Zeitschriftenartikel zum Thema „Applied mathematics“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Applied mathematics.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Applied mathematics" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Smith, Ken, und Peter J. F. Horril. „Applied Mathematics“. Mathematical Gazette 74, Nr. 467 (März 1990): 71. http://dx.doi.org/10.2307/3618868.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Faddeev, L. D., und S. P. Merkureiv. „New Books: Mathematical Physics and Applied Mathematics“. Physics Essays 8, Nr. 2 (Juni 1995): 266. http://dx.doi.org/10.4006/1.3029190.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Weintraub, E. Roy, und Philip Mirowski. „The Pure and the Applied: Bourbakism Comes to Mathematical Economics“. Science in Context 7, Nr. 2 (1994): 245–72. http://dx.doi.org/10.1017/s026988970000168x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The ArgumentIn the minds of many, the Bourbakist trend in mathematics was characterized by pursuit of rigor to the detriment of concern for applications or didactic concessions to the nonmathematician, which would seem to render the concept of a Bourbakist incursion into a field of applied mathematices an oxymoron. We argue that such a conjuncture did in fact happen in postwar mathematical economics, and describe the career of Gérard Debreu to illustrate how it happened. Using the work of Leo Corry on the fate of the Bourbakist program in mathematics, we demonstrate that many of the same problems of the search for a formal structure with which to ground mathematical practice also happened in the case of Debreu. We view this case study as an alternative exemplar to conventional discussions concerning the “unreasonable effectiveness” of mathematics in science.
4

Kaushal Rana. „Analysis of Applied Mathematics“. Integrated Journal for Research in Arts and Humanities 2, Nr. 3 (31.05.2022): 62–66. http://dx.doi.org/10.55544/ijrah.2.3.37.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Mathematics applied to applications involves using mathematics for issues that arise in various fields, e.g., science, engineering, engineering, or other areas, and developing new or better techniques to address the demands of the unique challenges. We consider it applied math to apply maths to problems in the real world with the double purpose of describing observed phenomena and forecasting new yet unknown phenomena. Thus, the focus is on math, e.g., creating new techniques to tackle the issues of the unique challenges and the actual world. The issues arise from a variety of applications, including biological and physical sciences as well as engineering and social sciences. They require knowledge of different branches of mathematics including the analysis of differential equations and stochastics. They are based on mathematical and numerical techniques. Most of our faculty and students work directly with the experimentalists to watch their research findings come to life. This research team investigates mathematical issues arising out of geophysical, chemical, physical, and biophysical sciences. The majority of these problems are explained by time-dependent partial integral or ordinary differential equations. They are also accompanied by complex boundary conditions, interface conditions, and external forces. Nonlinear dynamical systems provide an underlying geometrical and topological model for understanding, identifying, and quantifying the complex phenomena in these equations. The theory of partial differential equations lets us correctly formulate well-posed problems and study the behavior of solutions, which sets the stage for effective numerical simulations. Nonlocal equations result from the macroscopically modeling stochastic dynamical systems characterized by Levy noise and the modeling of long-range interactions. They also provide a better understanding of anomalous diffusions.
5

Billinge, H. „Applied Constructive Mathematics: On Hellman's 'Mathematical Constructivism in Spacetime'“. British Journal for the Philosophy of Science 51, Nr. 2 (01.06.2000): 299–318. http://dx.doi.org/10.1093/bjps/51.2.299.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Glass, Leon. „Mathematical aspects of physiology, lecture notes in applied mathematics“. Mathematical Biosciences 73, Nr. 2 (April 1985): 309–10. http://dx.doi.org/10.1016/0025-5564(85)90018-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Schaeffer, David G., und Ward Cheney. „Analysis for Applied Mathematics“. American Mathematical Monthly 110, Nr. 6 (Juni 2003): 550. http://dx.doi.org/10.2307/3647928.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Parker, Charles, und C. A. Bishop. „Applied Mathematics 'A' Level“. Mathematical Gazette 69, Nr. 447 (März 1985): 53. http://dx.doi.org/10.2307/3616461.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

