Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Apprentissage automatique dynamique“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Apprentissage automatique dynamique" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Apprentissage automatique dynamique"
Rowe, Frantz, und Ojelanki Ngwenyama. „L’enfermement dans les pratiques de big data : une interprétation par la théorie sociale critique“. Terminal 138 (2024). http://dx.doi.org/10.4000/12dkk.
Der volle Inhalt der QuelleDissertationen zum Thema "Apprentissage automatique dynamique"
Quoy, Mathias. „Apprentissage dans les réseaux neuromimétiques à dynamique chaotique“. Toulouse, ENSAE, 1994. http://www.theses.fr/1994ESAE0009.
Der volle Inhalt der QuelleCalvelo, Aros Daniel. „Apprentissage de modèles e la dynamique pour l'aide à la décision en monitorage clinique“. Lille 1, 1999. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/1999/50376-1999-351.pdf.
Der volle Inhalt der QuelleGelly, Sylvain. „Une contribution à l'apprentissage par renforcement : application au Computer Go“. Paris 11, 2007. http://www.theses.fr/2007PA112227.
Der volle Inhalt der QuelleReinforcement Learning (RL) is at the interface of control theory, supervised and unsupervised learning, optimization and cognitive sciences. While RL addresses many objectives with major economic impact, it raises deep theoretical and practical difficulties. This thesis brings some contributions to RL, mainly on three axis. The first axis corresponds to environment modeling, i. E. Learning the transition function between two time steps. Factored approaches give an efficiently framework for the learning and use of this model. The Bayesian Networks are a tool to represent such a model, and this work brings new learning criterion, either in parametric learning (conditional probabilities) and non parametric (structure). The second axis is a study in continuous space and action RL, thanks to the dynamic programming algorithm. This analysis tackles three fundamental steps: optimization (action choice from the value function), supervised learning (regression) of the value function and choice of the learning examples (active learning). The third axis tackles the applicative domain of the game of Go, as a high dimensional discrete control problem, one of the greatest challenge in Machine Learning. The presented algorithms with their improvements made the resulting program, MoGo, win numerous international competitions, becoming for example the first go program playing at an amateur dan level on 9x9
Soula, Hédi. „Dynamique et plasticité dans les réseaux de neurones à impulsions : étude du couplage temporel réseau / agent / environnement“. Lyon, INSA, 2005. http://theses.insa-lyon.fr/publication/2005ISAL0056/these.pdf.
Der volle Inhalt der QuelleAn «artificial life » approach is conducted in order to assess the neural basis of behaviours. Behaviour is the consequence of a good concordance between the controller, the agent’s sensori-motors capabilities and the environment. Within a dynamical system paradigm, behaviours are viewed as attractors in the perception/action space – derived from the composition of the internal and external dynamics. Since internal dynamics is originated by the neural dynamics, learning behaviours therefore consists on coupling external and internal dynamics by modifying network’s free parameters. We begin by introducing a detailed study of the dynamics of large networks of spiking neurons. In spontaneous mode (i. E. Without any input), these networks have a non trivial functioning. According to the parameters of the weight distribution and provided independence hypotheses, we are able to describe completely the spiking activity. Among other results, a bifurcation is predicted according to a coupling factor (the variance of the distribution). We also show the influence of this parameter on the chaotic dynamics of the network. To learn behaviours, we use a biologically plausible learning paradigm – the Spike-Timing Dependent Plasticity (STDP) that allows us to couple neural and external dynamics. Applying shrewdly this learning law enables the network to remain “at the edge of chaos” which corresponds to an interesting state of activity for learning. In order to validate our approach, we use these networks to control an agent whose task is to avoid obstacles using only the visual flow coming from its linear camera. We detail the results of the learning process for both simulated and real robotics platform
Soula, Hédi Favrel Joel Beslon Guillaume. „Dynamique et plasticité dans les réseaux de neurones à impulsions étude du couplage temporel réseau / agent / environnement /“. Villeurbanne : Doc'INSA, 2005. http://docinsa.insa-lyon.fr/these/pont.php?id=soula.
Der volle Inhalt der QuelleLiu, Zongyi. „Self-Adaptive Bandwidth Control for Balanced QoS and Energy Aware Optimization in Wireless Sensor Network“. Thesis, Toulouse, INSA, 2017. http://www.theses.fr/2017ISAT0034/document.
