Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Application to image restoration“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Application to image restoration" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Application to image restoration"
Ishii, Shin, Sehyung Lee, Hidetoshi Urakubo, Hideaki Kume und Haruo Kasai. „Generative and discriminative model-based approaches to microscopic image restoration and segmentation“. Microscopy 69, Nr. 2 (26.03.2020): 79–91. http://dx.doi.org/10.1093/jmicro/dfaa007.
Der volle Inhalt der QuelleTang, Yi, Jin Qiu und Ming Gao. „Fuzzy Medical Computer Vision Image Restoration and Visual Application“. Computational and Mathematical Methods in Medicine 2022 (21.06.2022): 1–10. http://dx.doi.org/10.1155/2022/6454550.
Der volle Inhalt der QuelleZhang, Yang, Hangyu Xie, Shikai Zhuang und Xiaoan Zhan. „Image Processing and Optimization Using Deep Learning-Based Generative Adversarial Networks (GANs)“. Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023 5, Nr. 1 (11.06.2024): 50–62. http://dx.doi.org/10.60087/jaigs.v5i1.163.
Der volle Inhalt der QuelleLiu, Zihan. „Literature Review on Image Restoration“. Journal of Physics: Conference Series 2386, Nr. 1 (01.12.2022): 012041. http://dx.doi.org/10.1088/1742-6596/2386/1/012041.
Der volle Inhalt der QuelleYuan, Yuan, Yao Hua Yi und Min Jing Miao. „An Automatic Calculation Method of MTF and the Application in Blurred Images Restoration“. Applied Mechanics and Materials 731 (Januar 2015): 141–46. http://dx.doi.org/10.4028/www.scientific.net/amm.731.141.
Der volle Inhalt der QuelleLi, Yiyang. „Digital signal processing techniques for image enhancement and restoration“. Applied and Computational Engineering 17, Nr. 1 (23.10.2023): 198–205. http://dx.doi.org/10.54254/2755-2721/17/20230940.
Der volle Inhalt der QuelleHafiz Muhammad Tayyab Khushi. „Impulse Noise Removal Using Soft-computing“. Lahore Garrison University Research Journal of Computer Science and Information Technology 6, Nr. 1 (30.03.2022): 32–48. http://dx.doi.org/10.54692/lgurjcsit.2022.0601275.
Der volle Inhalt der QuelleKashyap, R. L., und K. B. Eom. „Robust image modeling techniques with an image restoration application“. IEEE Transactions on Acoustics, Speech, and Signal Processing 36, Nr. 8 (1988): 1313–25. http://dx.doi.org/10.1109/29.1659.
Der volle Inhalt der QuelleHu, Yang Bo, Hua Jiang und Long Bing Li. „The Research of Application in Image Restoration Based on Wiener Filtering“. Applied Mechanics and Materials 278-280 (Januar 2013): 1232–36. http://dx.doi.org/10.4028/www.scientific.net/amm.278-280.1232.
Der volle Inhalt der QuelleTao, Yu, und Jan-Peter Muller. „Super-Resolution Restoration of MISR Images Using the UCL MAGiGAN System“. Remote Sensing 11, Nr. 1 (29.12.2018): 52. http://dx.doi.org/10.3390/rs11010052.
Der volle Inhalt der QuelleDissertationen zum Thema "Application to image restoration"
Boukouvala, Erisso. „Image restoration techniques and application on astronomical images“. Thesis, University of Reading, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414571.
Der volle Inhalt der QuelleQiu, Zhen. „Feature-preserving image restoration and its application in biological fluorescence microscopy“. Thesis, Heriot-Watt University, 2013. http://hdl.handle.net/10399/2682.
Der volle Inhalt der QuelleAbboud, Feriel. „Restoration super-resolution of image sequences : application to TV archive documents“. Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1038/document.