G., W., und Renato Spigler. „Applied and Industrial Mathematics.“ Mathematics of Computation 58, Nr. 197 (Januar 1992): 455. http://dx.doi.org/10.2307/2153051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kondratiev, Yuri. „Applied philosophy in mathematics“. Мiждисциплiнарнi дослiдження складних систем, Nr. 16 (23.05.2020): 33–43. http://dx.doi.org/10.31392/iscs.2020.16.033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Strang, G., und L. B. Freund. „Introduction to Applied Mathematics“. Journal of Applied Mechanics 53, Nr. 2 (01.06.1986): 480. http://dx.doi.org/10.1115/1.3171799.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Strang, G., und H. Saunders. „Introduction to Applied Mathematics“. Journal of Vibration and Acoustics 110, Nr. 2 (01.04.1988): 255–56. http://dx.doi.org/10.1115/1.3269508.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Zeeman, Christopher. „Mathematics Applied to Dressmaking“. Costume 28, Nr. 1 (01.01.1994): 97–102. http://dx.doi.org/10.1179/cos.1994.28.1.97.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Zhan, Xiaoyong. „Applied Mathematics in Hydrogeology“. Computers & Geosciences 27, Nr. 7 (August 2001): 891–93. http://dx.doi.org/10.1016/s0098-3004(00)00174-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

McKee, S. „Mathematics Applied to Industry“. IMA Journal of Management Mathematics 5, Nr. 1 (1993): 264. http://dx.doi.org/10.1093/imaman/5.1.264.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Bains, R. „Handbook of applied mathematics“. Engineering Analysis with Boundary Elements 9, Nr. 2 (Januar 1992): 190–91. http://dx.doi.org/10.1016/0955-7997(92)90067-h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Brezinski, C. „Principles of applied mathematics“. Mathematics and Computers in Simulation 31, Nr. 6 (Februar 1990): 596. http://dx.doi.org/10.1016/0378-4754(90)90070-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

W.F.A. „Applied and industrial mathematics“. Mathematics and Computers in Simulation 33, Nr. 2 (August 1991): 182–83. http://dx.doi.org/10.1016/0378-4754(91)90183-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Yang, Ziheng. „Phylogenetics as applied mathematics“. Trends in Ecology & Evolution 18, Nr. 11 (November 2003): 558–59. http://dx.doi.org/10.1016/s0169-5347(03)00194-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Wing-Kam, Liu. „Introduction to applied mathematics“. Computer Methods in Applied Mechanics and Engineering 61, Nr. 3 (April 1987): 371–72. http://dx.doi.org/10.1016/0045-7825(87)90101-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Holland, Robert A. „Apriority and applied mathematics“. Synthese 92, Nr. 3 (September 1992): 349–70. http://dx.doi.org/10.1007/bf00414287.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Jiang, Zhi-jie, Hong-bin Bai, Lin Guan und Zuo-an Li. „Teaching reflection and practice of mathematical analysis for freshman of mathematics and applied mathematics“. International Journal of Mathematical Analysis 16, Nr. 3 (2022): 141–48. http://dx.doi.org/10.12988/ijma.2022.912430.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Murawski, Roman. „Mathematics and Theology in the Thought of Nicholas of Cusa“. Logica Universalis 13, Nr. 4 (November 2019): 477–85. http://dx.doi.org/10.1007/s11787-019-00232-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Nicholas of Cusa was first of all a theologian but he was interested also in mathematic and natural sciences. In fact philosophico-theological and mathematical ideas were intertwined by him, theological and philosophical ideas influenced his mathematical considerations, in particular when he considered philosophical problems connected with mathematics and vice versa, mathematical ideas and examples were used by him to explain some ideas from theology. In this paper we attempt to indicate this mutual influence. We shall concentrate on the following problems: (1) the role and place of mathematics and mathematical knowledge in knowledge in general and in particular in theological knowledge, (2) ontology of mathematical objects and their origin, in particular their relations to God and their meaning for the description of the world and physical reality, (3) infinity in mathematics versus infinity in theology and their mutual relations and connections. It will be shown that—according to Nicholas—mathematics and mathematical thinking are tools of rationalization of theology and liberating it in a certain sense from the trap of apophatic theology.
24