Der volle Inhalt der QuelleIn the Wireless Multimedia Sensor Networks (WMSNs) field, highly saturated flow increases the probability of collision and congestion in data transmission which dramatically degrade the performance of Quality of Service (QoS). Multi-channels deployment technique is often applied to parallel transmission for QoS guarantee. However, how to make trade-off between QoS requirement and energy efficiency is a challenges to energy-constrained WMSNs. Theoretical analysis of MAC layer and PHY layer structure based on IEEE 802.15.4 standard, aim to study on the cross-layer analytical model in order to provide stronger understanding on the relationship between sensor network parameters and performance, pave the way for new enhancements in succedent multi-channel optimization research. Find effective performance indicator and design efficient performance collection or estimation approach based on the corresponding metrics, which could be used as the parameter input of multi-channel assignment mechanism. Comprehensive dynamically control system is designed for multi-channel assignment task based on light weight and high efficient computation intelligence techniques. We present a fuzzy-based dynamic bandwidth multi-channel assignment mechanism (MCDB_FLS). Cross-layer proactive available bandwidth is estimated as parameters for multi-channel deployment admission control. Reinforcement learning-based approach is proposed for more wisely decision-making in multi- channel allocation mission. Furthermore, fuzzy logic-based bandwidth threshold model provides dynamic optimization on system admission control. Simulations show the MCDB_FLS performs better than benchmark on the metrics of QoS and energy efficiency, achieves the trade-off between energy efficiency and QoS improvement. Finally, we introduce the integration of incremental machine learning approach into multi-channel assignment mechanism with Deep Q Network reinforcement learning method (DQMC). Besides, fully action weight initialization is implemented based on multi-class supervised learning classifier with stacking ensemble approach. DQMC improve the ability of self-adaptive and smart control to learn pattern from different environment of multi-tasks WMSNs
Munos, Rémi. „Apprentissage par renforcement, étude du cas continu“. Paris, EHESS, 1997. http://www.theses.fr/1997EHESA021.
Der volle Inhalt der QuelleNasri, Ridha. „Paramétrage Dynamique et Optimisation Automatique des Réseaux Mobiles 3G et 3G+“. Phd thesis, Université Pierre et Marie Curie - Paris VI, 2009. http://tel.archives-ouvertes.fr/tel-00494190.
Der volle Inhalt der QuelleAmadou, Boubacar Habiboulaye. „Classification Dynamique de données non-stationnaires :Apprentissage et Suivi de Classes évolutives“. Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2006. http://tel.archives-ouvertes.fr/tel-00106968.
Der volle Inhalt der QuelleAlami, Réda. „Bandits à Mémoire pour la prise de décision en environnement dynamique. Application à l'optimisation des réseaux de télécommunications“. Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG063.
Der volle Inhalt der QuelleIn this PhD thesis, we study the non-stationary multi-armed bandit problem where the non-stationarity behavior of the environment is characterized by several abrupt changes called "change-points". We propose Memory Bandits: a combination between an algorithm for the stochastic multi-armed bandit and the Bayesian Online Change-Point Detector (BOCPD). The analysis of the latter has always been an open problem in the statistical and sequential learning theory community. For this reason, we derive a variant of the Bayesian Online Change-point detector which is easier to mathematically analyze in term of false alarm rateand detection delay (which are the most common criteria for online change-point detection). Then, we introduce the decentralized exploration problem in the multi-armed bandit paradigm where a set of players collaborate to identify the best arm by asynchronously interacting with the same stochastic environment. We propose a first generic solution called decentralized elimination: which uses any best arm identification algorithm as a subroutine with the guar-antee that the algorithm ensures privacy, with a low communication cost. Finally, we perform an evaluation of the multi-armed bandit strategies in two different context of telecommunication networks. First, in LoRaWAN (Long Range Wide Area Network) context, we propose to use multi-armed bandit algorithms instead of the default algorithm ADR (Adaptive Data Rate) in order to minimize the energy consumption and the packet losses of end-devices. Then, in a IEEE 802.15.4-TSCH context, we perform an evaluation of 9 multi-armed bandit algorithms in order to select the ones that choose high-performance channels, using data collected through the FIT IoT-LAB platform. The performance evaluation suggests that our proposal can significantly improve the packet delivery ratio compared to the default TSCH operation, thereby increasing the reliability and the energy efficiency of the transmissions
Bücher zum Thema "Apprentissage automatique dynamique"
Agnès, Guillot, und Daucé Emmanuel, Hrsg. Approche dynamique de la cognition artificielle. Paris: Hermès science publications, 2002.
Den vollen Inhalt der Quelle finden