Der volle Inhalt der QuelleThe last century has witnessed an explosion in the amount of video data stored with holders such as the National Audiovisual Institute whose mission is to preserve and promote the content of French broadcast programs. The cultural impact of these records, their value is increased due to commercial reexploitation through recent visual media. However, the perceived quality of the old data fails to satisfy the current public demand. The purpose of this thesis is to propose new methods for restoring video sequences supplied from television archive documents, using modern optimization techniques with proven convergence properties. In a large number of restoration issues, the underlying optimization problem is made up with several functions which might be convex and non-necessarily smooth. In such instance, the proximity operator, a fundamental concept in convex analysis, appears as the most appropriate tool. These functions may also involve arbitrary linear operators that need to be inverted in a number of optimization algorithms. In this spirit, we developed a new primal-dual algorithm for computing non-explicit proximity operators based on forward-backward iterations. The proposed algorithm is accelerated thanks to the introduction of a preconditioning strategy and a block-coordinate approach in which at each iteration, only a "block" of data is selected and processed according to a quasi-cyclic rule. This approach is well suited to large-scale problems since it reduces the memory requirements and accelerates the convergence speed, as illustrated by some experiments in deconvolution and deinterlacing of video sequences. Afterwards, a close attention is paid to the study of distributed algorithms on both theoretical and practical viewpoints. We proposed an asynchronous extension of the dual forward-backward algorithm, that can be efficiently implemented on a multi-cores architecture. In our distributed scheme, the primal and dual variables are considered as private and spread over multiple computing units, that operate independently one from another. Nevertheless, communication between these units following a predefined strategy is required in order to ensure the convergence toward a consensus solution. We also address in this thesis the problem of blind video deconvolution that consists in inferring from an input degraded video sequence, both the blur filter and a sharp video sequence. Hence, a solution can be reached by resorting to nonconvex optimization methods that estimate alternatively the unknown video and the unknown kernel. In this context, we proposed a new blind deconvolution method that allows us to implement numerous convex and nonconvex regularization strategies, which are widely employed in signal and image processing
Al-Suwailem, Umar A. „Continuous spatial domain image identification and restoration with multichannel applications /“. free to MU campus, to others for purchase, 1996. http://wwwlib.umi.com/cr/mo/fullcit?p9737865.
Der volle Inhalt der QuelleAuyeung, Cheung. „Optimal constraint-based signal restoration and its applications“. Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/15785.
Der volle Inhalt der QuelleEastlick, Anne C. „Genre criticism : an application of BP's image restoration campaign to the crisis communication genre“. Scholarly Commons, 2011. https://scholarlycommons.pacific.edu/uop_etds/767.
Der volle Inhalt der QuelleWen, Youwei. „Fast solvers for Toeplitz systems with applications to image restoration“. Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B3688280X.
Der volle Inhalt der QuelleWen, Youwei, und 文有為. „Fast solvers for Toeplitz systems with applications to image restoration“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B3688280X.
Der volle Inhalt der QuelleSaeed, Mohammed. „Maximum likelihood parameter estimation of mixture models and its application to image segmentation and restoration“. Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/43410.
Der volle Inhalt der QuelleGibbs, Alison L. „Convergence of Markov chain Monte Carlo algorithms with applications to image restoration“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ50003.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Application to image restoration"
Zelensky, Alexander A., 1943- author und Kravchenko, Viktor F., 1939- author, Hrsg. Bispectral methods of signal processing: Applications in radar, telecommunications and digital image restoration. Berlin: Walter de Gruyter GmbH & Co. KG, 2015.
Den vollen Inhalt der Quelle findenFavaro, Paolo. 3-D shape estimation and image restoration: Exploiting defocus and motion blur. London: Springer, 2007.
Den vollen Inhalt der Quelle findenLesk, Michael. Image formats for preservation and access: A report. Washington, D.C: Commission on Preservation and Access, 1990.
Den vollen Inhalt der Quelle findenDobreva, Milena P. Applications of computer tools in studying medieval Slavonic manuscripts. Sofia, Bulgaria: Boyko Kacharmazov, 1995.
Den vollen Inhalt der Quelle findenKatsaggelos, Aggelos K., Hrsg. Digital Image Restoration. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-58216-5.
Der volle Inhalt der Quelle1956-, Katsaggelos Aggelos Konstantinos, Hrsg. Digital image restoration. Berlin: Springer-Verlag, 1991.
Den vollen Inhalt der Quelle findenJ, McDonnell M., Hrsg. Image restoration and reconstruction. Oxford [Oxfordshire]: Clarendon Press, 1986.