Hoffmann, Miklós. „The Ontological Role of Applied Mathematics in Virtual Worlds“. Philosophies 7, Nr. 1 (21.02.2022): 22. http://dx.doi.org/10.3390/philosophies7010022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In this paper, I will argue that with the emergence of digital virtual worlds (in video games, animation movies, etc.) by the animation industry, we need to rethink the role and authority of mathematics, also from an ontological point of view. First I will demonstrate that the application of mathematics to the creation and description of the digital, virtual worlds behaves in many respects analogously to the application of mathematics to the description of real-world phenomena from the viewpoint of the history of science. However, from other aspects, the application of mathematics significantly differs in this virtual world from the application to real-world fields. The main thesis of my paper is that the role of mathematics in the digital animation industry can be ontologically different from its usual role. In the application of mathematics to digital virtual worlds, mathematical concepts are no longer just modelling tools, forming a subordinated, computational basis, but they can direct and organise, and even create non-mathematical theory, something that we can call, for example, digital physics and biology. I will study this new, creative role of mathematics through some concrete phenomena, specifically through gravity. Our conclusion is that the animation industry opens an entirely new chapter in the relationship between (digital) sciences and mathematics.
25

Pedrotti, Leon S., und John D. Chamberlain. „CORD Applied Mathematics: Hands-On Learning in Context“. Mathematics Teacher 88, Nr. 8 (November 1995): 690a—707. http://dx.doi.org/10.5951/mt.88.8.690a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
My and José are hurrying to their morning mathematic class. They are excited! Today they are scheduled to do a mathematics-laboratory assignment. Twice a week, their classroom turns into a laboratory where they use real measuting equipment—such as a vernier caliper, a carpenter's square, or a stopwatch. They collect and analyze data. They ee just how the mathematics they learn in the classroom helps them solve real-world problems. They really like these assignments.
26

Kornilov, Viktor S. „Interdisciplinary scientific communication in the content of teaching applied mathematics“. RUDN Journal of Informatization in Education 16, Nr. 2 (15.12.2019): 162–72. http://dx.doi.org/10.22363/2312-8631-2019-16-2-162-172.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Problem and goal. Today, graduates studying in the physical and mathematical areas of training in the profile of applied mathematics have high requirements [23; 24]. Such graduates should have not only fundamental knowledge in the disciplines of applied mathematics, have a scientific outlook, skills and research of applied tasks with the help of mathematical modeling, but also strive to implement applied research through environmental technologies. The achievement of such goals in teaching students applied mathematics requires the use of various pedagogical and information technologies in the educational process, the development of learning content, new forms and methods of training, the involvement of specialists in applied mathematics in teaching. Methodology. In the process of training specialists in applied mathematics, implemented the idea of developing their mathematical creativity, strengthening the motivation for the formation of deep theoretical and practical knowledge in the disciplines of applied mathematics and the foundations of humanitarian culture. The implementation of these important ideas is carried out on the basis of extensive use of interdisciplinary scientific relations in the conditions of humanitarization of university mathematical education. The formation of students’ fundamental knowledge of applied mathematics, the foundations of humanitarian culture is achieved by developing the content of such training on the basis of modern scientific achievements of applied mathematics, the implementation of scientific and educational, scientific and educational and humanitarian potential of teaching applied mathematics. Results. The obtained fundamental knowledge in applied mathematics, formed scientific worldview and humanitarian culture will allow graduates in their future professional activities to show a humane attitude to nature and the world, to apply environmental technologies in the implementation of applied research. In addition, with such a wealth of knowledge, graduates are able to be worthy members of the modern information society with a humanitarian culture. Conclusion. In the process of teaching applied mathematics, using innovative pedagogical technologies, it is advisable for students not only to give fundamental scientific knowledge, but also to instill the foundations of humanitarian culture.
27

