSCHE consiste à regrouper d'abord les nœuds de l'arbre selon la similarité linguistique de leurs labels. Ensuite, des techniques de fouilles d'arbres utilisant les rangs des nœuds calculés au moyen du parcours en profondeur de l'arbre sont appliquées. Cela réduit l'espace de recherche d'un nœud cible et améliore par conséquent les performances, ce qui en fait une technique adaptée au contexte large échelle. PORSCHE implémente une approche hybride, qui crée également en parallèle et de manière incrémentale un schéma intégré qui englobe tous les schémas, tout en définissant les correspondances entre ces derniers et le schéma intégré. L'approche découvre des correspondances 1:1 dans un but d'intégration et de médiation. Finalement, des expérimentations sur des jeux de données réels et synthétiques montrent que PORSCHE passe à l'échelle avec de scénarios de grande échelle. La qualité des correspondances découvertes et l'intégrité du schéma intégré sont également vérifiées par une évaluation empirique.
Par ailleurs, nous présentons une technique CMPV ({\bf C}omplex {\bf M}atch {\bf P}roposition et {\bf V}alidation), pour la découverte de correspondances complexes (1:n, n:1 et n:m), entre deux schémas, validée par l'utilisation de mini-taxonomies. Cette partie est une version étendue de l'aspect de mise en correspondance de PORSCHE. Les mini-taxonomies sont extraites d'un vaste ensemble de métadonnées de domaine spécifique représenté comme des structures arborescentes. Nous proposons un cadre, appelé ExSTax ({\bf Ex}tracting {\bf S}tructurally Coherent Mini-{\bf Tax}onomies) basé sur la fouille d'arbres pour appuyer notre idée. C'est l'extension de la méthode fouille d'arbres de PORSCHE. Enfin, on utilise la technique ExSTax pour extraire une taxonomie fiable spécifique à un domaine.
Ngo, Duy Hoa. „Enhancing Ontology Matching by Using Machine Learning, Graph Matching and Information Retrieval Techniques“. Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20096/document.
Der volle Inhalt der QuelleIn recent years, ontologies have attracted a lot of attention in the Computer Science community, especially in the Semantic Web field. They serve as explicit conceptual knowledge models and provide the semantic vocabularies that make domain knowledge available for exchange and interpretation among information systems. However, due to the decentralized nature of the semantic web, ontologies are highlyheterogeneous. This heterogeneity mainly causes the problem of variation in meaning or ambiguity in entity interpretation and, consequently, it prevents domain knowledge sharing. Therefore, ontology matching, which discovers correspondences between semantically related entities of ontologies, becomes a crucial task in semantic web applications.Several challenges to the field of ontology matching have been outlined in recent research. Among them, selection of the appropriate similarity measures as well as configuration tuning of their combination are known as fundamental issues that the community should deal with. In addition, verifying the semantic coherent of the discovered alignment is also known as a crucial task. Furthermore, the difficulty of the problem grows with the size of the ontologies. To deal with these challenges, in this thesis, we propose a novel matching approach, which combines different techniques coming from the fields of machine learning, graph matching and information retrieval in order to enhance the ontology matching quality. Indeed, we make use of information retrieval techniques to design new effective similarity measures for comparing labels and context profiles of entities at element level. We also apply a graph matching method named similarity propagation at structure level that effectively discovers mappings by exploring structural information of entities in the input ontologies. In terms of combination similarity measures at element level, we transform the ontology matching task into a classification task in machine learning. Besides, we propose a dynamic weighted sum method to automatically combine the matching results obtained from the element and structure level matchers. In order to remove inconsistent mappings, we design a new fast semantic filtering method. Finally, to deal with large scale ontology matching task, we propose two candidate selection methods to reduce computational space.All these contributions have been implemented in a prototype named YAM++. To evaluate our approach, we adopt various tracks namely Benchmark, Conference, Multifarm, Anatomy, Library and Large BiomedicalOntologies from the OAEI campaign. The experimental results show that the proposed matching methods work effectively. Moreover, in comparison to other participants in OAEI campaigns, YAM++ showed to be highly competitive and gained a high ranking position
Felin, Rémi. „Découverte évolutive de connaissance à partir de graphes de données RDF“. Electronic Thesis or Diss., Université Côte d'Azur, 2024. https://theses.hal.science/tel-04874737.
Der volle Inhalt der QuelleKnowledge graphs are collections of interconnected descriptions of entities (objects, events or concepts). They provide context for the data through semantic links, providing a framework for integrating, unifying, analysing and sharing data. Today, we have many factual data-rich knowledge graphs, and building and enriching them is relatively straightforward. Enriching these graphs with schemas, rules or constraints that allow us to check their consistency and infer implicit knowledge by reasoning is more difficult and costly. This thesis presents an approach based on the Grammatical Evolution technique for automatically discovering new knowledge from the factual data of a data graph expressed in RDF. This approach is based on the idea that candidate knowledge is generated from a heuristic mechanism (exploiting the graph data), is tested against the graph data, and evolves through an evolutionary process so that only the most credible candidate knowledge is kept. First, we focused on discovering OWL axioms that allow, for example, the expression of relationships between concepts and the inference of new facts previously unknown from these relationships. Candidate axioms are evaluated using an existing heuristic based on possibility theory, which makes it possible to consider the incompleteness of information in a data graph. This thesis presents the limitations of this heuristic and a series of contributions allowing an evaluation that is significantly less costly in computation time, thus opening up the discovery of candidate axioms using this heuristic. Second, we propose discovering SHACL shapes that express constraints that RDF data must respect. These shapes are useful for checking the data graph's consistency (e.g., structural) and facilitating new data integration. The evaluation of candidate shapes is based on the SHACL evaluation mechanism, for which we proposed a probabilistic framework to take into account errors and the inherent incompleteness of the data graphs. Finally, we present RDFminer, an open-source Web application that executes our approach to discovering OWL axioms or SHACL shapes from an RDF data graph. Through an interactive interface, the user can also control the execution and analyse the results in real-time. The results show that the proposed approach can be used to discover a wide range of new, credible and relevant knowledge from large RDF data graphs
Shahzad, Muhammad Kashif. „Exploitation dynamique des données de production pour améliorer les méthodes DFM dans l'industrie Microélectronique“. Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00771672.
Der volle Inhalt der Quelle