Den vollen Inhalt der Quelle findenHunter, Michael. The Image of Restoration Science. London ; New York : Routledge, 2017.: Routledge, 2016. http://dx.doi.org/10.4324/9781315556857.
Der volle Inhalt der QuelleOlson, Rex. Professional Photoshop: Image restoration & repair. Burbank, Calif: Desktop Images, 2002.
Den vollen Inhalt der Quelle findenRütimann, Hans. Computerization project of the Archivo General de Indias, Seville, Spain: A report to the Commission on Preservation and Access. Washington, D.C: Commission on Preservation and Access, 1992.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Application to image restoration"
Moura Neto, Francisco Duarte, und Antônio José da Silva Neto. „Image Restoration“. In An Introduction to Inverse Problems with Applications, 85–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32557-1_5.
Der volle Inhalt der QuelleAverbuch, Amir Z., Pekka Neittaanmaki und Valery A. Zheludev. „Application of Periodic Frames to Image Restoration“. In Spline and Spline Wavelet Methods with Applications to Signal and Image Processing, 465–78. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8926-4_18.
Der volle Inhalt der QuelleHu, Wenjin, Fuliang Zen, Jiahao Meng und Yuqi Ye. „Digital Restoration for Damaged Thangka Image“. In Application of Intelligent Systems in Multi-modal Information Analytics, 857–65. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15740-1_112.
Der volle Inhalt der QuelleGhennam, Souheila, und Khier Benmahammed. „Image Restoration Using Neural Networks“. In Bio-Inspired Applications of Connectionism, 227–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45723-2_27.
Der volle Inhalt der QuelleGonzález-Jaime, Luis, Mike Nachtegeal, Etienne Kerre, Gonzalo Vegas-Sánchez-Ferrero und Santiago Aja-Fernández. „Parametric Image Restoration Using Consensus: An Application to Nonstationary Noise Filtering“. In Pattern Recognition and Image Analysis, 358–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38628-2_42.
Der volle Inhalt der QuelleHe, Chuan, und Changhua Hu. „Parallel Primal-dual Method with Application to Image Restoration“. In Parallel Operator Splitting Algorithms with Application to Imaging Inverse Problems, 141–88. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3750-9_6.
Der volle Inhalt der QuelleDiffellah, Nacira, Rabah Hamdini und Tewfik Bekkouche. „Image Restoration Using Proximal-Splitting Methods“. In Artificial Intelligence and Its Applications, 437–46. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96311-8_40.
Der volle Inhalt der QuelleRooms, Filip, Bart Goossens, Aleksandra Pižurica und Wilfried Philips. „Image Restoration and Applications in Biomedical Processing“. In Optical and Digital Image Processing, 571–91. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635245.ch26.
Der volle Inhalt der QuelleHe, Chuan, und Changhua Hu. „Fast Parameter Estimation in TV-Based Image Restoration“. In Parallel Operator Splitting Algorithms with Application to Imaging Inverse Problems, 73–105. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3750-9_4.
Der volle Inhalt der QuelleSarrafzadeh, M., A. K. Katsaggelos und S. P. R. Kumar. „Parallel Architectures For Iterative Image Restoration“. In Parallel Algorithms and Architectures for DSP Applications, 1–31. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3996-4_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Application to image restoration"
Yang, Lei, Jingyi Liu, Ze Shi und Caijuan Shi. „SCMamba: A Space Correction State Space Model for Image Restoration“. In 2024 7th International Conference on Computer Information Science and Application Technology (CISAT), 436–40. IEEE, 2024. http://dx.doi.org/10.1109/cisat62382.2024.10695207.
Der volle Inhalt der QuelleCheng, B. T., M. A. Fiddy, J. D. Newman, R. C. Van Vranken und D. L. Clark. „Image restoration from low light level degraded data“. In Quantum-Limited Imaging and Image Processing. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/qlip.1989.tuc4.
Der volle Inhalt der QuelleWang, Fu, und Lin Deng. „The Application of Image Restoration in Aviation Image“. In 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/iccmcee-15.2015.157.
Der volle Inhalt der QuelleSezan, M. Ibrahim. „Method of convex projections for image enhancement and restoration“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.mf1.
Der volle Inhalt der QuelleOkitsu, Nagayuki, und Masato Shirai. „Spatial Attention for Image Restoration“. In International Conference on Industrial Application Engineering 2024. The Institute of Industrial Applications Engineers, 2024. http://dx.doi.org/10.12792/iciae2024.042.
Der volle Inhalt der QuelleLambert, Andrew J., James Webb und Donald Fraser. „Fast intelligent image sensor with application to image restoration“. In International Symposium on Optical Science and Technology, herausgegeben von C. Bruce Johnson, Divyendu Sinha und Phillip A. Laplante. SPIE, 2003. http://dx.doi.org/10.1117/12.452134.
Der volle Inhalt der QuelleLakshmi, A., und Subrata Rakshit. „Gaussian Restoration pyramid : Application of image restoration to Laplacian pyramid compression“. In 2010 IEEE 2nd International Advance Computing Conference (IACC 2010). IEEE, 2010. http://dx.doi.org/10.1109/iadcc.2010.5423035.
Der volle Inhalt der QuelleYu Hua, Wu Wen-Quan und Liu Zhong. „Application of Toeplitz matrix in image restoration“. In 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA). IEEE, 2010. http://dx.doi.org/10.1109/bicta.2010.5645155.
Der volle Inhalt der QuellePandey, Mukesh, Gunjan Rawat und Puneet Kanti. „Image Restoration Application and Methods for Different Images: A Review“. In 2022 International Conference on Advances in Computing, Communication and Materials (ICACCM). IEEE, 2022. http://dx.doi.org/10.1109/icaccm56405.2022.10009397.
Der volle Inhalt der QuelleHong Sun, H. Maitre und Bao Guan. „Turbo image restoration“. In Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings. IEEE, 2003. http://dx.doi.org/10.1109/isspa.2003.1224729.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Application to image restoration"
Carasso, Alfred S., und András E. Vladár. Calibrating image roughness by estimating Lipschitz exponents, with application to image restoration. Gaithersburg, MD: National Institute of Standards and Technology, 2007. http://dx.doi.org/10.6028/nist.ir.7438.
Der volle Inhalt der QuelleLal, Anisha M., Ali A. Abdulla und Aju Dennisan. Remote Sensing Image Restoration for Environmental Applications Using Estimated Parameters. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, August 2018. http://dx.doi.org/10.7546/crabs.2018.08.11.
Der volle Inhalt der QuelleLasko, Kristofer, und Sean Griffin. Monitoring Ecological Restoration with Imagery Tools (MERIT) : Python-based decision support tools integrated into ArcGIS for satellite and UAS image processing, analysis, and classification. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40262.
Der volle Inhalt der QuelleJennison, Christopher, und Michael Jubb. Statistical Image Restoration and Refinement. Fort Belvoir, VA: Defense Technical Information Center, Januar 1986. http://dx.doi.org/10.21236/ada196142.
Der volle Inhalt der QuelleMurphy, P. K. Survey of Image Restoration Techniques. Fort Belvoir, VA: Defense Technical Information Center, Juli 1988. http://dx.doi.org/10.21236/ada197470.
Der volle Inhalt der QuelleChan, Tony F., und Jianhong Shen. A Good Image Model Eases Restoration. Fort Belvoir, VA: Defense Technical Information Center, Februar 2002. http://dx.doi.org/10.21236/ada437474.
Der volle Inhalt der QuelleGoda, Matthew E. Wavelet Domain Image Restoration and Super-Resolution. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada405111.
Der volle Inhalt der QuelleMairal, Julien, Michael Elad und Guillermo Sapiro. Sparse Representation for Color Image Restoration (PREPRINT). Fort Belvoir, VA: Defense Technical Information Center, Oktober 2006. http://dx.doi.org/10.21236/ada478437.
Der volle Inhalt der QuelleJefferies, Stuart M., Douglas A. Hope und C. A. Giebink. Next Generation Image Restoration for Space Situational Awareness. Fort Belvoir, VA: Defense Technical Information Center, März 2009. http://dx.doi.org/10.21236/ada495284.
Der volle Inhalt der QuelleBarbacci, Mario R., und Dennis L. Doubleday. Generalized Image Library: A Durra Application Example. Fort Belvoir, VA: Defense Technical Information Center, Juli 1988. http://dx.doi.org/10.21236/ada199481.
Der volle Inhalt der Quelle