Lyashenko, Viktor, Elena Kobilskaya und Tetiana Nabok. „APPLICATION OF MATHEMATICS SOFTWARE FOR SOLVING APPLIED PROBLEMS“. Transactions of Kremenchuk Mykhailo Ostrohradskyi National University, Nr. 3(128) (11.06.2021): 11–16. http://dx.doi.org/10.30929/1995-0519.2021.3.11-16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Purpose. To show the possibilities of using mathematics software in solving problems arising in the construction of mathematical models of various processes and, thus, to reveal the importance of realizing the professional orientation of the mathematical training of students of natural and engineering specialties. Methodology. A number of mathematical models that are presented in the form of a Cauchy problem for a common first-order differential equation are considered in this paper. Mathematical models considered in this paper describe chemical and ecological processes. Euler's numerical method is used to solve the problems that describe the proposed models. This method is implemented in special mathematical software (Mathcad, Matlab). Findings. It is shown how the use of special functions designed to solve the Cauchy problem solves the problems proposed in mathematical models. Graphs are built in Mathcad and Matlab, including graphs that can be used to compare analytical and numerical solutions of problems obtained by Euler's method. Originality. The paper concludes that mathematical models of many technological and physical processes in different industries can be represented by the Cauchy problem for a common differential equation. Practical value. The considered mathematical models show the importance of realization of professional orientation of mathematical training of students of natural and engineering specialties. Conclusions. Mathematical modeling allows you to study and evaluate various processes (physical, economic, environmental), and therefore knowledge of the basics of modeling and special mathematical software is very important in the training of modern specialists in various specialties. The problems presented in the article are used in teaching the courses of numerical methods and computer mathematics in the study of the topic «Numerical Solution of Differential Equations». References 10, tables 2, figures 9.
28

Muhammed-Amin, Dlvan O. „Emerging Trends in Applied Mathematics“. Cihan University-Erbil Scientific Journal 8, Nr. 1 (10.06.2024): 36–40. http://dx.doi.org/10.24086/cuesj.v8n1y2024.pp36-40.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This research explores the emerging trends in applied mathematics and their far-reaching implications in various fields. Machine learning and artificial intelligence are revolutionizing healthcare, finance, and natural language processing. Big data analysis is enhancing decision-making in finance, healthcare, and logistics. Quantum computing promises to transform materials science and renewable energy. These trends are reshaping research and practice, offering innovative solutions and opportunities for interdisciplinary collaboration. Ethical considerations and the development of advanced algorithms are critical areas of future research. This study serves as a foundation for understanding and harnessing the potential of these trends, emphasizing the importance of continuous exploration and skill development in an evolving mathematical landscape.
29

Stylianides, Gabriel J., und Andreas J. Stylianides. „Mathematics for teaching: A form of applied mathematics“. Teaching and Teacher Education 26, Nr. 2 (Februar 2010): 161–72. http://dx.doi.org/10.1016/j.tate.2009.03.022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Wilson, David P. „Mathematics is applied by everyone except applied mathematicians“. Applied Mathematics Letters 22, Nr. 5 (Mai 2009): 636–37. http://dx.doi.org/10.1016/j.aml.2008.06.038.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Llopis-Albert, Carlos, und Daniel Palacios-Marques. „Applied Mathematical Problems in Engineering“. Multidisciplinary Journal for Education, Social and Technological Sciences 3, Nr. 2 (03.10.2016): 1. http://dx.doi.org/10.4995/muse.2016.6679.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
There is a close relationship between engineering and mathematics, which has led to the development of new techniques in recent years. Likewise the developments in technology and computers have led to new ways of teaching mathematics for engineering students and the use of modern techniques and methods. This research aims to provide insight on how to deal with mathematical problems for engineering students. This is performed by means of a fuzzy set/Qualitative Comparative Analysis applied to conflict resolution of Public Participation Projects in support to the EU Water Framework Directive.
32

吴, 文青. „Research on Financial Mathematics Teaching Reform for Mathematics and Applied Mathematics“. Creative Education Studies 06, Nr. 03 (2018): 181–85. http://dx.doi.org/10.12677/ces.2018.63029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Van Inwagen, Peter. „Fictionalist Nominalism and Applied Mathematics“. Monist 97, Nr. 4 (2014): 479–502. http://dx.doi.org/10.5840/monist201497431.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Ellerby, F. B., und Gilbert Strang. „An Introduction to Applied Mathematics“. Mathematical Gazette 71, Nr. 457 (Oktober 1987): 241. http://dx.doi.org/10.2307/3616781.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Mudge, Michael R., und J. David Logan. „Applied Mathematics: A Contemporary Approach“. Mathematical Gazette 72, Nr. 461 (Oktober 1988): 244. http://dx.doi.org/10.2307/3618279.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Davis, Philip J. „Applied Mathematics as Social Contract“. Mathematics Magazine 61, Nr. 3 (01.06.1988): 139. http://dx.doi.org/10.2307/2689711.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Lawes, C. E., T. Bridgeman und G. R. Baldock. „Applied Mathematics: A Course Companion“. Mathematical Gazette 74, Nr. 468 (Juni 1990): 179. http://dx.doi.org/10.2307/3619385.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Blume, Frank. „The Miracle of Applied Mathematics“. Mathematics Enthusiast 11, Nr. 3 (01.12.2014): 463–74. http://dx.doi.org/10.54870/1551-3440.1312.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Davis, Philip. „Applied Mathematics as Social Contract“. Humanistic Mathematics Network Journal 1, Nr. 1 (Juni 1987): 1–19. http://dx.doi.org/10.5642/hmnj.198701.01.03.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Seaman, John C. „Soil Chemistry with Applied Mathematics“. Soil Science Society of America Journal 70, Nr. 2 (März 2006): 709. http://dx.doi.org/10.2136/sssaj2005.0005br.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Reeves, Edward, W. E. Williams und A. Waltham. „Applied Mathematics for Advanced Level“. Mathematical Gazette 70, Nr. 453 (Oktober 1986): 233. http://dx.doi.org/10.2307/3615697.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Shah, Nagendra Prasad. „About Pure and Applied Mathematics“. BIBECHANA 3 (18.02.2018): 19–20. http://dx.doi.org/10.3126/bibechana.v3i0.19224.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Finkel, Daniel E., Christopher Kuster, Matthew Lasater, Rachel Levy, Jill P. Reese und Ilse C. F. Ipsen. „Communicating Applied Mathematics: Four Examples“. SIAM Review 48, Nr. 2 (Januar 2006): 359–89. http://dx.doi.org/10.1137/s0036144504443523.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Voss, D. „APPLIED MATHEMATICS: Unraveling Cellular Motion“. Science 314, Nr. 5801 (10.11.2006): 897a. http://dx.doi.org/10.1126/science.314.5801.897a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Bromilow, M. „Computer algebra and applied mathematics“. IEE Review 43, Nr. 6 (01.11.1997): 259–62. http://dx.doi.org/10.1049/ir:19970610.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Voss, D. „APPLIED MATHEMATICS: Open and Shut“. Science 317, Nr. 5840 (17.08.2007): 872a. http://dx.doi.org/10.1126/science.317.5840.872a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Cohen, Hirsh. „Applied mathematics, a national view“. IBM Journal of Research and Development 31, Nr. 2 (März 1987): 158–61. http://dx.doi.org/10.1147/rd.312.0158.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Davis, Philip J. „Applied Mathematics as Social Contract“. Mathematics Magazine 61, Nr. 3 (Juni 1988): 139–47. http://dx.doi.org/10.1080/0025570x.1988.11977361.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Cook, Brandon G. „Applied Mathematics: Methods and Matlab“. Computing in Science & Engineering 16, Nr. 4 (Juli 2014): 6–7. http://dx.doi.org/10.1109/mcse.2014.81.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Williamson, Timothy. „ALTERNATIVE LOGICS AND APPLIED MATHEMATICS“. Philosophical Issues 28, Nr. 1 (06.09.2018): 399–424. http://dx.doi.org/10.1111/phis.12131.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie